1 | /******************************************************************************* |
2 | * Copyright 2017-2018 Intel Corporation |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | *******************************************************************************/ |
16 | |
17 | #include "c_types_map.hpp" |
18 | #include "mkldnn_thread.hpp" |
19 | #include "nstl.hpp" |
20 | #include "utils.hpp" |
21 | |
22 | #include "jit_uni_eltwise.hpp" |
23 | |
24 | #define GET_OFF(field) offsetof(jit_args, field) |
25 | |
26 | namespace mkldnn { |
27 | namespace impl { |
28 | namespace cpu { |
29 | |
30 | using namespace Xbyak; |
31 | |
32 | template <cpu_isa_t isa> |
33 | void jit_uni_eltwise_injector_f32<isa>::injector_preamble(size_t start_idx, |
34 | size_t end_idx) { |
35 | preserved_vecs_count = 0; |
36 | vecs_to_preserve = (size_t)aux_vecs_count(alg_); |
37 | start_idx_tail = start_idx; |
38 | |
39 | // For sse42 mask register has to be Xmm(0) |
40 | if (isa == sse42 && vecs_to_preserve > 0) { |
41 | size_t idx = 0; |
42 | assert(idx < start_idx); |
43 | preserved_vec_idxs[preserved_vecs_count++] = idx; |
44 | } |
45 | |
46 | for (size_t idx = preserved_vecs_count; idx < vecs_count; idx++) { |
47 | if (preserved_vecs_count >= vecs_to_preserve) break; |
48 | if (start_idx <= idx && idx < end_idx) continue; |
49 | |
50 | preserved_vec_idxs[preserved_vecs_count++] = idx; |
51 | } |
52 | |
53 | size_t preserved_vecs_count_tail = vecs_to_preserve - preserved_vecs_count; |
54 | for (size_t i = 0; i < preserved_vecs_count_tail; i++) { |
55 | preserved_vec_idxs[preserved_vecs_count++] = start_idx_tail++; |
56 | } |
57 | |
58 | assert(preserved_vecs_count == vecs_to_preserve); |
59 | |
60 | if (save_state_) { |
61 | h->push(p_table); |
62 | |
63 | if (preserved_vecs_count) |
64 | h->sub(h->rsp, preserved_vecs_count * vlen); |
65 | |
66 | for (size_t i = 0; i < preserved_vecs_count; ++i) |
67 | h->uni_vmovups(h->ptr[h->rsp + i * vlen], |
68 | Vmm(preserved_vec_idxs[i])); |
69 | |
70 | load_table_addr(); |
71 | } |
72 | |
73 | assign_regs(); |
74 | } |
75 | |
76 | template <cpu_isa_t isa> |
77 | void jit_uni_eltwise_injector_f32<isa>::injector_preamble_tail(size_t start_idx) |
78 | { |
79 | size_t tail_vecs_to_preserve = start_idx_tail - start_idx; |
80 | if (tail_vecs_to_preserve == 0) return; |
81 | |
82 | const int idx_off = vecs_to_preserve - tail_vecs_to_preserve; |
83 | |
84 | if (save_state_) { |
85 | if (idx_off) |
86 | h->add(h->rsp, idx_off * vlen); |
87 | |
88 | for (size_t i = 0; i < tail_vecs_to_preserve; ++i) |
89 | h->uni_vmovups(Vmm(preserved_vec_idxs[idx_off + i]), |
90 | h->ptr[h->rsp + i * vlen]); |
91 | } |
92 | |
93 | for (size_t i = 0; i < tail_vecs_to_preserve; ++i) |
94 | preserved_vec_idxs[idx_off + i] += tail_vecs_to_preserve; |
95 | |
96 | if (save_state_) { |
97 | for (size_t i = 0; i < tail_vecs_to_preserve; ++i) |
98 | h->uni_vmovups(h->ptr[h->rsp + i * vlen], |
99 | Vmm(preserved_vec_idxs[idx_off + i])); |
100 | |
101 | if (idx_off) |
102 | h->sub(h->rsp, idx_off * vlen); |
103 | } |
104 | |
105 | assign_regs(); |
106 | } |
107 | |
108 | template <cpu_isa_t isa> |
109 | void jit_uni_eltwise_injector_f32<isa>::injector_postamble() { |
110 | if (!save_state_) return; |
111 | |
112 | for (size_t i = 0; i < preserved_vecs_count; ++i) |
113 | h->uni_vmovups(Vmm(preserved_vec_idxs[i]), |
114 | h->ptr[h->rsp + i * vlen]); |
115 | |
116 | if (preserved_vecs_count) |
117 | h->add(h->rsp, preserved_vecs_count * vlen); |
118 | |
119 | h->pop(p_table); |
120 | } |
121 | |
122 | template <cpu_isa_t isa> |
123 | void jit_uni_eltwise_injector_f32<isa>::assign_regs() { |
124 | vmm_mask = Vmm(preserved_vec_idxs[0]); |
125 | vmm_aux0 = Vmm(preserved_vec_idxs[0]); |
126 | vmm_aux1 = Vmm(preserved_vec_idxs[1]); |
127 | vmm_aux2 = Vmm(preserved_vec_idxs[2]); |
128 | vmm_aux3 = Vmm(preserved_vec_idxs[3]); |
129 | vmm_aux4 = Vmm(preserved_vec_idxs[4]); |
130 | } |
131 | |
132 | template <cpu_isa_t isa> |
133 | void jit_uni_eltwise_injector_f32<isa>::exp_compute_vector(const Vmm &vmm_src) { |
134 | h->uni_vminps(vmm_src, vmm_src, table_val(10)); |
135 | h->uni_vmaxps(vmm_src, vmm_src, table_val(11)); |
136 | h->uni_vmovups(vmm_aux0, vmm_src); |
137 | //calculate exp(x) |
138 | // fx = x * log2ef + 0.5 |
139 | h->uni_vmulps(vmm_src, vmm_src, table_val(2)); |
140 | h->uni_vaddps(vmm_src, vmm_src, table_val(1)); |
141 | |
142 | // tmp = floorf(fx) |
143 | if (isa == avx512_common) { |
144 | h->vcvtps2dq(vmm_aux1 | h->T_rd_sae, vmm_src); |
145 | h->vcvtdq2ps(vmm_aux1, vmm_aux1); |
146 | |
147 | h->vcmpps(k_mask, vmm_aux1, vmm_src, _cmp_nle_us); |
148 | h->vmovups(vmm_aux3 | k_mask | h->T_z, table_val(0)); |
149 | |
150 | h->uni_vsubps(vmm_aux1, vmm_aux1, vmm_aux3); |
151 | } else { |
152 | h->uni_vroundps(vmm_aux1, vmm_src, _op_floor); |
153 | } |
154 | |
155 | //keep fx for further computations |
156 | h->uni_vmovups(vmm_src, vmm_aux1); //vmm_src = fx |
157 | |
158 | //x = x - fx * ln2 |
159 | h->uni_vfnmadd231ps(vmm_aux0, vmm_aux1, table_val(3)); |
160 | |
161 | // compute 2^n |
162 | h->uni_vcvtps2dq(vmm_aux1, vmm_src); |
163 | h->uni_vpaddd(vmm_aux1, vmm_aux1, table_val(4)); |
164 | h->uni_vpslld(vmm_aux1, vmm_aux1, 23); //Vmm(6) = 2^-fx |
165 | |
166 | // y = p5 |
167 | h->uni_vmovups(vmm_src, table_val(9)); |
168 | // y = y * x + p4 |
169 | h->uni_vfmadd213ps(vmm_src, vmm_aux0, table_val(8)); |
170 | // y = y * x + p3 |
171 | h->uni_vfmadd213ps(vmm_src, vmm_aux0, table_val(7)); |
172 | // y = y * x + p2 |
173 | h->uni_vfmadd213ps(vmm_src, vmm_aux0, table_val(6)); |
174 | // y = y * x + p1 |
175 | h->uni_vfmadd213ps(vmm_src, vmm_aux0, table_val(0)); |
176 | // y = y * x + p0 |
177 | h->uni_vfmadd213ps(vmm_src, vmm_aux0, table_val(5)); //exp(q) |
178 | // y = y * 2^n |
179 | h->uni_vmulps(vmm_src, vmm_src, vmm_aux1); |
180 | } |
181 | |
182 | template <cpu_isa_t isa> |
183 | void jit_uni_eltwise_injector_f32<isa>::relu_compute_vector(const Vmm &vmm_src) |
184 | { |
185 | const int alpha_off = 0, zero_off = 1; |
186 | |
187 | h->uni_vmovups(vmm_aux1, vmm_src); |
188 | if (isa == sse42) { |
189 | h->movups(vmm_mask, vmm_src); |
190 | h->mulps(vmm_src, table_val(alpha_off)); |
191 | h->cmpps(vmm_mask, table_val(zero_off), _cmp_nle_us); |
192 | h->blendvps(vmm_src, vmm_aux1); |
193 | } else if (isa == avx2) { |
194 | h->vmulps(vmm_src, vmm_src, table_val(alpha_off)); |
195 | h->vcmpgtps(vmm_mask, vmm_aux1, table_val(zero_off)); |
196 | h->vblendvps(vmm_src, vmm_src, vmm_aux1, vmm_mask); |
197 | } else if (isa == avx512_common) { |
198 | h->vmulps(vmm_src, vmm_src, table_val(alpha_off)); |
199 | h->vcmpps(k_mask, vmm_aux1, table_val(zero_off), _cmp_nle_us); |
200 | h->vblendmps(vmm_src | k_mask, vmm_src, vmm_aux1); |
201 | } |
202 | } |
203 | |
204 | template <cpu_isa_t isa> |
205 | void jit_uni_eltwise_injector_f32<isa>::relu_zero_ns_compute_vector( |
206 | const Vmm &vmm_src) { |
207 | const int zero_off = 1; |
208 | h->uni_vmaxps(vmm_src, vmm_src, table_val(zero_off)); |
209 | } |
210 | |
211 | template <cpu_isa_t isa> |
212 | void jit_uni_eltwise_injector_f32<isa>::elu_compute_vector(const Vmm &vmm_src) { |
213 | const int alpha_off = 23, zero_off = 24; |
214 | |
215 | // compute exponent |
216 | h->uni_vmovups(vmm_aux2, vmm_src); |
217 | exp_compute_vector(vmm_src); |
218 | |
219 | // alpha * (exp(x) - 1) |
220 | h->uni_vsubps(vmm_src, vmm_src, table_val(0)); |
221 | h->uni_vmulps(vmm_src, vmm_src, table_val(alpha_off)); |
222 | |
223 | // combine with mask |
224 | if (isa == sse42) { |
225 | h->pxor(vmm_mask, vmm_mask); |
226 | h->cmpps(vmm_mask, vmm_aux2, _cmp_le_os); |
227 | h->blendvps(vmm_src, vmm_aux2); |
228 | } else if (isa == avx2) { |
229 | h->uni_vcmpgtps(vmm_mask, vmm_aux2, table_val(zero_off)); |
230 | h->uni_vblendvps(vmm_src, vmm_src, vmm_aux2, vmm_mask); |
231 | } else if (isa == avx512_common) { |
232 | h->vcmpps(k_mask, vmm_aux2, table_val(zero_off), _cmp_nle_us); |
233 | h->vblendmps(vmm_src | k_mask, vmm_src, vmm_aux2); |
234 | } |
235 | } |
236 | |
237 | template <cpu_isa_t isa> |
238 | void jit_uni_eltwise_injector_f32<isa>::tanh_compute_vector(const Vmm &vmm_src) |
239 | { |
240 | // # comes from Taylor expansion error bound |
241 | // > linear_sat_point = single(sqrt(3) * 1b-12); |
242 | // # comes from the exp formula cancellation |
243 | // > exp_bound_point = (single(log(3)/2)); |
244 | // # comes from rounding accuracy in float |
245 | // > one_sat_point = round(atanh(1 - 1b-25), single, RU); |
246 | // > P = fpminimax(f, [|1, 3, 5, 7, 9|], [|24... |], |
247 | // [linear_sat_point, exp_bound_point], relative, floating); |
248 | // > err_bound = D(sup(supnorm(P, tanh(x), |
249 | // [linear_sat_point, exp_bound_point], relative, theta))); |
250 | // 0x1.fffd6f00b9539p-25 |
251 | // > P; |
252 | // x * (0x1.fffffep-1 + x^0x1p1 * (-0x1.55539ep-2 + x^0x1p1 * |
253 | // (0x1.10be3ep-3 + x^0x1p1 * (-0x1.ae57b4p-5 |
254 | // + x^0x1p1 * 0x1.09fa1p-6)))) |
255 | |
256 | // register mapping |
257 | // vmm_src contains input |
258 | // vmm_aux0 contains mask of currently valid results. |
259 | // 1 is need computation, 0 is already computed |
260 | // vmm_aux1 contains current output |
261 | // vmm_aux2, vmm_aux3 contains auxiliary values |
262 | // vmm_aux4 contains the original sign of inputs |
263 | |
264 | Label end_tanh_label; |
265 | |
266 | auto test_exit =[&](Xbyak::Address threshold){ |
267 | // is not necessary for >AVX, but should not matter on perf |
268 | h->uni_vmovups(vmm_aux0, vmm_src); |
269 | if (isa == avx512_common){ |
270 | h->vcmpps(k_mask, vmm_aux0, threshold, 0x5); |
271 | h->kortestw(k_mask, k_mask); |
272 | } else { |
273 | h->uni_vcmpgeps(vmm_aux0, vmm_aux0, threshold); |
274 | h->uni_vtestps(vmm_aux0, vmm_aux0); |
275 | } |
276 | h->jz(end_tanh_label, Xbyak::CodeGenerator::T_NEAR); |
277 | }; |
278 | |
279 | auto blend_results=[&](Vmm vmm_partial_res){ |
280 | if (isa == avx512_common) |
281 | h->vblendmps(vmm_aux1 | k_mask, vmm_aux1, vmm_partial_res); |
282 | else |
283 | h->uni_vblendvps(vmm_aux1, vmm_aux1, vmm_partial_res, vmm_aux0); |
284 | }; |
285 | |
286 | // because tanh(x) = -tanh(-x), we extract sign to make x postive |
287 | // and reapply sign at the end |
288 | // mov is not necessary for >AVX, but should not matter for performance |
289 | h->uni_vmovups(vmm_aux4, vmm_src); |
290 | h->uni_vandps(vmm_aux4, vmm_aux4, table_val(12)); |
291 | h->uni_vandps(vmm_src, vmm_src, table_val(17)); |
292 | |
293 | // if x < linear_sat_point for all inputs, we just return the input |
294 | h->uni_vmovups(vmm_aux1, vmm_src); |
295 | test_exit(table_val(13)); |
296 | |
297 | // if one of the mask is one, we have to compute an better approx |
298 | h->uni_vmovups(vmm_aux2, vmm_src); |
299 | h->uni_vmulps(vmm_aux2, vmm_aux2, vmm_aux2); |
300 | h->uni_vmovups(vmm_aux3, table_val(22)); |
301 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux2, table_val(21)); |
302 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux2, table_val(20)); |
303 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux2, table_val(19)); |
304 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux2, table_val(18)); |
305 | h->uni_vmulps(vmm_aux3, vmm_aux3, vmm_src); |
306 | |
307 | // we blend only the result that need update |
308 | blend_results(vmm_aux3); |
309 | |
310 | // if x < exp_bound_point, we go to return point |
311 | test_exit(table_val(14)); |
312 | |
313 | // if not we use a better approx 1 - 2 / (1 + exp(2x)) |
314 | // compute 2x |
315 | h->uni_vmovups(vmm_aux3, vmm_src); |
316 | h->uni_vaddps(vmm_aux3, vmm_aux3, vmm_aux3); |
317 | |
318 | // Compute exp(2x) |
319 | // We need to save kmask, vmm_aux0, vmm_aux1 and vmm_src as exp can use them |
320 | // vmm_src is not more read afterwards, so we do not have to save it |
321 | auto stack_size = 3 * vlen + (isa == avx512_common) * 4; |
322 | h->sub(h->rsp, stack_size); |
323 | h->uni_vmovups(h->ptr[h->rsp + 0 * vlen], vmm_aux0); |
324 | h->uni_vmovups(h->ptr[h->rsp + 1 * vlen], vmm_aux1); |
325 | h->uni_vmovups(h->ptr[h->rsp + 2 * vlen], vmm_src); |
326 | if (isa == avx512_common) |
327 | h->kmovw(h->ptr[h->rsp + 3 * vlen], k_mask); |
328 | |
329 | exp_compute_vector(vmm_aux3); |
330 | |
331 | h->uni_vmovups(vmm_aux0, h->ptr[h->rsp + 0 * vlen]); |
332 | h->uni_vmovups(vmm_aux1, h->ptr[h->rsp + 1 * vlen]); |
333 | h->uni_vmovups(vmm_src, h->ptr[h->rsp + 2 * vlen]); |
334 | if (isa == avx512_common) |
335 | h->kmovw(k_mask, h->ptr[h->rsp + 3 * vlen]); |
336 | h->add(h->rsp, stack_size); |
337 | |
338 | // 1 + exp(2x) |
339 | h->uni_vaddps(vmm_aux3, vmm_aux3, table_val(0)); |
340 | |
341 | // 1 - 2 / (1 + exp(2x)) |
342 | h->uni_vmovups(vmm_aux2, table_val(16)); |
343 | h->uni_vdivps(vmm_aux2, vmm_aux2, vmm_aux3); |
344 | h->uni_vaddps(vmm_aux2, vmm_aux2, table_val(0)); |
345 | |
346 | // we blend only the result that need update |
347 | blend_results(vmm_aux2); |
348 | |
349 | // finally, we saturate to 1 if needed |
350 | // TODO: maybe move that up if most inputs saturate in practice |
351 | if (isa == avx512_common) |
352 | h->vcmpps(k_mask, vmm_aux0, table_val(15), 0x5); |
353 | else { |
354 | h->uni_vmovups(vmm_aux0, vmm_src); |
355 | h->uni_vcmpgeps(vmm_aux0, vmm_aux0, table_val(15)); |
356 | } |
357 | h->uni_vmovups(vmm_aux2, table_val(0)); |
358 | blend_results(vmm_aux2); |
359 | |
360 | h->L(end_tanh_label); |
361 | { |
362 | // we apply the sign of x to the result and we are done |
363 | h->uni_vmovups(vmm_src, vmm_aux1); |
364 | h->uni_vpxor(vmm_src, vmm_src, vmm_aux4); |
365 | } |
366 | } |
367 | |
368 | template <cpu_isa_t isa> |
369 | void jit_uni_eltwise_injector_f32<isa>::square_compute_vector( |
370 | const Vmm &vmm_src) { |
371 | h->uni_vmulps(vmm_src, vmm_src, vmm_src); |
372 | } |
373 | |
374 | template <cpu_isa_t isa> |
375 | void jit_uni_eltwise_injector_f32<isa>::abs_compute_vector(const Vmm &vmm_src) { |
376 | // compute abs(x) = _mm_and_ps(x, 01111..111)); |
377 | h->uni_vandps(vmm_src, vmm_src, table_val(0)); |
378 | } |
379 | |
380 | template <cpu_isa_t isa> |
381 | void jit_uni_eltwise_injector_f32<isa>::sqrt_compute_vector(const Vmm &vmm_src) |
382 | { |
383 | if (isa == avx512_common) { |
384 | h->vcmpps(k_mask, vmm_src, table_val(0), _cmp_nle_us); |
385 | h->uni_vsqrtps(vmm_aux1, vmm_src); |
386 | h->uni_vmovups(vmm_src, table_val(0)); |
387 | h->vblendmps(vmm_src | k_mask, vmm_src, vmm_aux1); |
388 | } else { |
389 | h->uni_vmovups(vmm_mask, vmm_src); |
390 | h->uni_vcmpgtps(vmm_mask, vmm_mask, table_val(0)); |
391 | h->uni_vsqrtps(vmm_aux1, vmm_src); |
392 | h->uni_vmovups(vmm_src, table_val(0)); |
393 | h->uni_vblendvps(vmm_src, vmm_src, vmm_aux1, vmm_mask); |
394 | } |
395 | } |
396 | |
397 | template <cpu_isa_t isa> |
398 | void jit_uni_eltwise_injector_f32<isa>::linear_compute_vector( |
399 | const Vmm &vmm_src) { |
400 | // compute x = alpha * x + beta; |
401 | h->uni_vmovups(vmm_aux0, table_val(0)); |
402 | h->uni_vfmadd213ps(vmm_src, vmm_aux0, table_val(1)); |
403 | } |
404 | |
405 | template <cpu_isa_t isa> |
406 | void jit_uni_eltwise_injector_f32<isa>::bounded_relu_compute_vector( |
407 | const Vmm &vmm_src) { |
408 | // compute bounded relu */ |
409 | h->uni_vmaxps(vmm_src, vmm_src, table_val(1)); |
410 | h->uni_vminps(vmm_src, vmm_src, table_val(0)); |
411 | } |
412 | |
413 | template <cpu_isa_t isa> |
414 | void jit_uni_eltwise_injector_f32<isa>::soft_relu_compute_vector( |
415 | const Vmm &vmm_src) { |
416 | // duplicate src |
417 | h->uni_vmovups(vmm_aux2, vmm_src); |
418 | |
419 | h->uni_vminps(vmm_src, vmm_src, table_val(24)); |
420 | h->uni_vmaxps(vmm_src, vmm_src, table_val(25)); |
421 | h->uni_vmovups(vmm_aux1, vmm_src); |
422 | // calculate exp(x) |
423 | // fx = x * log2ef + 0.5 |
424 | h->uni_vmulps(vmm_src, vmm_src, table_val(2)); |
425 | h->uni_vaddps(vmm_src, vmm_src, table_val(1)); |
426 | |
427 | // tmp = floorf(fx) |
428 | if (isa == avx512_common) { |
429 | h->vcvtps2dq(vmm_aux0 | h->T_rd_sae, vmm_src); |
430 | h->vcvtdq2ps(vmm_aux0, vmm_aux0); |
431 | |
432 | h->vcmpps(k_mask, vmm_aux0, vmm_src, _cmp_nle_us); |
433 | h->vmovups(vmm_aux3 | k_mask | h->T_z, table_val(0)); |
434 | |
435 | h->vsubps(vmm_aux0, vmm_aux0, vmm_aux3); |
436 | } else { |
437 | h->uni_vroundps(vmm_aux0, vmm_src, _op_floor); |
438 | } |
439 | |
440 | // keep fx for further computations |
441 | h->uni_vmovups(vmm_src, vmm_aux0); //vmm_src = fx |
442 | // calculation fx * ln2 |
443 | h->uni_vmulps(vmm_aux0, vmm_aux0, table_val(3)); |
444 | // x = x - fx * ln2 |
445 | h->uni_vsubps(vmm_aux1, vmm_aux1, vmm_aux0); |
446 | // y = p5 |
447 | h->uni_vmovups(vmm_aux3, table_val(22)); |
448 | // y = y * x + p4 |
449 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux1, table_val(21)); |
450 | // y = y * x + p3 |
451 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux1, table_val(20)); |
452 | // y = y * x + p2 |
453 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux1, table_val(19)); |
454 | // y = y * x + p1 |
455 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux1, table_val(0)); |
456 | // y = y * x + p0 |
457 | h->uni_vfmadd213ps(vmm_aux3, vmm_aux1, table_val(17)); |
458 | |
459 | // compute 2^(-n) |
460 | if (isa == avx512_common) { |
461 | h->vmulps(vmm_aux1, vmm_src, table_val(23)); |
462 | h->vcvtps2dq(vmm_aux1, vmm_aux1); |
463 | } else { |
464 | h->uni_vcvtps2dq(vmm_aux1, vmm_src); |
465 | h->uni_vpsignd(vmm_aux1, vmm_aux1, table_val(23)); |
466 | } |
467 | |
468 | h->uni_vpaddd(vmm_aux1, vmm_aux1, table_val(4)); |
469 | h->uni_vpslld(vmm_aux1, vmm_aux1, 23); //vmm_aux1 = 2^-fx |
470 | // calculate ln(1 + y) |
471 | h->uni_vaddps(vmm_aux3, vmm_aux3, vmm_aux1); |
472 | // x = y; y is free; keep x for further computations |
473 | h->uni_vmovups(vmm_src, vmm_aux3); |
474 | // frexp() |
475 | h->uni_vpsrld(vmm_src, vmm_src, 23); |
476 | h->uni_vcvtdq2ps(vmm_src, vmm_src); |
477 | // got n. where n is x = 2^n * y. y = 0.5 .. 1 |
478 | h->uni_vsubps(vmm_src, vmm_src, table_val(5)); |
479 | |
480 | h->uni_vandps(vmm_aux3, vmm_aux3, table_val(6)); |
481 | // got y. (mantisa) 0.5 < y < 1 |
482 | h->uni_vorps(vmm_aux3, vmm_aux3, table_val(7)); |
483 | // y = y - 1 |
484 | h->uni_vsubps(vmm_aux3, vmm_aux3, table_val(0)); |
485 | // y = p8 |
486 | h->uni_vmovups(vmm_aux1, table_val(16)); |
487 | // y = y * x + p7 |
488 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(15)); |
489 | // y = y * x + p6 |
490 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(14)); |
491 | // y = y * x + p5 |
492 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(13)); |
493 | // y = y * x + p4 |
494 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(12)); |
495 | // y = y * x + p3 |
496 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(11)); |
497 | // y = y * x + p2 |
498 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(10)); |
499 | // y = y * x + p1 |
500 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(9)); |
501 | // y = y * x + p0 ; p0 = 0 |
502 | h->uni_vfmadd213ps(vmm_aux1, vmm_aux3, table_val(8)); |
503 | //calculate ln(2) * n |
504 | h->uni_vmulps(vmm_src, vmm_src, table_val(3)); |
505 | h->uni_vaddps(vmm_aux1, vmm_aux1, vmm_src); |
506 | h->uni_vaddps(vmm_aux1, vmm_aux1, vmm_aux0); |
507 | |
508 | // get vmm_mask = src > max logf |
509 | h->uni_vmovups(vmm_mask, vmm_aux2); |
510 | if (isa == avx512_common) { |
511 | // y = (x < max log f) ? soft_relu(x) : x |
512 | h->vcmpps(k_mask, vmm_mask, table_val(24), _cmp_nle_us); |
513 | h->vblendmps(vmm_aux1 | k_mask, vmm_aux1, vmm_aux2); |
514 | } else { |
515 | // y = (x < max log f) ? soft_relu(x) : x |
516 | h->uni_vcmpgtps(vmm_mask, vmm_mask, table_val(24)); |
517 | h->uni_vblendvps(vmm_aux1, vmm_aux1, vmm_aux2, vmm_mask); |
518 | } |
519 | |
520 | h->uni_vmovups(vmm_src, vmm_aux1); |
521 | } |
522 | |
523 | template <cpu_isa_t isa> |
524 | void jit_uni_eltwise_injector_f32<isa>::logistic_compute_vector( |
525 | const Vmm &vmm_src) { |
526 | // we store the original sign and make x negative |
527 | // IMPORTANT: we assume vmm_aux0 to be xmm0, as for sse4.2 path it is required |
528 | // IMPORTANT: we use vmm_aux2 for the mask as exp_compute does not use it. |
529 | h->uni_vmovups(vmm_aux2, vmm_src); |
530 | h->uni_vandps(vmm_aux2, vmm_aux2, table_val(12)); |
531 | h->uni_vorps(vmm_src, vmm_src, table_val(12)); |
532 | |
533 | exp_compute_vector(vmm_src); |
534 | // dup exp(x) |
535 | h->uni_vmovups(vmm_aux1, vmm_src); |
536 | // (exp(x) + 1) |
537 | h->uni_vaddps(vmm_aux1, vmm_aux1, table_val(0)); |
538 | // y = exp(x) / (exp(x) + 1) |
539 | h->uni_vdivps(vmm_src, vmm_src, vmm_aux1); |
540 | |
541 | // Now we have to apply the "symmetry" based on original sign |
542 | h->uni_vmovups(vmm_aux3, table_val(0)); |
543 | h->uni_vsubps(vmm_aux3, vmm_aux3, vmm_src); |
544 | if (isa == avx512_common) { |
545 | h->vptestmd(k_mask, vmm_aux2, vmm_aux2); |
546 | h->vblendmps(vmm_aux3 | k_mask, vmm_aux3, vmm_src); |
547 | } else { |
548 | h->uni_vmovups(vmm_aux0, vmm_aux2);// The mask should be xmm0 for sse4.2 |
549 | h->uni_vblendvps(vmm_aux3, vmm_aux3, vmm_src, vmm_aux0); |
550 | } |
551 | h->uni_vmovups(vmm_src, vmm_aux3); |
552 | } |
553 | |
554 | template <cpu_isa_t isa> |
555 | void jit_uni_eltwise_injector_f32<isa>::relu_prepare_table() { |
556 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(float2int(alpha_)); |
557 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(0); |
558 | } |
559 | |
560 | template <cpu_isa_t isa> |
561 | void jit_uni_eltwise_injector_f32<isa>::elu_prepare_table() { |
562 | const unsigned int cvals[] = { |
563 | 0x3f800000, // [0] 1.0f |
564 | 0x3f000000, // [1] 0.5f |
565 | 0x3fb8aa3b, // [2] log2ef = 1.44269502f |
566 | 0x3f317218, // [3] ln2f = 0.69314718f |
567 | 0x0000007f, // [4] 0x7f |
568 | // exp(x) polynom |
569 | 0x3f800001, // [5] p0 = 1.0000001f |
570 | 0x3efffe85, // [6] p2 = 0.4999887f |
571 | 0x3e2aaa3e, // [7] p3 = 0.16666505f |
572 | 0x3d2bb1b1, // [8] p4 = 0.041917507f |
573 | 0x3c091ec1, // [9] p5 = 0.008369149f |
574 | 0x42b0c0a5, //[10] max logf = 88.3762589f |
575 | 0xc1766666, //[11] min logf = -14.5f |
576 | // tanh(x) constants, |
577 | 0x80000000, //[12] mask to extract sign |
578 | 0x39ddb3d7, //[13] arg below which tanh(x) = x |
579 | 0x3f0c9f54, //[14] arg below which pol approx is valid |
580 | 0x41102cb4, //[15] arg after which tanh(x) = 1 |
581 | 0xc0000000, //[16] -2.0f |
582 | 0x7fffffff, //[17] mask to make positive |
583 | // tanh pol approx |
584 | 0x3f7fffff, //[18] p0 |
585 | 0xbeaaa9cf, //[19] p1 |
586 | 0x3e085f1f, //[20] p2 |
587 | 0xbd572bda, //[21] p3 |
588 | 0x3c84fd08, //[22] p4 |
589 | }; |
590 | |
591 | for (size_t i = 0; i < sizeof(cvals) / sizeof(cvals[0]); ++i) { |
592 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(cvals[i]); |
593 | } |
594 | |
595 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(float2int(alpha_)); |
596 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(0); |
597 | } |
598 | |
599 | template <cpu_isa_t isa> |
600 | void jit_uni_eltwise_injector_f32<isa>::soft_relu_prepare_table() { |
601 | const unsigned int cvals[] = { |
602 | 0x3f800000, // [0] 1.0f |
603 | 0x3f000000, // [1] 0.5f |
604 | 0x3fb8aa3b, // [2] log2ef = 1.44269502f |
605 | 0x3f317218, // [3] ln2f = 0.69314718f |
606 | 0x0000007f, // [4] 0x7f |
607 | 0x42fc0000, // [5] 126 |
608 | 0x807fffff, // [6] and with (to get 0.5 * mantissa) |
609 | 0x3f000000, // [7] or with (to get 0.5 * mantissa) |
610 | // ln(1 + x) polynomial |
611 | 0xb2b4637d, // [8] p0 = 0.0000000244f |
612 | 0x3f7fff8e, // [9] p1 = 0.9999976971f |
613 | 0xbf001759, //[10] p2 = -0.5002478215f |
614 | 0x3ea70608, //[11] p3 = 0.3272714505f |
615 | 0xbea3d7bf, //[12] p4 = -0.3153830071f |
616 | 0xbe361d04, //[13] p5 = -0.1701777461f |
617 | 0xbfa8f1e6, //[14] p6 = -1.3254635147f |
618 | 0xbfe1e812, //[15] p7 = -1.7971917960f |
619 | 0xbfc4d30e, //[16] p8 = -1.5652673123f |
620 | // exp(x) polynomial |
621 | 0x3f800001, //[17] p0 = 1.0000001f |
622 | 0x3f800000, //[18] p1 = 1.0f |
623 | 0x3efffe85, //[19] p2 = 0.4999887f |
624 | 0x3e2aaa3e, //[20] p3 = 0.16666505f |
625 | 0x3d2bb1b1, //[21] p4 = 0.041917507f |
626 | 0x3c091ec1, //[22] p5 = 0.008369149f |
627 | 0xbf800000, //[23] is required for sign changing |
628 | 0x42b0c0a5, //[24] max logf = 88.3762589f |
629 | 0xc1766666 //[25] min logf = -14.5f |
630 | }; |
631 | |
632 | for (size_t i = 0; i < sizeof(cvals) / sizeof(cvals[0]); ++i) { |
633 | for (size_t d = 0; d < vlen / sizeof(float); ++d) { |
634 | h->dd(cvals[i]); |
635 | } |
636 | } |
637 | } |
638 | |
639 | template <cpu_isa_t isa> |
640 | void jit_uni_eltwise_injector_f32<isa>::abs_prepare_table() { |
641 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(0x7fffffff); |
642 | } |
643 | |
644 | template <cpu_isa_t isa> |
645 | void jit_uni_eltwise_injector_f32<isa>::sqrt_prepare_table() { |
646 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(0); |
647 | } |
648 | |
649 | template <cpu_isa_t isa> |
650 | void jit_uni_eltwise_injector_f32<isa>::linear_prepare_table() { |
651 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(float2int(alpha_)); |
652 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(float2int(beta_)); |
653 | } |
654 | |
655 | template <cpu_isa_t isa> |
656 | void jit_uni_eltwise_injector_f32<isa>::bounded_relu_prepare_table() { |
657 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(float2int(alpha_)); |
658 | for (size_t d = 0; d < vlen / sizeof(float); ++d) h->dd(0); |
659 | } |
660 | |
661 | template <cpu_isa_t isa> |
662 | int jit_uni_eltwise_injector_f32<isa>::aux_vecs_count(alg_kind_t alg_) { |
663 | switch (alg_) { |
664 | case alg_kind::eltwise_relu: return (alpha_ == 0.f) ? 0 : 2; |
665 | case alg_kind::eltwise_elu: return 4; |
666 | case alg_kind::eltwise_tanh: return 5; |
667 | case alg_kind::eltwise_square: return 0; |
668 | case alg_kind::eltwise_abs: return 0; |
669 | case alg_kind::eltwise_sqrt: return 2; |
670 | case alg_kind::eltwise_linear: return 1; |
671 | case alg_kind::eltwise_bounded_relu: return 0; |
672 | case alg_kind::eltwise_soft_relu: return 4; |
673 | case alg_kind::eltwise_logistic: return 4; |
674 | default: assert(!"unsupported eltwise algorithm" ); |
675 | } |
676 | |
677 | return 0; |
678 | } |
679 | |
680 | template <cpu_isa_t isa> |
681 | void jit_uni_eltwise_injector_f32<isa>::compute_body(size_t start_idx, |
682 | size_t end_idx) { |
683 | using namespace alg_kind; |
684 | for (size_t idx = start_idx; idx < end_idx; idx++) { |
685 | switch (alg_) { |
686 | case eltwise_relu: |
687 | if (alpha_ == 0.f) relu_zero_ns_compute_vector(Vmm(idx)); |
688 | else relu_compute_vector(Vmm(idx)); |
689 | break; |
690 | case eltwise_elu: elu_compute_vector(Vmm(idx)); break; |
691 | case eltwise_tanh: tanh_compute_vector(Vmm(idx)); break; |
692 | case eltwise_square: square_compute_vector(Vmm(idx)); break; |
693 | case eltwise_abs: abs_compute_vector(Vmm(idx)); break; |
694 | case eltwise_sqrt: sqrt_compute_vector(Vmm(idx)); break; |
695 | case eltwise_linear: linear_compute_vector(Vmm(idx)); break; |
696 | case eltwise_bounded_relu: bounded_relu_compute_vector(Vmm(idx)); break; |
697 | case eltwise_soft_relu: soft_relu_compute_vector(Vmm(idx)); break; |
698 | case eltwise_logistic: logistic_compute_vector(Vmm(idx)); break; |
699 | default: assert(!"unsupported eltwise algorithm" ); |
700 | } |
701 | } |
702 | } |
703 | |
704 | template <cpu_isa_t isa> |
705 | void jit_uni_eltwise_injector_f32<isa>::compute_vector_range(size_t start_idx, |
706 | size_t end_idx) { |
707 | assert(start_idx < end_idx && end_idx <= vecs_count); |
708 | |
709 | injector_preamble(start_idx, end_idx); |
710 | compute_body(start_idx_tail, end_idx); |
711 | injector_preamble_tail(start_idx); |
712 | compute_body(start_idx, start_idx_tail); |
713 | injector_postamble(); |
714 | } |
715 | |
716 | template <cpu_isa_t isa> |
717 | void jit_uni_eltwise_injector_f32<isa>::prepare_table(bool gen_table) { |
718 | using namespace alg_kind; |
719 | |
720 | h->align(64); |
721 | h->L(l_table); |
722 | |
723 | if (gen_table) { |
724 | switch (alg_) { |
725 | case eltwise_relu: relu_prepare_table(); break; |
726 | case eltwise_elu: |
727 | case eltwise_tanh: |
728 | case eltwise_logistic: |
729 | elu_prepare_table(); break; |
730 | case eltwise_soft_relu: soft_relu_prepare_table(); break; |
731 | case eltwise_abs: abs_prepare_table(); break; |
732 | case eltwise_sqrt: sqrt_prepare_table(); break; |
733 | case eltwise_linear: linear_prepare_table(); break; |
734 | case eltwise_bounded_relu: bounded_relu_prepare_table(); break; |
735 | case eltwise_square: break; |
736 | default: assert(!"unsupported eltwise algorithm" ); |
737 | } |
738 | } |
739 | } |
740 | |
741 | template struct jit_uni_eltwise_injector_f32<avx512_common>; |
742 | template struct jit_uni_eltwise_injector_f32<avx2>; |
743 | template struct jit_uni_eltwise_injector_f32<sse42>; |
744 | |
745 | |
746 | struct jit_args { |
747 | const float *from; |
748 | const float *for_comparison; |
749 | const float *to; |
750 | size_t work_amount; |
751 | }; |
752 | |
753 | struct jit_uni_eltwise_kernel_f32 : public c_compatible { |
754 | const eltwise_desc_t &desc_; |
755 | |
756 | void (*ker_)(const jit_args *); |
757 | void operator()(const jit_args *args) { assert(ker_); ker_(args); } |
758 | |
759 | jit_uni_eltwise_kernel_f32(const eltwise_desc_t &desc) |
760 | : desc_(desc), ker_(nullptr) {} |
761 | virtual ~jit_uni_eltwise_kernel_f32() {} |
762 | |
763 | protected: |
764 | bool is_bwd() const { return desc_.prop_kind == prop_kind::backward_data; } |
765 | }; |
766 | |
767 | /* jit kernels */ |
768 | namespace { |
769 | |
770 | template <cpu_isa_t isa> |
771 | struct jit_uni_relu_kernel_f32 : public jit_uni_eltwise_kernel_f32, |
772 | public jit_generator |
773 | { |
774 | DECLARE_CPU_JIT_AUX_FUNCTIONS(jit_uni_relu_kernel_f32) |
775 | |
776 | void compute_step(bool vectorize, const int uf, const int shift) { |
777 | for (int i = 0; i < uf; i++) { |
778 | if (vectorize) { |
779 | uni_vmovups(Vmm(i + 1), ptr[reg_from + i * shift]); |
780 | if (is_bwd()) |
781 | uni_vmovups(Vmm(uf + i + 1), |
782 | ptr[reg_for_comparison + i * shift]); |
783 | } else { |
784 | movss(Xmm(i + 1), ptr[reg_from + i * shift]); |
785 | if (is_bwd()) |
786 | movss(Xmm(uf + i + 1), |
787 | ptr[reg_for_comparison + i * shift]); |
788 | } |
789 | } |
790 | |
791 | if (isa == sse42) { |
792 | for (int i = 0; i < uf; i++) { |
793 | movups(Vmm(2 * uf + i + 1), Vmm(i + 1)); |
794 | mulps(Vmm(2 * uf + i + 1), vmm_ns); |
795 | |
796 | Vmm mask = Vmm(0); |
797 | if (is_bwd()) { |
798 | movups(mask, Vmm(uf + i + 1)); |
799 | cmpps(mask, vmm_zero, _cmp_nle_us); |
800 | } else { |
801 | movups(mask, Vmm(i + 1)); |
802 | cmpps(mask, vmm_zero, _cmp_nle_us); |
803 | } |
804 | blendvps(Vmm(2 * uf + i + 1), Vmm(i + 1)); |
805 | } |
806 | } else { |
807 | for (int i = 0; i < uf; i++) { |
808 | vmulps(Vmm(2 * uf + i + 1), Vmm(i + 1), vmm_ns); |
809 | if (isa == avx2) { |
810 | if (is_bwd()) |
811 | vcmpgtps(vmm_mask, Vmm(uf + i + 1), vmm_zero); |
812 | else |
813 | vcmpgtps(vmm_mask, Vmm(i + 1), vmm_zero); |
814 | |
815 | vblendvps(Vmm(2 * uf + i + 1), Vmm(2 * uf + i + 1), |
816 | Vmm(i + 1), vmm_mask); |
817 | |
818 | } else { |
819 | if (is_bwd()) |
820 | vcmpps(k_mask, Vmm(uf + i + 1), vmm_zero, _cmp_nle_us); |
821 | else |
822 | vcmpps(k_mask, Vmm(i + 1), vmm_zero, _cmp_nle_us); |
823 | vblendmps(Vmm(2 * uf + i + 1) | k_mask, Vmm(2 * uf + i + 1), |
824 | Vmm(i + 1)); |
825 | } |
826 | } |
827 | } |
828 | |
829 | for (int i = 0; i < uf; i++) { |
830 | if (vectorize) { |
831 | uni_vmovups(ptr[reg_to + i * shift], Vmm(2 * uf + i + 1)); |
832 | } else { |
833 | movss(ptr[reg_to + i * shift], Xmm(2 * uf + i + 1)); |
834 | } |
835 | } |
836 | } |
837 | |
838 | jit_uni_relu_kernel_f32(const eltwise_desc_t &desc) |
839 | : jit_uni_eltwise_kernel_f32(desc), jit_generator() { |
840 | assert(desc.alg_kind == alg_kind::eltwise_relu); |
841 | assert(isa == sse42 || isa == avx2 || isa == avx512_common); |
842 | |
843 | Reg64 param = abi_param1; |
844 | |
845 | const int simd_w = cpu_isa_traits<isa>::vlen / sizeof(float); |
846 | const int loop_dec[] = {simd_w, 1}; |
847 | const int uf[] = {1, 1}; |
848 | const int shift[] = {cpu_isa_traits<isa>::vlen, sizeof(float)}; |
849 | const bool loop_vectorize[] = {true, false}; |
850 | |
851 | this->preamble(); |
852 | |
853 | mov(reg_from, ptr[param + GET_OFF(from)]); |
854 | if (is_bwd()) |
855 | mov(reg_for_comparison, ptr[param + GET_OFF(for_comparison)]); |
856 | mov(reg_to, ptr[param + GET_OFF(to)]); |
857 | mov(reg_work_amount, ptr[param + GET_OFF(work_amount)]); |
858 | |
859 | mov(imm_addr64, float2int(desc.alpha)); |
860 | movq(xmm_ns, imm_addr64); |
861 | uni_vbroadcastss(vmm_ns, xmm_ns); |
862 | |
863 | uni_vpxor(vmm_zero, vmm_zero, vmm_zero); |
864 | |
865 | Label loop_label[3]; |
866 | |
867 | for (int id = 0; id < 2; id++) { |
868 | L(loop_label[id]); |
869 | cmp(reg_work_amount, uf[id] * loop_dec[id] - 1); |
870 | jle(loop_label[id + 1], T_NEAR); |
871 | |
872 | compute_step(loop_vectorize[id], uf[id], shift[id]); |
873 | |
874 | add(reg_from, uf[id] * shift[id]); |
875 | add(reg_to, uf[id] * shift[id]); |
876 | if (is_bwd()) |
877 | add(reg_for_comparison, uf[id] * shift[id]); |
878 | |
879 | sub(reg_work_amount, uf[id] * loop_dec[id]); |
880 | jmp(loop_label[id]); |
881 | } |
882 | |
883 | L(loop_label[2]); |
884 | this->postamble(); |
885 | |
886 | ker_ = (decltype(ker_))this->getCode(); |
887 | } |
888 | |
889 | private: |
890 | using Vmm = typename utils::conditional3<isa == sse42, Xmm, |
891 | isa == avx2, Ymm, Zmm>::type; |
892 | |
893 | Reg64 reg_from = rax; |
894 | Reg64 reg_for_comparison = is_bwd() ? rdx : reg_from; |
895 | Reg64 reg_to = r8; |
896 | Reg64 reg_work_amount = rsi; |
897 | Reg64 imm_addr64 = rbx; |
898 | |
899 | Xmm xmm_ns = Xmm(14); |
900 | |
901 | Vmm vmm_ns = Vmm(isa == avx512_common ? 30 : 14); |
902 | Vmm vmm_zero = Vmm(isa == avx512_common ? 31 : 15); |
903 | |
904 | Vmm vmm_mask = Vmm(isa == avx512_common ? 28 : 12); |
905 | Opmask k_mask = Opmask(1); |
906 | }; |
907 | |
908 | template <cpu_isa_t isa> |
909 | struct jit_uni_kernel_fwd_f32: public jit_uni_eltwise_kernel_f32, |
910 | public jit_generator { |
911 | DECLARE_CPU_JIT_AUX_FUNCTIONS(jit_uni_kernel_fwd_f32) |
912 | |
913 | jit_uni_kernel_fwd_f32(const eltwise_desc_t &desc) |
914 | : jit_uni_eltwise_kernel_f32(desc), jit_generator() { |
915 | |
916 | eltwise_injector_ = new jit_uni_eltwise_injector_f32<isa>(this, |
917 | desc.alg_kind, desc.alpha, desc.beta, false, r9, Opmask(1)); |
918 | |
919 | using namespace alg_kind; |
920 | |
921 | assert(is_bwd() == false); |
922 | assert(utils::one_of(desc.alg_kind, eltwise_tanh, eltwise_elu, |
923 | eltwise_square, eltwise_abs, eltwise_sqrt, eltwise_linear, |
924 | eltwise_bounded_relu, eltwise_soft_relu, eltwise_logistic)); |
925 | |
926 | preamble(); |
927 | |
928 | Reg64 param = abi_param1; |
929 | mov(reg_from, ptr[param + GET_OFF(from)]); |
930 | mov(reg_to, ptr[param + GET_OFF(to)]); |
931 | mov(reg_work_amount, ptr[param + GET_OFF(work_amount)]); |
932 | eltwise_injector_->load_table_addr(); |
933 | |
934 | Label reminder_loop_start, reminder_loop_end; |
935 | Label vectorized_loop_start, vectorized_loop_end; |
936 | |
937 | cmp(reg_work_amount, simd_w); |
938 | jl(reminder_loop_start, T_NEAR); |
939 | |
940 | L(vectorized_loop_start); |
941 | |
942 | uni_vmovups(vmm_src, ptr[reg_from]); |
943 | eltwise_injector_->compute_vector(vmm_src.getIdx()); |
944 | uni_vmovups(ptr[reg_to], vmm_src); |
945 | |
946 | add(reg_from, vlen); |
947 | add(reg_to, vlen); |
948 | |
949 | sub(reg_work_amount, simd_w); |
950 | cmp(reg_work_amount, simd_w); |
951 | jge(vectorized_loop_start, T_NEAR); |
952 | |
953 | L(vectorized_loop_end); |
954 | |
955 | L(reminder_loop_start); |
956 | |
957 | cmp(reg_work_amount, 0); |
958 | jle(reminder_loop_end, T_NEAR); |
959 | |
960 | movss(xmm_src, ptr[reg_from]); |
961 | eltwise_injector_->compute_vector(xmm_src.getIdx()); |
962 | movss(ptr[reg_to], xmm_src); |
963 | |
964 | add(reg_from, sizeof(float)); |
965 | add(reg_to, sizeof(float)); |
966 | |
967 | dec(reg_work_amount); |
968 | jmp(reminder_loop_start, T_NEAR); |
969 | |
970 | L(reminder_loop_end); |
971 | |
972 | postamble(); |
973 | |
974 | eltwise_injector_->prepare_table(); |
975 | |
976 | ker_ = (decltype(ker_))this->getCode(); |
977 | } |
978 | |
979 | ~jit_uni_kernel_fwd_f32() { delete eltwise_injector_; } |
980 | |
981 | private: |
982 | using Vmm = typename utils::conditional3<isa == sse42, Xmm, |
983 | isa == avx2, Ymm, Zmm>::type; |
984 | |
985 | const int simd_w = cpu_isa_traits<isa>::vlen / sizeof(float); |
986 | const int vlen = cpu_isa_traits<isa>::vlen; |
987 | |
988 | Reg64 reg_from = rax; |
989 | Reg64 reg_to = r8; |
990 | Reg64 reg_work_amount = rsi; |
991 | Reg64 imm_addr64 = rbx; |
992 | |
993 | Xmm xmm_src = Xmm(1); |
994 | Vmm vmm_src = Vmm(1); |
995 | |
996 | jit_uni_eltwise_injector_f32<isa> *eltwise_injector_; |
997 | }; |
998 | |
999 | } /* namespace */ |
1000 | |
1001 | template <cpu_isa_t isa> |
1002 | status_t jit_uni_eltwise_fwd_t<isa>::pd_t::init() { |
1003 | using namespace alg_kind; |
1004 | |
1005 | bool ok = true |
1006 | && mayiuse(isa) |
1007 | && is_fwd() |
1008 | && utils::everyone_is(data_type::f32, desc()->data_desc.data_type) |
1009 | && !has_zero_dim_memory() |
1010 | && utils::one_of(desc()->alg_kind, eltwise_relu, eltwise_tanh, |
1011 | eltwise_elu, eltwise_square, eltwise_abs, eltwise_sqrt, |
1012 | eltwise_linear, eltwise_bounded_relu, eltwise_soft_relu, |
1013 | eltwise_logistic) |
1014 | && memory_desc_wrapper(src_md()).is_dense(true) |
1015 | && IMPLICATION(!memory_desc_wrapper(src_md()).is_dense(false), |
1016 | math::eltwise_fwd_preserves_zero(desc()->alg_kind, true)) |
1017 | && attr()->has_default_values(); |
1018 | |
1019 | return ok ? status::success : status::unimplemented; |
1020 | } |
1021 | |
1022 | template <cpu_isa_t isa> |
1023 | jit_uni_eltwise_fwd_t<isa>::jit_uni_eltwise_fwd_t(const pd_t *apd) |
1024 | : cpu_primitive_t(apd), kernel_(nullptr) { |
1025 | const auto &desc = *pd()->desc(); |
1026 | switch (desc.alg_kind) { |
1027 | case alg_kind::eltwise_relu: |
1028 | kernel_ = new jit_uni_relu_kernel_f32<isa>(desc); break; |
1029 | default: |
1030 | kernel_ = new jit_uni_kernel_fwd_f32<isa>(desc); |
1031 | } |
1032 | } |
1033 | |
1034 | template <cpu_isa_t isa> |
1035 | jit_uni_eltwise_fwd_t<isa>::~jit_uni_eltwise_fwd_t() |
1036 | { delete kernel_; } |
1037 | |
1038 | template <cpu_isa_t isa> |
1039 | void jit_uni_eltwise_fwd_t<isa>::execute_forward(const exec_ctx_t &ctx) const { |
1040 | auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); |
1041 | auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); |
1042 | |
1043 | const memory_desc_wrapper data_d(pd()->src_md()); |
1044 | |
1045 | const size_t nelems = data_d.nelems(true); |
1046 | |
1047 | src += data_d.offset0(); |
1048 | dst += data_d.offset0(); |
1049 | |
1050 | parallel(0, [&](const int ithr, const int nthr) { |
1051 | size_t start{0}, end{0}; |
1052 | |
1053 | const int cache_line = 16; |
1054 | |
1055 | balance211(utils::div_up(nelems, cache_line), nthr, ithr, start, end); |
1056 | start = nstl::min(nelems, start * cache_line); |
1057 | end = nstl::min(nelems, end * cache_line); |
1058 | |
1059 | auto arg = jit_args(); |
1060 | arg.from = &src[start]; |
1061 | arg.for_comparison = &src[start]; |
1062 | arg.to = &dst[start]; |
1063 | arg.work_amount = end - start; |
1064 | if (arg.work_amount) |
1065 | (*kernel_)(&arg); |
1066 | }); |
1067 | } |
1068 | |
1069 | template <cpu_isa_t isa> |
1070 | status_t jit_uni_eltwise_bwd_t<isa>::pd_t::init() { |
1071 | bool ok = true |
1072 | && !is_fwd() |
1073 | && utils::one_of(desc()->alg_kind, alg_kind::eltwise_relu) |
1074 | && src_md()->data_type == data_type::f32 |
1075 | && !has_zero_dim_memory() |
1076 | && mayiuse(isa) |
1077 | && memory_desc_wrapper(src_md()).is_dense() |
1078 | && memory_desc_wrapper(diff_dst_md()) == memory_desc_wrapper(src_md()) |
1079 | && attr()->has_default_values(); |
1080 | |
1081 | return ok ? status::success : status::unimplemented; |
1082 | } |
1083 | |
1084 | template <cpu_isa_t isa> |
1085 | jit_uni_eltwise_bwd_t<isa>::jit_uni_eltwise_bwd_t(const pd_t *apd) |
1086 | : cpu_primitive_t(apd), kernel_(nullptr) { |
1087 | const auto &desc = *pd()->desc(); |
1088 | switch (desc.alg_kind) { |
1089 | case alg_kind::eltwise_relu: |
1090 | kernel_ = new jit_uni_relu_kernel_f32<isa>(desc); break; |
1091 | default: assert(!"unknown eltwise alg_kind" ); |
1092 | } |
1093 | } |
1094 | |
1095 | template <cpu_isa_t isa> |
1096 | jit_uni_eltwise_bwd_t<isa>::~jit_uni_eltwise_bwd_t() |
1097 | { delete kernel_; } |
1098 | |
1099 | template <cpu_isa_t isa> |
1100 | void jit_uni_eltwise_bwd_t<isa>::execute_backward(const exec_ctx_t &ctx) const { |
1101 | auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); |
1102 | auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); |
1103 | auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); |
1104 | |
1105 | const memory_desc_wrapper data_d(pd()->src_md()); |
1106 | const memory_desc_wrapper diff_data_d(pd()->diff_src_md()); |
1107 | |
1108 | const size_t nelems = data_d.nelems(); |
1109 | |
1110 | src += data_d.offset0(); |
1111 | diff_dst += diff_data_d.offset0(); |
1112 | diff_src += diff_data_d.offset0(); |
1113 | |
1114 | parallel(0, [&](const int ithr, const int nthr) { |
1115 | size_t start{0}, end{0}; |
1116 | |
1117 | const int cache_line = 16; |
1118 | |
1119 | balance211(utils::div_up(nelems, cache_line), nthr, ithr, start, end); |
1120 | start = nstl::min(nelems, start * cache_line); |
1121 | end = nstl::min(nelems, end * cache_line); |
1122 | |
1123 | auto arg = jit_args(); |
1124 | arg.from = &diff_dst[start]; |
1125 | arg.to = &diff_src[start]; |
1126 | arg.for_comparison = &src[start]; |
1127 | arg.work_amount = end - start; |
1128 | if (arg.work_amount) |
1129 | (*kernel_)(&arg); |
1130 | }); |
1131 | } |
1132 | |
1133 | template struct jit_uni_eltwise_fwd_t<sse42>; |
1134 | template struct jit_uni_eltwise_bwd_t<sse42>; |
1135 | template struct jit_uni_eltwise_fwd_t<avx2>; |
1136 | template struct jit_uni_eltwise_bwd_t<avx2>; |
1137 | template struct jit_uni_eltwise_fwd_t<avx512_common>; |
1138 | template struct jit_uni_eltwise_bwd_t<avx512_common>; |
1139 | |
1140 | } |
1141 | } |
1142 | } |
1143 | |