| 1 | /* |
| 2 | * Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved. |
| 3 | |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | * of this software and associated documentation files (the "Software"), to deal |
| 6 | * in the Software without restriction, including without limitation the rights |
| 7 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | * copies of the Software, and to permit persons to whom the Software is |
| 9 | * furnished to do so, subject to the following conditions: |
| 10 | |
| 11 | * The above copyright notice and this permission notice shall be included in all |
| 12 | * copies or substantial portions of the Software. |
| 13 | |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 20 | * SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * Lempel–Ziv–Welch (LZW) encoder/decoder by Guilherme R. Lampert(guilherme.ronaldo.lampert@gmail.com) |
| 25 | |
| 26 | * This is the compression scheme used by the GIF image format and the Unix 'compress' tool. |
| 27 | * Main differences from this implementation is that End Of Input (EOI) and Clear Codes (CC) |
| 28 | * are not stored in the output and the max code length in bits is 12, vs 16 in compress. |
| 29 | * |
| 30 | * EOI is simply detected by the end of the data stream, while CC happens if the |
| 31 | * dictionary gets filled. Data is written/read from bit streams, which handle |
| 32 | * byte-alignment for us in a transparent way. |
| 33 | |
| 34 | * The decoder relies on the hardcoded data layout produced by the encoder, since |
| 35 | * no additional reconstruction data is added to the output, so they must match. |
| 36 | * The nice thing about LZW is that we can reconstruct the dictionary directly from |
| 37 | * the stream of codes generated by the encoder, so this avoids storing additional |
| 38 | * headers in the bit stream. |
| 39 | |
| 40 | * The output code length is variable. It starts with the minimum number of bits |
| 41 | * required to store the base byte-sized dictionary and automatically increases |
| 42 | * as the dictionary gets larger (it starts at 9-bits and grows to 10-bits when |
| 43 | * code 512 is added, then 11-bits when 1024 is added, and so on). If the dictionary |
| 44 | * is filled (4096 items for a 12-bits dictionary), the whole thing is cleared and |
| 45 | * the process starts over. This is the main reason why the encoder and the decoder |
| 46 | * must match perfectly, since the lengths of the codes will not be specified with |
| 47 | * the data itself. |
| 48 | |
| 49 | * USEFUL LINKS: |
| 50 | * https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch |
| 51 | * http://rosettacode.org/wiki/LZW_compression |
| 52 | * http://www.cs.duke.edu/csed/curious/compression/lzw.html |
| 53 | * http://www.cs.cf.ac.uk/Dave/Multimedia/node214.html |
| 54 | * http://marknelson.us/1989/10/01/lzw-data-compression/ |
| 55 | */ |
| 56 | #include "config.h" |
| 57 | |
| 58 | #if defined(THORVG_TVG_SAVER_SUPPORT) || defined(THORVG_TVG_LOADER_SUPPORT) |
| 59 | |
| 60 | /************************************************************************/ |
| 61 | /* Internal Class Implementation */ |
| 62 | /************************************************************************/ |
| 63 | |
| 64 | #include <string> |
| 65 | #include <memory.h> |
| 66 | #include "tvgLzw.h" |
| 67 | |
| 68 | namespace { |
| 69 | //LZW Dictionary helper: |
| 70 | constexpr int Nil = -1; |
| 71 | constexpr int MaxDictBits = 12; |
| 72 | constexpr int StartBits = 9; |
| 73 | constexpr int FirstCode = (1 << (StartBits - 1)); // 256 |
| 74 | constexpr int MaxDictEntries = (1 << MaxDictBits); // 4096 |
| 75 | |
| 76 | |
| 77 | //Round up to the next power-of-two number, e.g. 37 => 64 |
| 78 | static int nextPowerOfTwo(int num) |
| 79 | { |
| 80 | --num; |
| 81 | for (size_t i = 1; i < sizeof(num) * 8; i <<= 1) { |
| 82 | num = num | num >> i; |
| 83 | } |
| 84 | return ++num; |
| 85 | } |
| 86 | |
| 87 | |
| 88 | struct BitStreamWriter |
| 89 | { |
| 90 | uint8_t* stream; //Growable buffer to store our bits. Heap allocated & owned by the class instance. |
| 91 | int bytesAllocated; //Current size of heap-allocated stream buffer *in bytes*. |
| 92 | int granularity; //Amount bytesAllocated multiplies by when auto-resizing in appendBit(). |
| 93 | int currBytePos; //Current byte being written to, from 0 to bytesAllocated-1. |
| 94 | int nextBitPos; //Bit position within the current byte to access next. 0 to 7. |
| 95 | int numBitsWritten; //Number of bits in use from the stream buffer, not including byte-rounding padding. |
| 96 | |
| 97 | void internalInit() |
| 98 | { |
| 99 | stream = nullptr; |
| 100 | bytesAllocated = 0; |
| 101 | granularity = 2; |
| 102 | currBytePos = 0; |
| 103 | nextBitPos = 0; |
| 104 | numBitsWritten = 0; |
| 105 | } |
| 106 | |
| 107 | uint8_t* allocBytes(const int bytesWanted, uint8_t * oldPtr, const int oldSize) |
| 108 | { |
| 109 | auto newMemory = static_cast<uint8_t *>(malloc(bytesWanted)); |
| 110 | memset(newMemory, 0, bytesWanted); |
| 111 | |
| 112 | if (oldPtr) { |
| 113 | memcpy(newMemory, oldPtr, oldSize); |
| 114 | free(oldPtr); |
| 115 | } |
| 116 | return newMemory; |
| 117 | } |
| 118 | |
| 119 | BitStreamWriter() |
| 120 | { |
| 121 | /* 8192 bits for a start (1024 bytes). It will resize if needed. |
| 122 | Default granularity is 2. */ |
| 123 | internalInit(); |
| 124 | allocate(8192); |
| 125 | } |
| 126 | |
| 127 | BitStreamWriter(const int initialSizeInBits, const int growthGranularity = 2) |
| 128 | { |
| 129 | internalInit(); |
| 130 | setGranularity(growthGranularity); |
| 131 | allocate(initialSizeInBits); |
| 132 | } |
| 133 | |
| 134 | ~BitStreamWriter() |
| 135 | { |
| 136 | free(stream); |
| 137 | } |
| 138 | |
| 139 | void allocate(int bitsWanted) |
| 140 | { |
| 141 | //Require at least a byte. |
| 142 | if (bitsWanted <= 0) bitsWanted = 8; |
| 143 | |
| 144 | //Round upwards if needed: |
| 145 | if ((bitsWanted % 8) != 0) bitsWanted = nextPowerOfTwo(bitsWanted); |
| 146 | |
| 147 | //We might already have the required count. |
| 148 | const int sizeInBytes = bitsWanted / 8; |
| 149 | if (sizeInBytes <= bytesAllocated) return; |
| 150 | |
| 151 | stream = allocBytes(sizeInBytes, stream, bytesAllocated); |
| 152 | bytesAllocated = sizeInBytes; |
| 153 | } |
| 154 | |
| 155 | void appendBit(const int bit) |
| 156 | { |
| 157 | const uint32_t mask = uint32_t(1) << nextBitPos; |
| 158 | stream[currBytePos] = (stream[currBytePos] & ~mask) | (-bit & mask); |
| 159 | ++numBitsWritten; |
| 160 | |
| 161 | if (++nextBitPos == 8) { |
| 162 | nextBitPos = 0; |
| 163 | if (++currBytePos == bytesAllocated) allocate(bytesAllocated * granularity * 8); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | void appendBitsU64(const uint64_t num, const int bitCount) |
| 168 | { |
| 169 | for (int b = 0; b < bitCount; ++b) { |
| 170 | const uint64_t mask = uint64_t(1) << b; |
| 171 | const int bit = !!(num & mask); |
| 172 | appendBit(bit); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | uint8_t* release() |
| 177 | { |
| 178 | auto oldPtr = stream; |
| 179 | internalInit(); |
| 180 | return oldPtr; |
| 181 | } |
| 182 | |
| 183 | void setGranularity(const int growthGranularity) |
| 184 | { |
| 185 | granularity = (growthGranularity >= 2) ? growthGranularity : 2; |
| 186 | } |
| 187 | |
| 188 | int getByteCount() const |
| 189 | { |
| 190 | int usedBytes = numBitsWritten / 8; |
| 191 | int leftovers = numBitsWritten % 8; |
| 192 | if (leftovers != 0) ++usedBytes; |
| 193 | return usedBytes; |
| 194 | } |
| 195 | }; |
| 196 | |
| 197 | |
| 198 | struct BitStreamReader |
| 199 | { |
| 200 | const uint8_t* stream; // Pointer to the external bit stream. Not owned by the reader. |
| 201 | const int sizeInBytes; // Size of the stream *in bytes*. Might include padding. |
| 202 | const int sizeInBits; // Size of the stream *in bits*, padding *not* include. |
| 203 | int currBytePos = 0; // Current byte being read in the stream. |
| 204 | int nextBitPos = 0; // Bit position within the current byte to access next. 0 to 7. |
| 205 | int numBitsRead = 0; // Total bits read from the stream so far. Never includes byte-rounding padding. |
| 206 | |
| 207 | BitStreamReader(const uint8_t* bitStream, const int byteCount, const int bitCount) : stream(bitStream), sizeInBytes(byteCount), sizeInBits(bitCount) |
| 208 | { |
| 209 | } |
| 210 | |
| 211 | bool readNextBit(int& bitOut) |
| 212 | { |
| 213 | if (numBitsRead >= sizeInBits) return false; //We are done. |
| 214 | |
| 215 | const uint32_t mask = uint32_t(1) << nextBitPos; |
| 216 | bitOut = !!(stream[currBytePos] & mask); |
| 217 | ++numBitsRead; |
| 218 | |
| 219 | if (++nextBitPos == 8) { |
| 220 | nextBitPos = 0; |
| 221 | ++currBytePos; |
| 222 | } |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | uint64_t readBitsU64(const int bitCount) |
| 227 | { |
| 228 | uint64_t num = 0; |
| 229 | for (int b = 0; b < bitCount; ++b) { |
| 230 | int bit; |
| 231 | if (!readNextBit(bit)) break; |
| 232 | /* Based on a "Stanford bit-hack": |
| 233 | http://graphics.stanford.edu/~seander/bithacks.html#ConditionalSetOrClearBitsWithoutBranching */ |
| 234 | const uint64_t mask = uint64_t(1) << b; |
| 235 | num = (num & ~mask) | (-bit & mask); |
| 236 | } |
| 237 | return num; |
| 238 | } |
| 239 | |
| 240 | bool isEndOfStream() const |
| 241 | { |
| 242 | return numBitsRead >= sizeInBits; |
| 243 | } |
| 244 | }; |
| 245 | |
| 246 | |
| 247 | struct Dictionary |
| 248 | { |
| 249 | struct Entry |
| 250 | { |
| 251 | int code; |
| 252 | int value; |
| 253 | }; |
| 254 | |
| 255 | //Dictionary entries 0-255 are always reserved to the byte/ASCII range. |
| 256 | int size; |
| 257 | Entry entries[MaxDictEntries]; |
| 258 | |
| 259 | Dictionary() |
| 260 | { |
| 261 | /* First 256 dictionary entries are reserved to the byte/ASCII range. |
| 262 | Additional entries follow for the character sequences found in the input. |
| 263 | Up to 4096 - 256 (MaxDictEntries - FirstCode). */ |
| 264 | size = FirstCode; |
| 265 | |
| 266 | for (int i = 0; i < size; ++i) { |
| 267 | entries[i].code = Nil; |
| 268 | entries[i].value = i; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | int findIndex(const int code, const int value) const |
| 273 | { |
| 274 | if (code == Nil) return value; |
| 275 | |
| 276 | //Linear search for now. |
| 277 | //TODO: Worth optimizing with a proper hash-table? |
| 278 | for (int i = 0; i < size; ++i) { |
| 279 | if (entries[i].code == code && entries[i].value == value) return i; |
| 280 | } |
| 281 | return Nil; |
| 282 | } |
| 283 | |
| 284 | bool add(const int code, const int value) |
| 285 | { |
| 286 | if (size == MaxDictEntries) return false; |
| 287 | entries[size].code = code; |
| 288 | entries[size].value = value; |
| 289 | ++size; |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | bool flush(int & codeBitsWidth) |
| 294 | { |
| 295 | if (size == (1 << codeBitsWidth)) { |
| 296 | ++codeBitsWidth; |
| 297 | if (codeBitsWidth > MaxDictBits) { |
| 298 | //Clear the dictionary (except the first 256 byte entries). |
| 299 | codeBitsWidth = StartBits; |
| 300 | size = FirstCode; |
| 301 | return true; |
| 302 | } |
| 303 | } |
| 304 | return false; |
| 305 | } |
| 306 | }; |
| 307 | |
| 308 | |
| 309 | static bool outputByte(int code, uint8_t*& output, int outputSizeBytes, int& bytesDecodedSoFar) |
| 310 | { |
| 311 | if (bytesDecodedSoFar >= outputSizeBytes) return false; |
| 312 | *output++ = static_cast<uint8_t>(code); |
| 313 | ++bytesDecodedSoFar; |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | |
| 318 | static bool outputSequence(const Dictionary& dict, int code, uint8_t*& output, int outputSizeBytes, int& bytesDecodedSoFar, int& firstByte) |
| 319 | { |
| 320 | /* A sequence is stored backwards, so we have to write |
| 321 | it to a temp then output the buffer in reverse. */ |
| 322 | int i = 0; |
| 323 | uint8_t sequence[MaxDictEntries]; |
| 324 | |
| 325 | do { |
| 326 | sequence[i++] = dict.entries[code].value; |
| 327 | code = dict.entries[code].code; |
| 328 | } while (code >= 0); |
| 329 | |
| 330 | firstByte = sequence[--i]; |
| 331 | |
| 332 | for (; i >= 0; --i) { |
| 333 | if (!outputByte(sequence[i], output, outputSizeBytes, bytesDecodedSoFar)) return false; |
| 334 | } |
| 335 | return true; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | |
| 340 | /************************************************************************/ |
| 341 | /* External Class Implementation */ |
| 342 | /************************************************************************/ |
| 343 | |
| 344 | namespace tvg { |
| 345 | |
| 346 | uint8_t* lzwDecode(const uint8_t* compressed, uint32_t compressedSizeBytes, uint32_t compressedSizeBits, uint32_t uncompressedSizeBytes) |
| 347 | { |
| 348 | int code = Nil; |
| 349 | int prevCode = Nil; |
| 350 | int firstByte = 0; |
| 351 | int bytesDecoded = 0; |
| 352 | int codeBitsWidth = StartBits; |
| 353 | auto uncompressed = (uint8_t*) malloc(sizeof(uint8_t) * uncompressedSizeBytes); |
| 354 | auto ptr = uncompressed; |
| 355 | |
| 356 | /* We'll reconstruct the dictionary based on the bit stream codes. |
| 357 | Unlike Huffman encoding, we don't store the dictionary as a prefix to the data. */ |
| 358 | Dictionary dictionary; |
| 359 | BitStreamReader bitStream(compressed, compressedSizeBytes, compressedSizeBits); |
| 360 | |
| 361 | /* We check to avoid an overflow of the user buffer. |
| 362 | If the buffer is smaller than the decompressed size, we break the loop and return the current decompression count. */ |
| 363 | while (!bitStream.isEndOfStream()) { |
| 364 | code = static_cast<int>(bitStream.readBitsU64(codeBitsWidth)); |
| 365 | |
| 366 | if (prevCode == Nil) { |
| 367 | if (!outputByte(code, ptr, uncompressedSizeBytes, bytesDecoded)) break; |
| 368 | firstByte = code; |
| 369 | prevCode = code; |
| 370 | continue; |
| 371 | } |
| 372 | if (code >= dictionary.size) { |
| 373 | if (!outputSequence(dictionary, prevCode, ptr, uncompressedSizeBytes, bytesDecoded, firstByte)) break; |
| 374 | if (!outputByte(firstByte, ptr, uncompressedSizeBytes, bytesDecoded)) break; |
| 375 | } else if (!outputSequence(dictionary, code, ptr, uncompressedSizeBytes, bytesDecoded, firstByte)) break; |
| 376 | |
| 377 | dictionary.add(prevCode, firstByte); |
| 378 | if (dictionary.flush(codeBitsWidth)) prevCode = Nil; |
| 379 | else prevCode = code; |
| 380 | } |
| 381 | |
| 382 | return uncompressed; |
| 383 | } |
| 384 | |
| 385 | |
| 386 | uint8_t* lzwEncode(const uint8_t* uncompressed, uint32_t uncompressedSizeBytes, uint32_t* compressedSizeBytes, uint32_t* compressedSizeBits) |
| 387 | { |
| 388 | //LZW encoding context: |
| 389 | int code = Nil; |
| 390 | int codeBitsWidth = StartBits; |
| 391 | Dictionary dictionary; |
| 392 | |
| 393 | //Output bit stream we write to. This will allocate memory as needed to accommodate the encoded data. |
| 394 | BitStreamWriter bitStream; |
| 395 | |
| 396 | for (; uncompressedSizeBytes > 0; --uncompressedSizeBytes, ++uncompressed) { |
| 397 | const int value = *uncompressed; |
| 398 | const int index = dictionary.findIndex(code, value); |
| 399 | |
| 400 | if (index != Nil) { |
| 401 | code = index; |
| 402 | continue; |
| 403 | } |
| 404 | |
| 405 | //Write the dictionary code using the minimum bit-with: |
| 406 | bitStream.appendBitsU64(code, codeBitsWidth); |
| 407 | |
| 408 | //Flush it when full so we can restart the sequences. |
| 409 | if (!dictionary.flush(codeBitsWidth)) { |
| 410 | //There's still space for this sequence. |
| 411 | dictionary.add(code, value); |
| 412 | } |
| 413 | code = value; |
| 414 | } |
| 415 | |
| 416 | //Residual code at the end: |
| 417 | if (code != Nil) bitStream.appendBitsU64(code, codeBitsWidth); |
| 418 | |
| 419 | //Pass ownership of the compressed data buffer to the user pointer: |
| 420 | *compressedSizeBytes = bitStream.getByteCount(); |
| 421 | *compressedSizeBits = bitStream.numBitsWritten; |
| 422 | |
| 423 | return bitStream.release(); |
| 424 | } |
| 425 | |
| 426 | } |
| 427 | |
| 428 | #endif |
| 429 | |