| 1 | #pragma once |
| 2 | #ifndef VHACD_VECTOR_INL |
| 3 | #define VHACD_VECTOR_INL |
| 4 | namespace VHACD |
| 5 | { |
| 6 | template <typename T> |
| 7 | inline Vec3<T> operator*(T lhs, const Vec3<T> & rhs) |
| 8 | { |
| 9 | return Vec3<T>(lhs * rhs.X(), lhs * rhs.Y(), lhs * rhs.Z()); |
| 10 | } |
| 11 | template <typename T> |
| 12 | inline T & Vec3<T>::X() |
| 13 | { |
| 14 | return m_data[0]; |
| 15 | } |
| 16 | template <typename T> |
| 17 | inline T & Vec3<T>::Y() |
| 18 | { |
| 19 | return m_data[1]; |
| 20 | } |
| 21 | template <typename T> |
| 22 | inline T & Vec3<T>::Z() |
| 23 | { |
| 24 | return m_data[2]; |
| 25 | } |
| 26 | template <typename T> |
| 27 | inline const T & Vec3<T>::X() const |
| 28 | { |
| 29 | return m_data[0]; |
| 30 | } |
| 31 | template <typename T> |
| 32 | inline const T & Vec3<T>::Y() const |
| 33 | { |
| 34 | return m_data[1]; |
| 35 | } |
| 36 | template <typename T> |
| 37 | inline const T & Vec3<T>::Z() const |
| 38 | { |
| 39 | return m_data[2]; |
| 40 | } |
| 41 | template <typename T> |
| 42 | inline void Vec3<T>::Normalize() |
| 43 | { |
| 44 | T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]); |
| 45 | if (n != 0.0) (*this) /= n; |
| 46 | } |
| 47 | template <typename T> |
| 48 | inline T Vec3<T>::GetNorm() const |
| 49 | { |
| 50 | return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]); |
| 51 | } |
| 52 | template <typename T> |
| 53 | inline void Vec3<T>::operator= (const Vec3 & rhs) |
| 54 | { |
| 55 | this->m_data[0] = rhs.m_data[0]; |
| 56 | this->m_data[1] = rhs.m_data[1]; |
| 57 | this->m_data[2] = rhs.m_data[2]; |
| 58 | } |
| 59 | template <typename T> |
| 60 | inline void Vec3<T>::operator+=(const Vec3 & rhs) |
| 61 | { |
| 62 | this->m_data[0] += rhs.m_data[0]; |
| 63 | this->m_data[1] += rhs.m_data[1]; |
| 64 | this->m_data[2] += rhs.m_data[2]; |
| 65 | } |
| 66 | template <typename T> |
| 67 | inline void Vec3<T>::operator-=(const Vec3 & rhs) |
| 68 | { |
| 69 | this->m_data[0] -= rhs.m_data[0]; |
| 70 | this->m_data[1] -= rhs.m_data[1]; |
| 71 | this->m_data[2] -= rhs.m_data[2]; |
| 72 | } |
| 73 | template <typename T> |
| 74 | inline void Vec3<T>::operator-=(T a) |
| 75 | { |
| 76 | this->m_data[0] -= a; |
| 77 | this->m_data[1] -= a; |
| 78 | this->m_data[2] -= a; |
| 79 | } |
| 80 | template <typename T> |
| 81 | inline void Vec3<T>::operator+=(T a) |
| 82 | { |
| 83 | this->m_data[0] += a; |
| 84 | this->m_data[1] += a; |
| 85 | this->m_data[2] += a; |
| 86 | } |
| 87 | template <typename T> |
| 88 | inline void Vec3<T>::operator/=(T a) |
| 89 | { |
| 90 | this->m_data[0] /= a; |
| 91 | this->m_data[1] /= a; |
| 92 | this->m_data[2] /= a; |
| 93 | } |
| 94 | template <typename T> |
| 95 | inline void Vec3<T>::operator*=(T a) |
| 96 | { |
| 97 | this->m_data[0] *= a; |
| 98 | this->m_data[1] *= a; |
| 99 | this->m_data[2] *= a; |
| 100 | } |
| 101 | template <typename T> |
| 102 | inline Vec3<T> Vec3<T>::operator^ (const Vec3<T> & rhs) const |
| 103 | { |
| 104 | return Vec3<T>(m_data[1] * rhs.m_data[2] - m_data[2] * rhs.m_data[1], |
| 105 | m_data[2] * rhs.m_data[0] - m_data[0] * rhs.m_data[2], |
| 106 | m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0]); |
| 107 | } |
| 108 | template <typename T> |
| 109 | inline T Vec3<T>::operator*(const Vec3<T> & rhs) const |
| 110 | { |
| 111 | return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1] + m_data[2] * rhs.m_data[2]); |
| 112 | } |
| 113 | template <typename T> |
| 114 | inline Vec3<T> Vec3<T>::operator+(const Vec3<T> & rhs) const |
| 115 | { |
| 116 | return Vec3<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1],m_data[2] + rhs.m_data[2]); |
| 117 | } |
| 118 | template <typename T> |
| 119 | inline Vec3<T> Vec3<T>::operator-(const Vec3<T> & rhs) const |
| 120 | { |
| 121 | return Vec3<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1],m_data[2] - rhs.m_data[2]) ; |
| 122 | } |
| 123 | template <typename T> |
| 124 | inline Vec3<T> Vec3<T>::operator-() const |
| 125 | { |
| 126 | return Vec3<T>(-m_data[0],-m_data[1],-m_data[2]) ; |
| 127 | } |
| 128 | |
| 129 | template <typename T> |
| 130 | inline Vec3<T> Vec3<T>::operator*(T rhs) const |
| 131 | { |
| 132 | return Vec3<T>(rhs * this->m_data[0], rhs * this->m_data[1], rhs * this->m_data[2]); |
| 133 | } |
| 134 | template <typename T> |
| 135 | inline Vec3<T> Vec3<T>::operator/ (T rhs) const |
| 136 | { |
| 137 | return Vec3<T>(m_data[0] / rhs, m_data[1] / rhs, m_data[2] / rhs); |
| 138 | } |
| 139 | template <typename T> |
| 140 | inline Vec3<T>::Vec3(T a) |
| 141 | { |
| 142 | m_data[0] = m_data[1] = m_data[2] = a; |
| 143 | } |
| 144 | template <typename T> |
| 145 | inline Vec3<T>::Vec3(T x, T y, T z) |
| 146 | { |
| 147 | m_data[0] = x; |
| 148 | m_data[1] = y; |
| 149 | m_data[2] = z; |
| 150 | } |
| 151 | template <typename T> |
| 152 | inline Vec3<T>::Vec3(const Vec3 & rhs) |
| 153 | { |
| 154 | m_data[0] = rhs.m_data[0]; |
| 155 | m_data[1] = rhs.m_data[1]; |
| 156 | m_data[2] = rhs.m_data[2]; |
| 157 | } |
| 158 | template <typename T> |
| 159 | inline Vec3<T>::~Vec3(void){}; |
| 160 | |
| 161 | template <typename T> |
| 162 | inline Vec3<T>::Vec3() {} |
| 163 | |
| 164 | template<typename T> |
| 165 | inline const bool Colinear(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c) |
| 166 | { |
| 167 | return ((c.Z() - a.Z()) * (b.Y() - a.Y()) - (b.Z() - a.Z()) * (c.Y() - a.Y()) == 0.0 /*EPS*/) && |
| 168 | ((b.Z() - a.Z()) * (c.X() - a.X()) - (b.X() - a.X()) * (c.Z() - a.Z()) == 0.0 /*EPS*/) && |
| 169 | ((b.X() - a.X()) * (c.Y() - a.Y()) - (b.Y() - a.Y()) * (c.X() - a.X()) == 0.0 /*EPS*/); |
| 170 | } |
| 171 | |
| 172 | template<typename T> |
| 173 | inline const T ComputeVolume4(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c, const Vec3<T> & d) |
| 174 | { |
| 175 | return (a-d) * ((b-d) ^ (c-d)); |
| 176 | } |
| 177 | |
| 178 | template <typename T> |
| 179 | inline bool Vec3<T>::operator<(const Vec3 & rhs) const |
| 180 | { |
| 181 | if (X() == rhs[0]) |
| 182 | { |
| 183 | if (Y() == rhs[1]) |
| 184 | { |
| 185 | return (Z()<rhs[2]); |
| 186 | } |
| 187 | return (Y()<rhs[1]); |
| 188 | } |
| 189 | return (X()<rhs[0]); |
| 190 | } |
| 191 | template <typename T> |
| 192 | inline bool Vec3<T>::operator>(const Vec3 & rhs) const |
| 193 | { |
| 194 | if (X() == rhs[0]) |
| 195 | { |
| 196 | if (Y() == rhs[1]) |
| 197 | { |
| 198 | return (Z()>rhs[2]); |
| 199 | } |
| 200 | return (Y()>rhs[1]); |
| 201 | } |
| 202 | return (X()>rhs[0]); |
| 203 | } |
| 204 | template <typename T> |
| 205 | inline Vec2<T> operator*(T lhs, const Vec2<T> & rhs) |
| 206 | { |
| 207 | return Vec2<T>(lhs * rhs.X(), lhs * rhs.Y()); |
| 208 | } |
| 209 | template <typename T> |
| 210 | inline T & Vec2<T>::X() |
| 211 | { |
| 212 | return m_data[0]; |
| 213 | } |
| 214 | template <typename T> |
| 215 | inline T & Vec2<T>::Y() |
| 216 | { |
| 217 | return m_data[1]; |
| 218 | } |
| 219 | template <typename T> |
| 220 | inline const T & Vec2<T>::X() const |
| 221 | { |
| 222 | return m_data[0]; |
| 223 | } |
| 224 | template <typename T> |
| 225 | inline const T & Vec2<T>::Y() const |
| 226 | { |
| 227 | return m_data[1]; |
| 228 | } |
| 229 | template <typename T> |
| 230 | inline void Vec2<T>::Normalize() |
| 231 | { |
| 232 | T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]); |
| 233 | if (n != 0.0) (*this) /= n; |
| 234 | } |
| 235 | template <typename T> |
| 236 | inline T Vec2<T>::GetNorm() const |
| 237 | { |
| 238 | return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]); |
| 239 | } |
| 240 | template <typename T> |
| 241 | inline void Vec2<T>::operator= (const Vec2 & rhs) |
| 242 | { |
| 243 | this->m_data[0] = rhs.m_data[0]; |
| 244 | this->m_data[1] = rhs.m_data[1]; |
| 245 | } |
| 246 | template <typename T> |
| 247 | inline void Vec2<T>::operator+=(const Vec2 & rhs) |
| 248 | { |
| 249 | this->m_data[0] += rhs.m_data[0]; |
| 250 | this->m_data[1] += rhs.m_data[1]; |
| 251 | } |
| 252 | template <typename T> |
| 253 | inline void Vec2<T>::operator-=(const Vec2 & rhs) |
| 254 | { |
| 255 | this->m_data[0] -= rhs.m_data[0]; |
| 256 | this->m_data[1] -= rhs.m_data[1]; |
| 257 | } |
| 258 | template <typename T> |
| 259 | inline void Vec2<T>::operator-=(T a) |
| 260 | { |
| 261 | this->m_data[0] -= a; |
| 262 | this->m_data[1] -= a; |
| 263 | } |
| 264 | template <typename T> |
| 265 | inline void Vec2<T>::operator+=(T a) |
| 266 | { |
| 267 | this->m_data[0] += a; |
| 268 | this->m_data[1] += a; |
| 269 | } |
| 270 | template <typename T> |
| 271 | inline void Vec2<T>::operator/=(T a) |
| 272 | { |
| 273 | this->m_data[0] /= a; |
| 274 | this->m_data[1] /= a; |
| 275 | } |
| 276 | template <typename T> |
| 277 | inline void Vec2<T>::operator*=(T a) |
| 278 | { |
| 279 | this->m_data[0] *= a; |
| 280 | this->m_data[1] *= a; |
| 281 | } |
| 282 | template <typename T> |
| 283 | inline T Vec2<T>::operator^ (const Vec2<T> & rhs) const |
| 284 | { |
| 285 | return m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0]; |
| 286 | } |
| 287 | template <typename T> |
| 288 | inline T Vec2<T>::operator*(const Vec2<T> & rhs) const |
| 289 | { |
| 290 | return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1]); |
| 291 | } |
| 292 | template <typename T> |
| 293 | inline Vec2<T> Vec2<T>::operator+(const Vec2<T> & rhs) const |
| 294 | { |
| 295 | return Vec2<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1]); |
| 296 | } |
| 297 | template <typename T> |
| 298 | inline Vec2<T> Vec2<T>::operator-(const Vec2<T> & rhs) const |
| 299 | { |
| 300 | return Vec2<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1]); |
| 301 | } |
| 302 | template <typename T> |
| 303 | inline Vec2<T> Vec2<T>::operator-() const |
| 304 | { |
| 305 | return Vec2<T>(-m_data[0],-m_data[1]) ; |
| 306 | } |
| 307 | |
| 308 | template <typename T> |
| 309 | inline Vec2<T> Vec2<T>::operator*(T rhs) const |
| 310 | { |
| 311 | return Vec2<T>(rhs * this->m_data[0], rhs * this->m_data[1]); |
| 312 | } |
| 313 | template <typename T> |
| 314 | inline Vec2<T> Vec2<T>::operator/ (T rhs) const |
| 315 | { |
| 316 | return Vec2<T>(m_data[0] / rhs, m_data[1] / rhs); |
| 317 | } |
| 318 | template <typename T> |
| 319 | inline Vec2<T>::Vec2(T a) |
| 320 | { |
| 321 | m_data[0] = m_data[1] = a; |
| 322 | } |
| 323 | template <typename T> |
| 324 | inline Vec2<T>::Vec2(T x, T y) |
| 325 | { |
| 326 | m_data[0] = x; |
| 327 | m_data[1] = y; |
| 328 | } |
| 329 | template <typename T> |
| 330 | inline Vec2<T>::Vec2(const Vec2 & rhs) |
| 331 | { |
| 332 | m_data[0] = rhs.m_data[0]; |
| 333 | m_data[1] = rhs.m_data[1]; |
| 334 | } |
| 335 | template <typename T> |
| 336 | inline Vec2<T>::~Vec2(void){}; |
| 337 | |
| 338 | template <typename T> |
| 339 | inline Vec2<T>::Vec2() {} |
| 340 | |
| 341 | /* |
| 342 | InsideTriangle decides if a point P is Inside of the triangle |
| 343 | defined by A, B, C. |
| 344 | */ |
| 345 | template<typename T> |
| 346 | inline const bool InsideTriangle(const Vec2<T> & a, const Vec2<T> & b, const Vec2<T> & c, const Vec2<T> & p) |
| 347 | { |
| 348 | T ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; |
| 349 | T cCROSSap, bCROSScp, aCROSSbp; |
| 350 | ax = c.X() - b.X(); ay = c.Y() - b.Y(); |
| 351 | bx = a.X() - c.X(); by = a.Y() - c.Y(); |
| 352 | cx = b.X() - a.X(); cy = b.Y() - a.Y(); |
| 353 | apx= p.X() - a.X(); apy= p.Y() - a.Y(); |
| 354 | bpx= p.X() - b.X(); bpy= p.Y() - b.Y(); |
| 355 | cpx= p.X() - c.X(); cpy= p.Y() - c.Y(); |
| 356 | aCROSSbp = ax*bpy - ay*bpx; |
| 357 | cCROSSap = cx*apy - cy*apx; |
| 358 | bCROSScp = bx*cpy - by*cpx; |
| 359 | return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0)); |
| 360 | } |
| 361 | } |
| 362 | #endif //VHACD_VECTOR_INL |