| 1 | /* |
| 2 | Bullet Continuous Collision Detection and Physics Library |
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
| 4 | |
| 5 | This software is provided 'as-is', without any express or implied warranty. |
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
| 7 | Permission is granted to anyone to use this software for any purpose, |
| 8 | including commercial applications, and to alter it and redistribute it freely, |
| 9 | subject to the following restrictions: |
| 10 | |
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
| 13 | 3. This notice may not be removed or altered from any source distribution. |
| 14 | */ |
| 15 | |
| 16 | #ifndef BT_OBJECT_ARRAY__ |
| 17 | #define BT_OBJECT_ARRAY__ |
| 18 | |
| 19 | #include "btAlignedAllocator.h" |
| 20 | #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE |
| 21 | |
| 22 | ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW |
| 23 | ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors |
| 24 | ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= |
| 25 | ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and |
| 26 | ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 |
| 27 | |
| 28 | #define BT_USE_PLACEMENT_NEW 1 |
| 29 | //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise... |
| 30 | #define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful |
| 31 | |
| 32 | #ifdef BT_USE_MEMCPY |
| 33 | #include <memory.h> |
| 34 | #include <string.h> |
| 35 | #endif //BT_USE_MEMCPY |
| 36 | |
| 37 | #ifdef BT_USE_PLACEMENT_NEW |
| 38 | #include <new> //for placement new |
| 39 | #endif //BT_USE_PLACEMENT_NEW |
| 40 | |
| 41 | // -- GODOT start -- |
| 42 | namespace VHACD { |
| 43 | // -- GODOT end -- |
| 44 | |
| 45 | ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods |
| 46 | ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data |
| 47 | template <typename T> |
| 48 | //template <class T> |
| 49 | class btAlignedObjectArray { |
| 50 | btAlignedAllocator<T, 16> m_allocator; |
| 51 | |
| 52 | int32_t m_size; |
| 53 | int32_t m_capacity; |
| 54 | T* m_data; |
| 55 | //PCK: added this line |
| 56 | bool m_ownsMemory; |
| 57 | |
| 58 | #ifdef BT_ALLOW_ARRAY_COPY_OPERATOR |
| 59 | public: |
| 60 | SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other) |
| 61 | { |
| 62 | copyFromArray(other); |
| 63 | return *this; |
| 64 | } |
| 65 | #else //BT_ALLOW_ARRAY_COPY_OPERATOR |
| 66 | private: |
| 67 | SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other); |
| 68 | #endif //BT_ALLOW_ARRAY_COPY_OPERATOR |
| 69 | |
| 70 | protected: |
| 71 | SIMD_FORCE_INLINE int32_t allocSize(int32_t size) |
| 72 | { |
| 73 | return (size ? size * 2 : 1); |
| 74 | } |
| 75 | SIMD_FORCE_INLINE void copy(int32_t start, int32_t end, T* dest) const |
| 76 | { |
| 77 | int32_t i; |
| 78 | for (i = start; i < end; ++i) |
| 79 | #ifdef BT_USE_PLACEMENT_NEW |
| 80 | new (&dest[i]) T(m_data[i]); |
| 81 | #else |
| 82 | dest[i] = m_data[i]; |
| 83 | #endif //BT_USE_PLACEMENT_NEW |
| 84 | } |
| 85 | |
| 86 | SIMD_FORCE_INLINE void init() |
| 87 | { |
| 88 | //PCK: added this line |
| 89 | m_ownsMemory = true; |
| 90 | m_data = 0; |
| 91 | m_size = 0; |
| 92 | m_capacity = 0; |
| 93 | } |
| 94 | SIMD_FORCE_INLINE void destroy(int32_t first, int32_t last) |
| 95 | { |
| 96 | int32_t i; |
| 97 | for (i = first; i < last; i++) { |
| 98 | m_data[i].~T(); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | SIMD_FORCE_INLINE void* allocate(int32_t size) |
| 103 | { |
| 104 | if (size) |
| 105 | return m_allocator.allocate(size); |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | SIMD_FORCE_INLINE void deallocate() |
| 110 | { |
| 111 | if (m_data) { |
| 112 | //PCK: enclosed the deallocation in this block |
| 113 | if (m_ownsMemory) { |
| 114 | m_allocator.deallocate(m_data); |
| 115 | } |
| 116 | m_data = 0; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | public: |
| 121 | btAlignedObjectArray() |
| 122 | { |
| 123 | init(); |
| 124 | } |
| 125 | |
| 126 | ~btAlignedObjectArray() |
| 127 | { |
| 128 | clear(); |
| 129 | } |
| 130 | |
| 131 | ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead. |
| 132 | btAlignedObjectArray(const btAlignedObjectArray& otherArray) |
| 133 | { |
| 134 | init(); |
| 135 | |
| 136 | int32_t otherSize = otherArray.size(); |
| 137 | resize(otherSize); |
| 138 | otherArray.copy(0, otherSize, m_data); |
| 139 | } |
| 140 | |
| 141 | /// return the number of elements in the array |
| 142 | SIMD_FORCE_INLINE int32_t size() const |
| 143 | { |
| 144 | return m_size; |
| 145 | } |
| 146 | |
| 147 | SIMD_FORCE_INLINE const T& at(int32_t n) const |
| 148 | { |
| 149 | btAssert(n >= 0); |
| 150 | btAssert(n < size()); |
| 151 | return m_data[n]; |
| 152 | } |
| 153 | |
| 154 | SIMD_FORCE_INLINE T& at(int32_t n) |
| 155 | { |
| 156 | btAssert(n >= 0); |
| 157 | btAssert(n < size()); |
| 158 | return m_data[n]; |
| 159 | } |
| 160 | |
| 161 | SIMD_FORCE_INLINE const T& operator[](int32_t n) const |
| 162 | { |
| 163 | btAssert(n >= 0); |
| 164 | btAssert(n < size()); |
| 165 | return m_data[n]; |
| 166 | } |
| 167 | |
| 168 | SIMD_FORCE_INLINE T& operator[](int32_t n) |
| 169 | { |
| 170 | btAssert(n >= 0); |
| 171 | btAssert(n < size()); |
| 172 | return m_data[n]; |
| 173 | } |
| 174 | |
| 175 | ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations. |
| 176 | SIMD_FORCE_INLINE void clear() |
| 177 | { |
| 178 | destroy(0, size()); |
| 179 | |
| 180 | deallocate(); |
| 181 | |
| 182 | init(); |
| 183 | } |
| 184 | |
| 185 | SIMD_FORCE_INLINE void pop_back() |
| 186 | { |
| 187 | btAssert(m_size > 0); |
| 188 | m_size--; |
| 189 | m_data[m_size].~T(); |
| 190 | } |
| 191 | |
| 192 | ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument. |
| 193 | ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations. |
| 194 | SIMD_FORCE_INLINE void resize(int32_t newsize, const T& fillData = T()) |
| 195 | { |
| 196 | int32_t curSize = size(); |
| 197 | |
| 198 | if (newsize < curSize) { |
| 199 | for (int32_t i = newsize; i < curSize; i++) { |
| 200 | m_data[i].~T(); |
| 201 | } |
| 202 | } |
| 203 | else { |
| 204 | if (newsize > size()) { |
| 205 | reserve(newsize); |
| 206 | } |
| 207 | #ifdef BT_USE_PLACEMENT_NEW |
| 208 | for (int32_t i = curSize; i < newsize; i++) { |
| 209 | new (&m_data[i]) T(fillData); |
| 210 | } |
| 211 | #endif //BT_USE_PLACEMENT_NEW |
| 212 | } |
| 213 | |
| 214 | m_size = newsize; |
| 215 | } |
| 216 | |
| 217 | SIMD_FORCE_INLINE T& expandNonInitializing() |
| 218 | { |
| 219 | int32_t sz = size(); |
| 220 | if (sz == capacity()) { |
| 221 | reserve(allocSize(size())); |
| 222 | } |
| 223 | m_size++; |
| 224 | |
| 225 | return m_data[sz]; |
| 226 | } |
| 227 | |
| 228 | SIMD_FORCE_INLINE T& expand(const T& fillValue = T()) |
| 229 | { |
| 230 | int32_t sz = size(); |
| 231 | if (sz == capacity()) { |
| 232 | reserve(allocSize(size())); |
| 233 | } |
| 234 | m_size++; |
| 235 | #ifdef BT_USE_PLACEMENT_NEW |
| 236 | new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory) |
| 237 | #endif |
| 238 | |
| 239 | return m_data[sz]; |
| 240 | } |
| 241 | |
| 242 | SIMD_FORCE_INLINE void push_back(const T& _Val) |
| 243 | { |
| 244 | int32_t sz = size(); |
| 245 | if (sz == capacity()) { |
| 246 | reserve(allocSize(size())); |
| 247 | } |
| 248 | |
| 249 | #ifdef BT_USE_PLACEMENT_NEW |
| 250 | new (&m_data[m_size]) T(_Val); |
| 251 | #else |
| 252 | m_data[size()] = _Val; |
| 253 | #endif //BT_USE_PLACEMENT_NEW |
| 254 | |
| 255 | m_size++; |
| 256 | } |
| 257 | |
| 258 | /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve() |
| 259 | SIMD_FORCE_INLINE int32_t capacity() const |
| 260 | { |
| 261 | return m_capacity; |
| 262 | } |
| 263 | |
| 264 | SIMD_FORCE_INLINE void reserve(int32_t _Count) |
| 265 | { // determine new minimum length of allocated storage |
| 266 | if (capacity() < _Count) { // not enough room, reallocate |
| 267 | T* s = (T*)allocate(_Count); |
| 268 | |
| 269 | copy(0, size(), s); |
| 270 | |
| 271 | destroy(0, size()); |
| 272 | |
| 273 | deallocate(); |
| 274 | |
| 275 | //PCK: added this line |
| 276 | m_ownsMemory = true; |
| 277 | |
| 278 | m_data = s; |
| 279 | |
| 280 | m_capacity = _Count; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | class less { |
| 285 | public: |
| 286 | bool operator()(const T& a, const T& b) |
| 287 | { |
| 288 | return (a < b); |
| 289 | } |
| 290 | }; |
| 291 | |
| 292 | template <typename L> |
| 293 | void quickSortInternal(const L& CompareFunc, int32_t lo, int32_t hi) |
| 294 | { |
| 295 | // lo is the lower index, hi is the upper index |
| 296 | // of the region of array a that is to be sorted |
| 297 | int32_t i = lo, j = hi; |
| 298 | T x = m_data[(lo + hi) / 2]; |
| 299 | |
| 300 | // partition |
| 301 | do { |
| 302 | while (CompareFunc(m_data[i], x)) |
| 303 | i++; |
| 304 | while (CompareFunc(x, m_data[j])) |
| 305 | j--; |
| 306 | if (i <= j) { |
| 307 | swap(i, j); |
| 308 | i++; |
| 309 | j--; |
| 310 | } |
| 311 | } while (i <= j); |
| 312 | |
| 313 | // recursion |
| 314 | if (lo < j) |
| 315 | quickSortInternal(CompareFunc, lo, j); |
| 316 | if (i < hi) |
| 317 | quickSortInternal(CompareFunc, i, hi); |
| 318 | } |
| 319 | |
| 320 | template <typename L> |
| 321 | void quickSort(const L& CompareFunc) |
| 322 | { |
| 323 | //don't sort 0 or 1 elements |
| 324 | if (size() > 1) { |
| 325 | quickSortInternal(CompareFunc, 0, size() - 1); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ |
| 330 | template <typename L> |
| 331 | void downHeap(T* pArr, int32_t k, int32_t n, const L& CompareFunc) |
| 332 | { |
| 333 | /* PRE: a[k+1..N] is a heap */ |
| 334 | /* POST: a[k..N] is a heap */ |
| 335 | |
| 336 | T temp = pArr[k - 1]; |
| 337 | /* k has child(s) */ |
| 338 | while (k <= n / 2) { |
| 339 | int32_t child = 2 * k; |
| 340 | |
| 341 | if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) { |
| 342 | child++; |
| 343 | } |
| 344 | /* pick larger child */ |
| 345 | if (CompareFunc(temp, pArr[child - 1])) { |
| 346 | /* move child up */ |
| 347 | pArr[k - 1] = pArr[child - 1]; |
| 348 | k = child; |
| 349 | } |
| 350 | else { |
| 351 | break; |
| 352 | } |
| 353 | } |
| 354 | pArr[k - 1] = temp; |
| 355 | } /*downHeap*/ |
| 356 | |
| 357 | void swap(int32_t index0, int32_t index1) |
| 358 | { |
| 359 | #ifdef BT_USE_MEMCPY |
| 360 | char temp[sizeof(T)]; |
| 361 | memcpy(temp, &m_data[index0], sizeof(T)); |
| 362 | memcpy(&m_data[index0], &m_data[index1], sizeof(T)); |
| 363 | memcpy(&m_data[index1], temp, sizeof(T)); |
| 364 | #else |
| 365 | T temp = m_data[index0]; |
| 366 | m_data[index0] = m_data[index1]; |
| 367 | m_data[index1] = temp; |
| 368 | #endif //BT_USE_PLACEMENT_NEW |
| 369 | } |
| 370 | |
| 371 | template <typename L> |
| 372 | void heapSort(const L& CompareFunc) |
| 373 | { |
| 374 | /* sort a[0..N-1], N.B. 0 to N-1 */ |
| 375 | int32_t k; |
| 376 | int32_t n = m_size; |
| 377 | for (k = n / 2; k > 0; k--) { |
| 378 | downHeap(m_data, k, n, CompareFunc); |
| 379 | } |
| 380 | |
| 381 | /* a[1..N] is now a heap */ |
| 382 | while (n >= 1) { |
| 383 | swap(0, n - 1); /* largest of a[0..n-1] */ |
| 384 | |
| 385 | n = n - 1; |
| 386 | /* restore a[1..i-1] heap */ |
| 387 | downHeap(m_data, 1, n, CompareFunc); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | ///non-recursive binary search, assumes sorted array |
| 392 | int32_t findBinarySearch(const T& key) const |
| 393 | { |
| 394 | int32_t first = 0; |
| 395 | int32_t last = size() - 1; |
| 396 | |
| 397 | //assume sorted array |
| 398 | while (first <= last) { |
| 399 | int32_t mid = (first + last) / 2; // compute mid point. |
| 400 | if (key > m_data[mid]) |
| 401 | first = mid + 1; // repeat search in top half. |
| 402 | else if (key < m_data[mid]) |
| 403 | last = mid - 1; // repeat search in bottom half. |
| 404 | else |
| 405 | return mid; // found it. return position ///// |
| 406 | } |
| 407 | return size(); // failed to find key |
| 408 | } |
| 409 | |
| 410 | int32_t findLinearSearch(const T& key) const |
| 411 | { |
| 412 | int32_t index = size(); |
| 413 | int32_t i; |
| 414 | |
| 415 | for (i = 0; i < size(); i++) { |
| 416 | if (m_data[i] == key) { |
| 417 | index = i; |
| 418 | break; |
| 419 | } |
| 420 | } |
| 421 | return index; |
| 422 | } |
| 423 | |
| 424 | void remove(const T& key) |
| 425 | { |
| 426 | |
| 427 | int32_t findIndex = findLinearSearch(key); |
| 428 | if (findIndex < size()) { |
| 429 | swap(findIndex, size() - 1); |
| 430 | pop_back(); |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | //PCK: whole function |
| 435 | void initializeFromBuffer(void* buffer, int32_t size, int32_t capacity) |
| 436 | { |
| 437 | clear(); |
| 438 | m_ownsMemory = false; |
| 439 | m_data = (T*)buffer; |
| 440 | m_size = size; |
| 441 | m_capacity = capacity; |
| 442 | } |
| 443 | |
| 444 | void copyFromArray(const btAlignedObjectArray& otherArray) |
| 445 | { |
| 446 | int32_t otherSize = otherArray.size(); |
| 447 | resize(otherSize); |
| 448 | otherArray.copy(0, otherSize, m_data); |
| 449 | } |
| 450 | }; |
| 451 | |
| 452 | // -- GODOT start -- |
| 453 | }; // namespace VHACD |
| 454 | // -- GODOT end -- |
| 455 | |
| 456 | #endif //BT_OBJECT_ARRAY__ |
| 457 | |