1 | /******************************************************************************* |
2 | * Copyright 2017-2018 Intel Corporation |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | *******************************************************************************/ |
16 | |
17 | #include "mkldnn_types.h" |
18 | |
19 | #include "c_types_map.hpp" |
20 | #include "jit_sse42_convolution.hpp" |
21 | #include "mkldnn_thread.hpp" |
22 | |
23 | namespace mkldnn { |
24 | namespace impl { |
25 | namespace cpu { |
26 | |
27 | using namespace mkldnn::impl::status; |
28 | using namespace mkldnn::impl::utils; |
29 | |
30 | #define src_blk_off(f, n, c, h, w) \ |
31 | (pd()->ndims() == 3) \ |
32 | ? (f).blk_off(n, c, w) \ |
33 | : (f).blk_off(n, c, h, w) |
34 | |
35 | #define wht_blk_off_(f, g, ...) \ |
36 | pd()->with_groups() \ |
37 | ? (f).blk_off(g, __VA_ARGS__) \ |
38 | : (f).blk_off(__VA_ARGS__) |
39 | #define wht_blk_off(f, g, oc, ic, kh, kw) \ |
40 | pd()->ndims() == 3 \ |
41 | ? wht_blk_off_(f, g, oc, ic, kw) \ |
42 | : wht_blk_off_(f, g, oc, ic, kh, kw) |
43 | |
44 | void jit_sse42_convolution_fwd_t::execute_forward( |
45 | const exec_ctx_t &ctx) const { |
46 | auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); |
47 | auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); |
48 | auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS); |
49 | auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); |
50 | |
51 | const memory_desc_wrapper src_d(pd()->src_md()); |
52 | const memory_desc_wrapper dst_d(pd()->dst_md()); |
53 | const memory_desc_wrapper weights_d(pd()->weights_md(0)); |
54 | const memory_desc_wrapper bias_d(pd()->weights_md(1)); |
55 | |
56 | const auto &jcp = kernel_->jcp; |
57 | |
58 | int ocb_work = div_up(jcp.nb_oc, jcp.nb_oc_blocking); |
59 | const size_t work_amount = jcp.mb * jcp.ngroups * ocb_work * jcp.oh; |
60 | |
61 | parallel(0, [&](const int ithr, const int nthr) { |
62 | size_t start{ 0 }, end{ 0 }; |
63 | balance211(work_amount, nthr, ithr, start, end); |
64 | |
65 | int icbb = 0; |
66 | while (icbb < jcp.nb_ic) { |
67 | int icb_step = jcp.nb_ic_blocking; |
68 | int icb_step_rem = jcp.nb_ic - icbb; |
69 | if (icb_step_rem < jcp.nb_ic_blocking_max) |
70 | icb_step = icb_step_rem; |
71 | |
72 | size_t n{0}, g{0}, ocbb{0}, oh{0}; |
73 | nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work, |
74 | oh, jcp.oh); |
75 | for (size_t iwork = start; iwork < end; ++iwork) { |
76 | int ocb = ocbb * jcp.nb_oc_blocking; |
77 | int ocb_num = jcp.nb_oc_blocking; |
78 | |
79 | for (int icb = icbb; icb < icbb + icb_step; ++icb) { |
80 | auto par_conv = jit_conv_call_s(); |
81 | |
82 | const int ij = oh * jcp.stride_h; |
83 | const int i_t_overflow = nstl::max(0, jcp.t_pad - ij); |
84 | const int i_b_overflow = nstl::max(jcp.ih, ij |
85 | + (jcp.kh-1) * (jcp.dilate_h+1) - jcp.t_pad+1) - jcp.ih; |
86 | |
87 | const size_t _oc = g * jcp.nb_oc + ocb; |
88 | const size_t _ic = g * jcp.nb_ic + icb; |
89 | |
90 | const int ih = nstl::max(ij - jcp.t_pad |
91 | + div_up(i_t_overflow, |
92 | (jcp.dilate_h+1)) * (jcp.dilate_h + 1), 0); |
93 | par_conv.src = &src[src_blk_off(src_d, n, |
94 | jcp.ic == 3 ? 0 : _ic, ih, 0)]; |
95 | |
96 | par_conv.dst = &dst[src_blk_off(dst_d, n, _oc, oh, 0)]; |
97 | |
98 | const int wh = div_up(i_t_overflow, (jcp.dilate_h + 1)); |
99 | par_conv.filt = &weights[wht_blk_off(weights_d, g, ocb, |
100 | jcp.ic == 3 ? 0 : icb, wh, 0)]; |
101 | |
102 | if (icb == 0) { |
103 | if (bias) |
104 | par_conv.bias = |
105 | &bias[bias_d.blk_off(_oc * jcp.oc_block)]; |
106 | par_conv.flags |= FLAG_IC_FIRST; |
107 | } |
108 | |
109 | if (jcp.with_eltwise && icb + 1 == jcp.nb_ic) { |
110 | par_conv.flags |= FLAG_IC_LAST; |
111 | } |
112 | |
113 | par_conv.oc_blocks = |
114 | nstl::min(ocb + ocb_num, jcp.nb_oc) - ocb; |
115 | |
116 | par_conv.kw_padding = 0; |
117 | const int kh_padding = jcp.kh |
118 | - div_up(i_t_overflow, (jcp.dilate_h + 1)) |
119 | - div_up(i_b_overflow, (jcp.dilate_h + 1)); |
120 | par_conv.kh_padding = nstl::max(0, kh_padding); |
121 | kernel_->jit_ker(&par_conv); |
122 | } |
123 | nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work, |
124 | oh, jcp.oh); |
125 | } |
126 | icbb += icb_step; |
127 | } |
128 | }); |
129 | |
130 | if (pd()->wants_zero_pad_dst()) |
131 | ctx.memory(MKLDNN_ARG_DST)->zero_pad(); |
132 | } |
133 | |
134 | } |
135 | } |
136 | } |
137 | |