| 1 | /* |
| 2 | * Copyright (c) 2021 - 2023 the ThorVG project. All rights reserved. |
| 3 | |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | * of this software and associated documentation files (the "Software"), to deal |
| 6 | * in the Software without restriction, including without limitation the rights |
| 7 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | * copies of the Software, and to permit persons to whom the Software is |
| 9 | * furnished to do so, subject to the following conditions: |
| 10 | |
| 11 | * The above copyright notice and this permission notice shall be included in all |
| 12 | * copies or substantial portions of the Software. |
| 13 | |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 20 | * SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | #ifndef _TVG_MATH_H_ |
| 24 | #define _TVG_MATH_H_ |
| 25 | |
| 26 | #define _USE_MATH_DEFINES |
| 27 | |
| 28 | #include <float.h> |
| 29 | #include <math.h> |
| 30 | #include "tvgCommon.h" |
| 31 | |
| 32 | |
| 33 | #define mathMin(x, y) (((x) < (y)) ? (x) : (y)) |
| 34 | #define mathMax(x, y) (((x) > (y)) ? (x) : (y)) |
| 35 | |
| 36 | |
| 37 | static inline bool mathZero(float a) |
| 38 | { |
| 39 | return (fabsf(a) < FLT_EPSILON) ? true : false; |
| 40 | } |
| 41 | |
| 42 | |
| 43 | static inline bool mathEqual(float a, float b) |
| 44 | { |
| 45 | return (fabsf(a - b) < FLT_EPSILON); |
| 46 | } |
| 47 | |
| 48 | static inline bool mathEqual(const Matrix& a, const Matrix& b) |
| 49 | { |
| 50 | if (!mathEqual(a.e11, b.e11) || !mathEqual(a.e12, b.e12) || !mathEqual(a.e13, b.e13) || |
| 51 | !mathEqual(a.e21, b.e21) || !mathEqual(a.e22, b.e22) || !mathEqual(a.e23, b.e23) || |
| 52 | !mathEqual(a.e31, b.e31) || !mathEqual(a.e32, b.e32) || !mathEqual(a.e33, b.e33)) { |
| 53 | return false; |
| 54 | } |
| 55 | return true; |
| 56 | } |
| 57 | |
| 58 | static inline bool mathRightAngle(const Matrix* m) |
| 59 | { |
| 60 | auto radian = fabsf(atan2f(m->e21, m->e11)); |
| 61 | if (radian < FLT_EPSILON || mathEqual(radian, float(M_PI_2)) || mathEqual(radian, float(M_PI))) return true; |
| 62 | return false; |
| 63 | } |
| 64 | |
| 65 | |
| 66 | static inline bool mathSkewed(const Matrix* m) |
| 67 | { |
| 68 | return (fabsf(m->e21 + m->e12) > FLT_EPSILON); |
| 69 | } |
| 70 | |
| 71 | |
| 72 | static inline bool mathIdentity(const Matrix* m) |
| 73 | { |
| 74 | if (!mathEqual(m->e11, 1.0f) || !mathZero(m->e12) || !mathZero(m->e13) || |
| 75 | !mathZero(m->e21) || !mathEqual(m->e22, 1.0f) || !mathZero(m->e23) || |
| 76 | !mathZero(m->e31) || !mathZero(m->e32) || !mathEqual(m->e33, 1.0f)) { |
| 77 | return false; |
| 78 | } |
| 79 | return true; |
| 80 | } |
| 81 | |
| 82 | |
| 83 | static inline bool mathInverse(const Matrix* m, Matrix* out) |
| 84 | { |
| 85 | auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) - |
| 86 | m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) + |
| 87 | m->e13 * (m->e21 * m->e32 - m->e22 * m->e31); |
| 88 | |
| 89 | if (mathZero(det)) return false; |
| 90 | |
| 91 | auto invDet = 1 / det; |
| 92 | |
| 93 | out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet; |
| 94 | out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet; |
| 95 | out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet; |
| 96 | out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet; |
| 97 | out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet; |
| 98 | out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet; |
| 99 | out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet; |
| 100 | out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet; |
| 101 | out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet; |
| 102 | |
| 103 | return true; |
| 104 | } |
| 105 | |
| 106 | |
| 107 | static inline void mathIdentity(Matrix* m) |
| 108 | { |
| 109 | m->e11 = 1.0f; |
| 110 | m->e12 = 0.0f; |
| 111 | m->e13 = 0.0f; |
| 112 | m->e21 = 0.0f; |
| 113 | m->e22 = 1.0f; |
| 114 | m->e23 = 0.0f; |
| 115 | m->e31 = 0.0f; |
| 116 | m->e32 = 0.0f; |
| 117 | m->e33 = 1.0f; |
| 118 | } |
| 119 | |
| 120 | |
| 121 | static inline void mathScale(Matrix* m, float sx, float sy) |
| 122 | { |
| 123 | m->e11 *= sx; |
| 124 | m->e22 *= sy; |
| 125 | } |
| 126 | |
| 127 | |
| 128 | static inline void mathTranslate(Matrix* m, float x, float y) |
| 129 | { |
| 130 | m->e13 += x; |
| 131 | m->e23 += y; |
| 132 | } |
| 133 | |
| 134 | |
| 135 | static inline void mathRotate(Matrix* m, float degree) |
| 136 | { |
| 137 | auto radian = degree / 180.0f * M_PI; |
| 138 | auto cosVal = cosf(radian); |
| 139 | auto sinVal = sinf(radian); |
| 140 | |
| 141 | m->e12 = m->e11 * -sinVal; |
| 142 | m->e11 *= cosVal; |
| 143 | m->e21 = m->e22 * sinVal; |
| 144 | m->e22 *= cosVal; |
| 145 | } |
| 146 | |
| 147 | |
| 148 | static inline void mathMultiply(Point* pt, const Matrix* transform) |
| 149 | { |
| 150 | auto tx = pt->x * transform->e11 + pt->y * transform->e12 + transform->e13; |
| 151 | auto ty = pt->x * transform->e21 + pt->y * transform->e22 + transform->e23; |
| 152 | pt->x = tx; |
| 153 | pt->y = ty; |
| 154 | } |
| 155 | |
| 156 | |
| 157 | static inline Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs) |
| 158 | { |
| 159 | Matrix m; |
| 160 | |
| 161 | m.e11 = lhs->e11 * rhs->e11 + lhs->e12 * rhs->e21 + lhs->e13 * rhs->e31; |
| 162 | m.e12 = lhs->e11 * rhs->e12 + lhs->e12 * rhs->e22 + lhs->e13 * rhs->e32; |
| 163 | m.e13 = lhs->e11 * rhs->e13 + lhs->e12 * rhs->e23 + lhs->e13 * rhs->e33; |
| 164 | |
| 165 | m.e21 = lhs->e21 * rhs->e11 + lhs->e22 * rhs->e21 + lhs->e23 * rhs->e31; |
| 166 | m.e22 = lhs->e21 * rhs->e12 + lhs->e22 * rhs->e22 + lhs->e23 * rhs->e32; |
| 167 | m.e23 = lhs->e21 * rhs->e13 + lhs->e22 * rhs->e23 + lhs->e23 * rhs->e33; |
| 168 | |
| 169 | m.e31 = lhs->e31 * rhs->e11 + lhs->e32 * rhs->e21 + lhs->e33 * rhs->e31; |
| 170 | m.e32 = lhs->e31 * rhs->e12 + lhs->e32 * rhs->e22 + lhs->e33 * rhs->e32; |
| 171 | m.e33 = lhs->e31 * rhs->e13 + lhs->e32 * rhs->e23 + lhs->e33 * rhs->e33; |
| 172 | |
| 173 | return m; |
| 174 | } |
| 175 | |
| 176 | |
| 177 | static inline Point operator-(const Point& lhs, const Point& rhs) |
| 178 | { |
| 179 | return {lhs.x - rhs.x, lhs.y - rhs.y}; |
| 180 | } |
| 181 | |
| 182 | |
| 183 | static inline Point operator+(const Point& lhs, const Point& rhs) |
| 184 | { |
| 185 | return {lhs.x + rhs.x, lhs.y + rhs.y}; |
| 186 | } |
| 187 | |
| 188 | |
| 189 | static inline Point operator*(const Point& lhs, float rhs) |
| 190 | { |
| 191 | return {lhs.x * rhs, lhs.y * rhs}; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | template <typename T> |
| 196 | static inline T mathLerp(const T &start, const T &end, float t) |
| 197 | { |
| 198 | return static_cast<T>(start + (end - start) * t); |
| 199 | } |
| 200 | |
| 201 | |
| 202 | #endif //_TVG_MATH_H_ |
| 203 | |