1 | #pragma once |
2 | #ifndef VHACD_VECTOR_INL |
3 | #define VHACD_VECTOR_INL |
4 | namespace VHACD |
5 | { |
6 | template <typename T> |
7 | inline Vec3<T> operator*(T lhs, const Vec3<T> & rhs) |
8 | { |
9 | return Vec3<T>(lhs * rhs.X(), lhs * rhs.Y(), lhs * rhs.Z()); |
10 | } |
11 | template <typename T> |
12 | inline T & Vec3<T>::X() |
13 | { |
14 | return m_data[0]; |
15 | } |
16 | template <typename T> |
17 | inline T & Vec3<T>::Y() |
18 | { |
19 | return m_data[1]; |
20 | } |
21 | template <typename T> |
22 | inline T & Vec3<T>::Z() |
23 | { |
24 | return m_data[2]; |
25 | } |
26 | template <typename T> |
27 | inline const T & Vec3<T>::X() const |
28 | { |
29 | return m_data[0]; |
30 | } |
31 | template <typename T> |
32 | inline const T & Vec3<T>::Y() const |
33 | { |
34 | return m_data[1]; |
35 | } |
36 | template <typename T> |
37 | inline const T & Vec3<T>::Z() const |
38 | { |
39 | return m_data[2]; |
40 | } |
41 | template <typename T> |
42 | inline void Vec3<T>::Normalize() |
43 | { |
44 | T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]); |
45 | if (n != 0.0) (*this) /= n; |
46 | } |
47 | template <typename T> |
48 | inline T Vec3<T>::GetNorm() const |
49 | { |
50 | return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]); |
51 | } |
52 | template <typename T> |
53 | inline void Vec3<T>::operator= (const Vec3 & rhs) |
54 | { |
55 | this->m_data[0] = rhs.m_data[0]; |
56 | this->m_data[1] = rhs.m_data[1]; |
57 | this->m_data[2] = rhs.m_data[2]; |
58 | } |
59 | template <typename T> |
60 | inline void Vec3<T>::operator+=(const Vec3 & rhs) |
61 | { |
62 | this->m_data[0] += rhs.m_data[0]; |
63 | this->m_data[1] += rhs.m_data[1]; |
64 | this->m_data[2] += rhs.m_data[2]; |
65 | } |
66 | template <typename T> |
67 | inline void Vec3<T>::operator-=(const Vec3 & rhs) |
68 | { |
69 | this->m_data[0] -= rhs.m_data[0]; |
70 | this->m_data[1] -= rhs.m_data[1]; |
71 | this->m_data[2] -= rhs.m_data[2]; |
72 | } |
73 | template <typename T> |
74 | inline void Vec3<T>::operator-=(T a) |
75 | { |
76 | this->m_data[0] -= a; |
77 | this->m_data[1] -= a; |
78 | this->m_data[2] -= a; |
79 | } |
80 | template <typename T> |
81 | inline void Vec3<T>::operator+=(T a) |
82 | { |
83 | this->m_data[0] += a; |
84 | this->m_data[1] += a; |
85 | this->m_data[2] += a; |
86 | } |
87 | template <typename T> |
88 | inline void Vec3<T>::operator/=(T a) |
89 | { |
90 | this->m_data[0] /= a; |
91 | this->m_data[1] /= a; |
92 | this->m_data[2] /= a; |
93 | } |
94 | template <typename T> |
95 | inline void Vec3<T>::operator*=(T a) |
96 | { |
97 | this->m_data[0] *= a; |
98 | this->m_data[1] *= a; |
99 | this->m_data[2] *= a; |
100 | } |
101 | template <typename T> |
102 | inline Vec3<T> Vec3<T>::operator^ (const Vec3<T> & rhs) const |
103 | { |
104 | return Vec3<T>(m_data[1] * rhs.m_data[2] - m_data[2] * rhs.m_data[1], |
105 | m_data[2] * rhs.m_data[0] - m_data[0] * rhs.m_data[2], |
106 | m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0]); |
107 | } |
108 | template <typename T> |
109 | inline T Vec3<T>::operator*(const Vec3<T> & rhs) const |
110 | { |
111 | return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1] + m_data[2] * rhs.m_data[2]); |
112 | } |
113 | template <typename T> |
114 | inline Vec3<T> Vec3<T>::operator+(const Vec3<T> & rhs) const |
115 | { |
116 | return Vec3<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1],m_data[2] + rhs.m_data[2]); |
117 | } |
118 | template <typename T> |
119 | inline Vec3<T> Vec3<T>::operator-(const Vec3<T> & rhs) const |
120 | { |
121 | return Vec3<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1],m_data[2] - rhs.m_data[2]) ; |
122 | } |
123 | template <typename T> |
124 | inline Vec3<T> Vec3<T>::operator-() const |
125 | { |
126 | return Vec3<T>(-m_data[0],-m_data[1],-m_data[2]) ; |
127 | } |
128 | |
129 | template <typename T> |
130 | inline Vec3<T> Vec3<T>::operator*(T rhs) const |
131 | { |
132 | return Vec3<T>(rhs * this->m_data[0], rhs * this->m_data[1], rhs * this->m_data[2]); |
133 | } |
134 | template <typename T> |
135 | inline Vec3<T> Vec3<T>::operator/ (T rhs) const |
136 | { |
137 | return Vec3<T>(m_data[0] / rhs, m_data[1] / rhs, m_data[2] / rhs); |
138 | } |
139 | template <typename T> |
140 | inline Vec3<T>::Vec3(T a) |
141 | { |
142 | m_data[0] = m_data[1] = m_data[2] = a; |
143 | } |
144 | template <typename T> |
145 | inline Vec3<T>::Vec3(T x, T y, T z) |
146 | { |
147 | m_data[0] = x; |
148 | m_data[1] = y; |
149 | m_data[2] = z; |
150 | } |
151 | template <typename T> |
152 | inline Vec3<T>::Vec3(const Vec3 & rhs) |
153 | { |
154 | m_data[0] = rhs.m_data[0]; |
155 | m_data[1] = rhs.m_data[1]; |
156 | m_data[2] = rhs.m_data[2]; |
157 | } |
158 | template <typename T> |
159 | inline Vec3<T>::~Vec3(void){}; |
160 | |
161 | template <typename T> |
162 | inline Vec3<T>::Vec3() {} |
163 | |
164 | template<typename T> |
165 | inline const bool Colinear(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c) |
166 | { |
167 | return ((c.Z() - a.Z()) * (b.Y() - a.Y()) - (b.Z() - a.Z()) * (c.Y() - a.Y()) == 0.0 /*EPS*/) && |
168 | ((b.Z() - a.Z()) * (c.X() - a.X()) - (b.X() - a.X()) * (c.Z() - a.Z()) == 0.0 /*EPS*/) && |
169 | ((b.X() - a.X()) * (c.Y() - a.Y()) - (b.Y() - a.Y()) * (c.X() - a.X()) == 0.0 /*EPS*/); |
170 | } |
171 | |
172 | template<typename T> |
173 | inline const T ComputeVolume4(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c, const Vec3<T> & d) |
174 | { |
175 | return (a-d) * ((b-d) ^ (c-d)); |
176 | } |
177 | |
178 | template <typename T> |
179 | inline bool Vec3<T>::operator<(const Vec3 & rhs) const |
180 | { |
181 | if (X() == rhs[0]) |
182 | { |
183 | if (Y() == rhs[1]) |
184 | { |
185 | return (Z()<rhs[2]); |
186 | } |
187 | return (Y()<rhs[1]); |
188 | } |
189 | return (X()<rhs[0]); |
190 | } |
191 | template <typename T> |
192 | inline bool Vec3<T>::operator>(const Vec3 & rhs) const |
193 | { |
194 | if (X() == rhs[0]) |
195 | { |
196 | if (Y() == rhs[1]) |
197 | { |
198 | return (Z()>rhs[2]); |
199 | } |
200 | return (Y()>rhs[1]); |
201 | } |
202 | return (X()>rhs[0]); |
203 | } |
204 | template <typename T> |
205 | inline Vec2<T> operator*(T lhs, const Vec2<T> & rhs) |
206 | { |
207 | return Vec2<T>(lhs * rhs.X(), lhs * rhs.Y()); |
208 | } |
209 | template <typename T> |
210 | inline T & Vec2<T>::X() |
211 | { |
212 | return m_data[0]; |
213 | } |
214 | template <typename T> |
215 | inline T & Vec2<T>::Y() |
216 | { |
217 | return m_data[1]; |
218 | } |
219 | template <typename T> |
220 | inline const T & Vec2<T>::X() const |
221 | { |
222 | return m_data[0]; |
223 | } |
224 | template <typename T> |
225 | inline const T & Vec2<T>::Y() const |
226 | { |
227 | return m_data[1]; |
228 | } |
229 | template <typename T> |
230 | inline void Vec2<T>::Normalize() |
231 | { |
232 | T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]); |
233 | if (n != 0.0) (*this) /= n; |
234 | } |
235 | template <typename T> |
236 | inline T Vec2<T>::GetNorm() const |
237 | { |
238 | return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]); |
239 | } |
240 | template <typename T> |
241 | inline void Vec2<T>::operator= (const Vec2 & rhs) |
242 | { |
243 | this->m_data[0] = rhs.m_data[0]; |
244 | this->m_data[1] = rhs.m_data[1]; |
245 | } |
246 | template <typename T> |
247 | inline void Vec2<T>::operator+=(const Vec2 & rhs) |
248 | { |
249 | this->m_data[0] += rhs.m_data[0]; |
250 | this->m_data[1] += rhs.m_data[1]; |
251 | } |
252 | template <typename T> |
253 | inline void Vec2<T>::operator-=(const Vec2 & rhs) |
254 | { |
255 | this->m_data[0] -= rhs.m_data[0]; |
256 | this->m_data[1] -= rhs.m_data[1]; |
257 | } |
258 | template <typename T> |
259 | inline void Vec2<T>::operator-=(T a) |
260 | { |
261 | this->m_data[0] -= a; |
262 | this->m_data[1] -= a; |
263 | } |
264 | template <typename T> |
265 | inline void Vec2<T>::operator+=(T a) |
266 | { |
267 | this->m_data[0] += a; |
268 | this->m_data[1] += a; |
269 | } |
270 | template <typename T> |
271 | inline void Vec2<T>::operator/=(T a) |
272 | { |
273 | this->m_data[0] /= a; |
274 | this->m_data[1] /= a; |
275 | } |
276 | template <typename T> |
277 | inline void Vec2<T>::operator*=(T a) |
278 | { |
279 | this->m_data[0] *= a; |
280 | this->m_data[1] *= a; |
281 | } |
282 | template <typename T> |
283 | inline T Vec2<T>::operator^ (const Vec2<T> & rhs) const |
284 | { |
285 | return m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0]; |
286 | } |
287 | template <typename T> |
288 | inline T Vec2<T>::operator*(const Vec2<T> & rhs) const |
289 | { |
290 | return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1]); |
291 | } |
292 | template <typename T> |
293 | inline Vec2<T> Vec2<T>::operator+(const Vec2<T> & rhs) const |
294 | { |
295 | return Vec2<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1]); |
296 | } |
297 | template <typename T> |
298 | inline Vec2<T> Vec2<T>::operator-(const Vec2<T> & rhs) const |
299 | { |
300 | return Vec2<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1]); |
301 | } |
302 | template <typename T> |
303 | inline Vec2<T> Vec2<T>::operator-() const |
304 | { |
305 | return Vec2<T>(-m_data[0],-m_data[1]) ; |
306 | } |
307 | |
308 | template <typename T> |
309 | inline Vec2<T> Vec2<T>::operator*(T rhs) const |
310 | { |
311 | return Vec2<T>(rhs * this->m_data[0], rhs * this->m_data[1]); |
312 | } |
313 | template <typename T> |
314 | inline Vec2<T> Vec2<T>::operator/ (T rhs) const |
315 | { |
316 | return Vec2<T>(m_data[0] / rhs, m_data[1] / rhs); |
317 | } |
318 | template <typename T> |
319 | inline Vec2<T>::Vec2(T a) |
320 | { |
321 | m_data[0] = m_data[1] = a; |
322 | } |
323 | template <typename T> |
324 | inline Vec2<T>::Vec2(T x, T y) |
325 | { |
326 | m_data[0] = x; |
327 | m_data[1] = y; |
328 | } |
329 | template <typename T> |
330 | inline Vec2<T>::Vec2(const Vec2 & rhs) |
331 | { |
332 | m_data[0] = rhs.m_data[0]; |
333 | m_data[1] = rhs.m_data[1]; |
334 | } |
335 | template <typename T> |
336 | inline Vec2<T>::~Vec2(void){}; |
337 | |
338 | template <typename T> |
339 | inline Vec2<T>::Vec2() {} |
340 | |
341 | /* |
342 | InsideTriangle decides if a point P is Inside of the triangle |
343 | defined by A, B, C. |
344 | */ |
345 | template<typename T> |
346 | inline const bool InsideTriangle(const Vec2<T> & a, const Vec2<T> & b, const Vec2<T> & c, const Vec2<T> & p) |
347 | { |
348 | T ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; |
349 | T cCROSSap, bCROSScp, aCROSSbp; |
350 | ax = c.X() - b.X(); ay = c.Y() - b.Y(); |
351 | bx = a.X() - c.X(); by = a.Y() - c.Y(); |
352 | cx = b.X() - a.X(); cy = b.Y() - a.Y(); |
353 | apx= p.X() - a.X(); apy= p.Y() - a.Y(); |
354 | bpx= p.X() - b.X(); bpy= p.Y() - b.Y(); |
355 | cpx= p.X() - c.X(); cpy= p.Y() - c.Y(); |
356 | aCROSSbp = ax*bpy - ay*bpx; |
357 | cCROSSap = cx*apy - cy*apx; |
358 | bCROSScp = bx*cpy - by*cpx; |
359 | return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0)); |
360 | } |
361 | } |
362 | #endif //VHACD_VECTOR_INL |