1 | /* crc32.c -- compute the CRC-32 of a data stream |
2 | * Copyright (C) 1995-2022 Mark Adler |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | * |
5 | * This interleaved implementation of a CRC makes use of pipelined multiple |
6 | * arithmetic-logic units, commonly found in modern CPU cores. It is due to |
7 | * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. |
8 | */ |
9 | |
10 | /* @(#) $Id$ */ |
11 | |
12 | /* |
13 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
14 | protection on the static variables used to control the first-use generation |
15 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
16 | first call get_crc_table() to initialize the tables before allowing more than |
17 | one thread to use crc32(). |
18 | |
19 | MAKECRCH can be #defined to write out crc32.h. A main() routine is also |
20 | produced, so that this one source file can be compiled to an executable. |
21 | */ |
22 | |
23 | #ifdef MAKECRCH |
24 | # include <stdio.h> |
25 | # ifndef DYNAMIC_CRC_TABLE |
26 | # define DYNAMIC_CRC_TABLE |
27 | # endif /* !DYNAMIC_CRC_TABLE */ |
28 | #endif /* MAKECRCH */ |
29 | |
30 | #include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */ |
31 | |
32 | /* |
33 | A CRC of a message is computed on N braids of words in the message, where |
34 | each word consists of W bytes (4 or 8). If N is 3, for example, then three |
35 | running sparse CRCs are calculated respectively on each braid, at these |
36 | indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... |
37 | This is done starting at a word boundary, and continues until as many blocks |
38 | of N * W bytes as are available have been processed. The results are combined |
39 | into a single CRC at the end. For this code, N must be in the range 1..6 and |
40 | W must be 4 or 8. The upper limit on N can be increased if desired by adding |
41 | more #if blocks, extending the patterns apparent in the code. In addition, |
42 | crc32.h would need to be regenerated, if the maximum N value is increased. |
43 | |
44 | N and W are chosen empirically by benchmarking the execution time on a given |
45 | processor. The choices for N and W below were based on testing on Intel Kaby |
46 | Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 |
47 | Octeon II processors. The Intel, AMD, and ARM processors were all fastest |
48 | with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. |
49 | They were all tested with either gcc or clang, all using the -O3 optimization |
50 | level. Your mileage may vary. |
51 | */ |
52 | |
53 | /* Define N */ |
54 | #ifdef Z_TESTN |
55 | # define N Z_TESTN |
56 | #else |
57 | # define N 5 |
58 | #endif |
59 | #if N < 1 || N > 6 |
60 | # error N must be in 1..6 |
61 | #endif |
62 | |
63 | /* |
64 | z_crc_t must be at least 32 bits. z_word_t must be at least as long as |
65 | z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and |
66 | that bytes are eight bits. |
67 | */ |
68 | |
69 | /* |
70 | Define W and the associated z_word_t type. If W is not defined, then a |
71 | braided calculation is not used, and the associated tables and code are not |
72 | compiled. |
73 | */ |
74 | #ifdef Z_TESTW |
75 | # if Z_TESTW-1 != -1 |
76 | # define W Z_TESTW |
77 | # endif |
78 | #else |
79 | # ifdef MAKECRCH |
80 | # define W 8 /* required for MAKECRCH */ |
81 | # else |
82 | # if defined(__x86_64__) || defined(__aarch64__) |
83 | # define W 8 |
84 | # else |
85 | # define W 4 |
86 | # endif |
87 | # endif |
88 | #endif |
89 | #ifdef W |
90 | # if W == 8 && defined(Z_U8) |
91 | typedef Z_U8 z_word_t; |
92 | # elif defined(Z_U4) |
93 | # undef W |
94 | # define W 4 |
95 | typedef Z_U4 z_word_t; |
96 | # else |
97 | # undef W |
98 | # endif |
99 | #endif |
100 | |
101 | /* If available, use the ARM processor CRC32 instruction. */ |
102 | #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8 |
103 | # define ARMCRC32 |
104 | #endif |
105 | |
106 | #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE)) |
107 | /* |
108 | Swap the bytes in a z_word_t to convert between little and big endian. Any |
109 | self-respecting compiler will optimize this to a single machine byte-swap |
110 | instruction, if one is available. This assumes that word_t is either 32 bits |
111 | or 64 bits. |
112 | */ |
113 | local z_word_t byte_swap(z_word_t word) { |
114 | # if W == 8 |
115 | return |
116 | (word & 0xff00000000000000) >> 56 | |
117 | (word & 0xff000000000000) >> 40 | |
118 | (word & 0xff0000000000) >> 24 | |
119 | (word & 0xff00000000) >> 8 | |
120 | (word & 0xff000000) << 8 | |
121 | (word & 0xff0000) << 24 | |
122 | (word & 0xff00) << 40 | |
123 | (word & 0xff) << 56; |
124 | # else /* W == 4 */ |
125 | return |
126 | (word & 0xff000000) >> 24 | |
127 | (word & 0xff0000) >> 8 | |
128 | (word & 0xff00) << 8 | |
129 | (word & 0xff) << 24; |
130 | # endif |
131 | } |
132 | #endif |
133 | |
134 | #ifdef DYNAMIC_CRC_TABLE |
135 | /* ========================================================================= |
136 | * Table of powers of x for combining CRC-32s, filled in by make_crc_table() |
137 | * below. |
138 | */ |
139 | local z_crc_t FAR x2n_table[32]; |
140 | #else |
141 | /* ========================================================================= |
142 | * Tables for byte-wise and braided CRC-32 calculations, and a table of powers |
143 | * of x for combining CRC-32s, all made by make_crc_table(). |
144 | */ |
145 | # include "crc32.h" |
146 | #endif |
147 | |
148 | /* CRC polynomial. */ |
149 | #define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */ |
150 | |
151 | /* |
152 | Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, |
153 | reflected. For speed, this requires that a not be zero. |
154 | */ |
155 | local z_crc_t multmodp(z_crc_t a, z_crc_t b) { |
156 | z_crc_t m, p; |
157 | |
158 | m = (z_crc_t)1 << 31; |
159 | p = 0; |
160 | for (;;) { |
161 | if (a & m) { |
162 | p ^= b; |
163 | if ((a & (m - 1)) == 0) |
164 | break; |
165 | } |
166 | m >>= 1; |
167 | b = b & 1 ? (b >> 1) ^ POLY : b >> 1; |
168 | } |
169 | return p; |
170 | } |
171 | |
172 | /* |
173 | Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been |
174 | initialized. |
175 | */ |
176 | local z_crc_t x2nmodp(z_off64_t n, unsigned k) { |
177 | z_crc_t p; |
178 | |
179 | p = (z_crc_t)1 << 31; /* x^0 == 1 */ |
180 | while (n) { |
181 | if (n & 1) |
182 | p = multmodp(x2n_table[k & 31], p); |
183 | n >>= 1; |
184 | k++; |
185 | } |
186 | return p; |
187 | } |
188 | |
189 | #ifdef DYNAMIC_CRC_TABLE |
190 | /* ========================================================================= |
191 | * Build the tables for byte-wise and braided CRC-32 calculations, and a table |
192 | * of powers of x for combining CRC-32s. |
193 | */ |
194 | local z_crc_t FAR crc_table[256]; |
195 | #ifdef W |
196 | local z_word_t FAR crc_big_table[256]; |
197 | local z_crc_t FAR crc_braid_table[W][256]; |
198 | local z_word_t FAR crc_braid_big_table[W][256]; |
199 | local void braid(z_crc_t [][256], z_word_t [][256], int, int); |
200 | #endif |
201 | #ifdef MAKECRCH |
202 | local void write_table(FILE *, const z_crc_t FAR *, int); |
203 | local void write_table32hi(FILE *, const z_word_t FAR *, int); |
204 | local void write_table64(FILE *, const z_word_t FAR *, int); |
205 | #endif /* MAKECRCH */ |
206 | |
207 | /* |
208 | Define a once() function depending on the availability of atomics. If this is |
209 | compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in |
210 | multiple threads, and if atomics are not available, then get_crc_table() must |
211 | be called to initialize the tables and must return before any threads are |
212 | allowed to compute or combine CRCs. |
213 | */ |
214 | |
215 | /* Definition of once functionality. */ |
216 | typedef struct once_s once_t; |
217 | |
218 | /* Check for the availability of atomics. */ |
219 | #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \ |
220 | !defined(__STDC_NO_ATOMICS__) |
221 | |
222 | #include <stdatomic.h> |
223 | |
224 | /* Structure for once(), which must be initialized with ONCE_INIT. */ |
225 | struct once_s { |
226 | atomic_flag begun; |
227 | atomic_int done; |
228 | }; |
229 | #define ONCE_INIT {ATOMIC_FLAG_INIT, 0} |
230 | |
231 | /* |
232 | Run the provided init() function exactly once, even if multiple threads |
233 | invoke once() at the same time. The state must be a once_t initialized with |
234 | ONCE_INIT. |
235 | */ |
236 | local void once(once_t *state, void (*init)(void)) { |
237 | if (!atomic_load(&state->done)) { |
238 | if (atomic_flag_test_and_set(&state->begun)) |
239 | while (!atomic_load(&state->done)) |
240 | ; |
241 | else { |
242 | init(); |
243 | atomic_store(&state->done, 1); |
244 | } |
245 | } |
246 | } |
247 | |
248 | #else /* no atomics */ |
249 | |
250 | /* Structure for once(), which must be initialized with ONCE_INIT. */ |
251 | struct once_s { |
252 | volatile int begun; |
253 | volatile int done; |
254 | }; |
255 | #define ONCE_INIT {0, 0} |
256 | |
257 | /* Test and set. Alas, not atomic, but tries to minimize the period of |
258 | vulnerability. */ |
259 | local int test_and_set(int volatile *flag) { |
260 | int was; |
261 | |
262 | was = *flag; |
263 | *flag = 1; |
264 | return was; |
265 | } |
266 | |
267 | /* Run the provided init() function once. This is not thread-safe. */ |
268 | local void once(once_t *state, void (*init)(void)) { |
269 | if (!state->done) { |
270 | if (test_and_set(&state->begun)) |
271 | while (!state->done) |
272 | ; |
273 | else { |
274 | init(); |
275 | state->done = 1; |
276 | } |
277 | } |
278 | } |
279 | |
280 | #endif |
281 | |
282 | /* State for once(). */ |
283 | local once_t made = ONCE_INIT; |
284 | |
285 | /* |
286 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
287 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
288 | |
289 | Polynomials over GF(2) are represented in binary, one bit per coefficient, |
290 | with the lowest powers in the most significant bit. Then adding polynomials |
291 | is just exclusive-or, and multiplying a polynomial by x is a right shift by |
292 | one. If we call the above polynomial p, and represent a byte as the |
293 | polynomial q, also with the lowest power in the most significant bit (so the |
294 | byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, |
295 | where a mod b means the remainder after dividing a by b. |
296 | |
297 | This calculation is done using the shift-register method of multiplying and |
298 | taking the remainder. The register is initialized to zero, and for each |
299 | incoming bit, x^32 is added mod p to the register if the bit is a one (where |
300 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x |
301 | (which is shifting right by one and adding x^32 mod p if the bit shifted out |
302 | is a one). We start with the highest power (least significant bit) of q and |
303 | repeat for all eight bits of q. |
304 | |
305 | The table is simply the CRC of all possible eight bit values. This is all the |
306 | information needed to generate CRCs on data a byte at a time for all |
307 | combinations of CRC register values and incoming bytes. |
308 | */ |
309 | |
310 | local void make_crc_table(void) { |
311 | unsigned i, j, n; |
312 | z_crc_t p; |
313 | |
314 | /* initialize the CRC of bytes tables */ |
315 | for (i = 0; i < 256; i++) { |
316 | p = i; |
317 | for (j = 0; j < 8; j++) |
318 | p = p & 1 ? (p >> 1) ^ POLY : p >> 1; |
319 | crc_table[i] = p; |
320 | #ifdef W |
321 | crc_big_table[i] = byte_swap(p); |
322 | #endif |
323 | } |
324 | |
325 | /* initialize the x^2^n mod p(x) table */ |
326 | p = (z_crc_t)1 << 30; /* x^1 */ |
327 | x2n_table[0] = p; |
328 | for (n = 1; n < 32; n++) |
329 | x2n_table[n] = p = multmodp(p, p); |
330 | |
331 | #ifdef W |
332 | /* initialize the braiding tables -- needs x2n_table[] */ |
333 | braid(crc_braid_table, crc_braid_big_table, N, W); |
334 | #endif |
335 | |
336 | #ifdef MAKECRCH |
337 | { |
338 | /* |
339 | The crc32.h header file contains tables for both 32-bit and 64-bit |
340 | z_word_t's, and so requires a 64-bit type be available. In that case, |
341 | z_word_t must be defined to be 64-bits. This code then also generates |
342 | and writes out the tables for the case that z_word_t is 32 bits. |
343 | */ |
344 | #if !defined(W) || W != 8 |
345 | # error Need a 64-bit integer type in order to generate crc32.h. |
346 | #endif |
347 | FILE *out; |
348 | int k, n; |
349 | z_crc_t ltl[8][256]; |
350 | z_word_t big[8][256]; |
351 | |
352 | out = fopen("crc32.h" , "w" ); |
353 | if (out == NULL) return; |
354 | |
355 | /* write out little-endian CRC table to crc32.h */ |
356 | fprintf(out, |
357 | "/* crc32.h -- tables for rapid CRC calculation\n" |
358 | " * Generated automatically by crc32.c\n */\n" |
359 | "\n" |
360 | "local const z_crc_t FAR crc_table[] = {\n" |
361 | " " ); |
362 | write_table(out, crc_table, 256); |
363 | fprintf(out, |
364 | "};\n" ); |
365 | |
366 | /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ |
367 | fprintf(out, |
368 | "\n" |
369 | "#ifdef W\n" |
370 | "\n" |
371 | "#if W == 8\n" |
372 | "\n" |
373 | "local const z_word_t FAR crc_big_table[] = {\n" |
374 | " " ); |
375 | write_table64(out, crc_big_table, 256); |
376 | fprintf(out, |
377 | "};\n" ); |
378 | |
379 | /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ |
380 | fprintf(out, |
381 | "\n" |
382 | "#else /* W == 4 */\n" |
383 | "\n" |
384 | "local const z_word_t FAR crc_big_table[] = {\n" |
385 | " " ); |
386 | write_table32hi(out, crc_big_table, 256); |
387 | fprintf(out, |
388 | "};\n" |
389 | "\n" |
390 | "#endif\n" ); |
391 | |
392 | /* write out braid tables for each value of N */ |
393 | for (n = 1; n <= 6; n++) { |
394 | fprintf(out, |
395 | "\n" |
396 | "#if N == %d\n" , n); |
397 | |
398 | /* compute braid tables for this N and 64-bit word_t */ |
399 | braid(ltl, big, n, 8); |
400 | |
401 | /* write out braid tables for 64-bit z_word_t to crc32.h */ |
402 | fprintf(out, |
403 | "\n" |
404 | "#if W == 8\n" |
405 | "\n" |
406 | "local const z_crc_t FAR crc_braid_table[][256] = {\n" ); |
407 | for (k = 0; k < 8; k++) { |
408 | fprintf(out, " {" ); |
409 | write_table(out, ltl[k], 256); |
410 | fprintf(out, "}%s" , k < 7 ? ",\n" : "" ); |
411 | } |
412 | fprintf(out, |
413 | "};\n" |
414 | "\n" |
415 | "local const z_word_t FAR crc_braid_big_table[][256] = {\n" ); |
416 | for (k = 0; k < 8; k++) { |
417 | fprintf(out, " {" ); |
418 | write_table64(out, big[k], 256); |
419 | fprintf(out, "}%s" , k < 7 ? ",\n" : "" ); |
420 | } |
421 | fprintf(out, |
422 | "};\n" ); |
423 | |
424 | /* compute braid tables for this N and 32-bit word_t */ |
425 | braid(ltl, big, n, 4); |
426 | |
427 | /* write out braid tables for 32-bit z_word_t to crc32.h */ |
428 | fprintf(out, |
429 | "\n" |
430 | "#else /* W == 4 */\n" |
431 | "\n" |
432 | "local const z_crc_t FAR crc_braid_table[][256] = {\n" ); |
433 | for (k = 0; k < 4; k++) { |
434 | fprintf(out, " {" ); |
435 | write_table(out, ltl[k], 256); |
436 | fprintf(out, "}%s" , k < 3 ? ",\n" : "" ); |
437 | } |
438 | fprintf(out, |
439 | "};\n" |
440 | "\n" |
441 | "local const z_word_t FAR crc_braid_big_table[][256] = {\n" ); |
442 | for (k = 0; k < 4; k++) { |
443 | fprintf(out, " {" ); |
444 | write_table32hi(out, big[k], 256); |
445 | fprintf(out, "}%s" , k < 3 ? ",\n" : "" ); |
446 | } |
447 | fprintf(out, |
448 | "};\n" |
449 | "\n" |
450 | "#endif\n" |
451 | "\n" |
452 | "#endif\n" ); |
453 | } |
454 | fprintf(out, |
455 | "\n" |
456 | "#endif\n" ); |
457 | |
458 | /* write out zeros operator table to crc32.h */ |
459 | fprintf(out, |
460 | "\n" |
461 | "local const z_crc_t FAR x2n_table[] = {\n" |
462 | " " ); |
463 | write_table(out, x2n_table, 32); |
464 | fprintf(out, |
465 | "};\n" ); |
466 | fclose(out); |
467 | } |
468 | #endif /* MAKECRCH */ |
469 | } |
470 | |
471 | #ifdef MAKECRCH |
472 | |
473 | /* |
474 | Write the 32-bit values in table[0..k-1] to out, five per line in |
475 | hexadecimal separated by commas. |
476 | */ |
477 | local void write_table(FILE *out, const z_crc_t FAR *table, int k) { |
478 | int n; |
479 | |
480 | for (n = 0; n < k; n++) |
481 | fprintf(out, "%s0x%08lx%s" , n == 0 || n % 5 ? "" : " " , |
482 | (unsigned long)(table[n]), |
483 | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", " )); |
484 | } |
485 | |
486 | /* |
487 | Write the high 32-bits of each value in table[0..k-1] to out, five per line |
488 | in hexadecimal separated by commas. |
489 | */ |
490 | local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) { |
491 | int n; |
492 | |
493 | for (n = 0; n < k; n++) |
494 | fprintf(out, "%s0x%08lx%s" , n == 0 || n % 5 ? "" : " " , |
495 | (unsigned long)(table[n] >> 32), |
496 | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", " )); |
497 | } |
498 | |
499 | /* |
500 | Write the 64-bit values in table[0..k-1] to out, three per line in |
501 | hexadecimal separated by commas. This assumes that if there is a 64-bit |
502 | type, then there is also a long long integer type, and it is at least 64 |
503 | bits. If not, then the type cast and format string can be adjusted |
504 | accordingly. |
505 | */ |
506 | local void write_table64(FILE *out, const z_word_t FAR *table, int k) { |
507 | int n; |
508 | |
509 | for (n = 0; n < k; n++) |
510 | fprintf(out, "%s0x%016llx%s" , n == 0 || n % 3 ? "" : " " , |
511 | (unsigned long long)(table[n]), |
512 | n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", " )); |
513 | } |
514 | |
515 | /* Actually do the deed. */ |
516 | int main(void) { |
517 | make_crc_table(); |
518 | return 0; |
519 | } |
520 | |
521 | #endif /* MAKECRCH */ |
522 | |
523 | #ifdef W |
524 | /* |
525 | Generate the little and big-endian braid tables for the given n and z_word_t |
526 | size w. Each array must have room for w blocks of 256 elements. |
527 | */ |
528 | local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) { |
529 | int k; |
530 | z_crc_t i, p, q; |
531 | for (k = 0; k < w; k++) { |
532 | p = x2nmodp((n * w + 3 - k) << 3, 0); |
533 | ltl[k][0] = 0; |
534 | big[w - 1 - k][0] = 0; |
535 | for (i = 1; i < 256; i++) { |
536 | ltl[k][i] = q = multmodp(i << 24, p); |
537 | big[w - 1 - k][i] = byte_swap(q); |
538 | } |
539 | } |
540 | } |
541 | #endif |
542 | |
543 | #endif /* DYNAMIC_CRC_TABLE */ |
544 | |
545 | /* ========================================================================= |
546 | * This function can be used by asm versions of crc32(), and to force the |
547 | * generation of the CRC tables in a threaded application. |
548 | */ |
549 | const z_crc_t FAR * ZEXPORT get_crc_table(void) { |
550 | #ifdef DYNAMIC_CRC_TABLE |
551 | once(&made, make_crc_table); |
552 | #endif /* DYNAMIC_CRC_TABLE */ |
553 | return (const z_crc_t FAR *)crc_table; |
554 | } |
555 | |
556 | /* ========================================================================= |
557 | * Use ARM machine instructions if available. This will compute the CRC about |
558 | * ten times faster than the braided calculation. This code does not check for |
559 | * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will |
560 | * only be defined if the compilation specifies an ARM processor architecture |
561 | * that has the instructions. For example, compiling with -march=armv8.1-a or |
562 | * -march=armv8-a+crc, or -march=native if the compile machine has the crc32 |
563 | * instructions. |
564 | */ |
565 | #ifdef ARMCRC32 |
566 | |
567 | /* |
568 | Constants empirically determined to maximize speed. These values are from |
569 | measurements on a Cortex-A57. Your mileage may vary. |
570 | */ |
571 | #define Z_BATCH 3990 /* number of words in a batch */ |
572 | #define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */ |
573 | #define Z_BATCH_MIN 800 /* fewest words in a final batch */ |
574 | |
575 | unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, |
576 | z_size_t len) { |
577 | z_crc_t val; |
578 | z_word_t crc1, crc2; |
579 | const z_word_t *word; |
580 | z_word_t val0, val1, val2; |
581 | z_size_t last, last2, i; |
582 | z_size_t num; |
583 | |
584 | /* Return initial CRC, if requested. */ |
585 | if (buf == Z_NULL) return 0; |
586 | |
587 | #ifdef DYNAMIC_CRC_TABLE |
588 | once(&made, make_crc_table); |
589 | #endif /* DYNAMIC_CRC_TABLE */ |
590 | |
591 | /* Pre-condition the CRC */ |
592 | crc = (~crc) & 0xffffffff; |
593 | |
594 | /* Compute the CRC up to a word boundary. */ |
595 | while (len && ((z_size_t)buf & 7) != 0) { |
596 | len--; |
597 | val = *buf++; |
598 | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r" (crc) : "r" (val)); |
599 | } |
600 | |
601 | /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ |
602 | word = (z_word_t const *)buf; |
603 | num = len >> 3; |
604 | len &= 7; |
605 | |
606 | /* Do three interleaved CRCs to realize the throughput of one crc32x |
607 | instruction per cycle. Each CRC is calculated on Z_BATCH words. The |
608 | three CRCs are combined into a single CRC after each set of batches. */ |
609 | while (num >= 3 * Z_BATCH) { |
610 | crc1 = 0; |
611 | crc2 = 0; |
612 | for (i = 0; i < Z_BATCH; i++) { |
613 | val0 = word[i]; |
614 | val1 = word[i + Z_BATCH]; |
615 | val2 = word[i + 2 * Z_BATCH]; |
616 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc) : "r" (val0)); |
617 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc1) : "r" (val1)); |
618 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc2) : "r" (val2)); |
619 | } |
620 | word += 3 * Z_BATCH; |
621 | num -= 3 * Z_BATCH; |
622 | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; |
623 | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; |
624 | } |
625 | |
626 | /* Do one last smaller batch with the remaining words, if there are enough |
627 | to pay for the combination of CRCs. */ |
628 | last = num / 3; |
629 | if (last >= Z_BATCH_MIN) { |
630 | last2 = last << 1; |
631 | crc1 = 0; |
632 | crc2 = 0; |
633 | for (i = 0; i < last; i++) { |
634 | val0 = word[i]; |
635 | val1 = word[i + last]; |
636 | val2 = word[i + last2]; |
637 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc) : "r" (val0)); |
638 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc1) : "r" (val1)); |
639 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc2) : "r" (val2)); |
640 | } |
641 | word += 3 * last; |
642 | num -= 3 * last; |
643 | val = x2nmodp(last, 6); |
644 | crc = multmodp(val, crc) ^ crc1; |
645 | crc = multmodp(val, crc) ^ crc2; |
646 | } |
647 | |
648 | /* Compute the CRC on any remaining words. */ |
649 | for (i = 0; i < num; i++) { |
650 | val0 = word[i]; |
651 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r" (crc) : "r" (val0)); |
652 | } |
653 | word += num; |
654 | |
655 | /* Complete the CRC on any remaining bytes. */ |
656 | buf = (const unsigned char FAR *)word; |
657 | while (len) { |
658 | len--; |
659 | val = *buf++; |
660 | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r" (crc) : "r" (val)); |
661 | } |
662 | |
663 | /* Return the CRC, post-conditioned. */ |
664 | return crc ^ 0xffffffff; |
665 | } |
666 | |
667 | #else |
668 | |
669 | #ifdef W |
670 | |
671 | /* |
672 | Return the CRC of the W bytes in the word_t data, taking the |
673 | least-significant byte of the word as the first byte of data, without any pre |
674 | or post conditioning. This is used to combine the CRCs of each braid. |
675 | */ |
676 | local z_crc_t crc_word(z_word_t data) { |
677 | int k; |
678 | for (k = 0; k < W; k++) |
679 | data = (data >> 8) ^ crc_table[data & 0xff]; |
680 | return (z_crc_t)data; |
681 | } |
682 | |
683 | local z_word_t crc_word_big(z_word_t data) { |
684 | int k; |
685 | for (k = 0; k < W; k++) |
686 | data = (data << 8) ^ |
687 | crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; |
688 | return data; |
689 | } |
690 | |
691 | #endif |
692 | |
693 | /* ========================================================================= */ |
694 | unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, |
695 | z_size_t len) { |
696 | /* Return initial CRC, if requested. */ |
697 | if (buf == Z_NULL) return 0; |
698 | |
699 | #ifdef DYNAMIC_CRC_TABLE |
700 | once(&made, make_crc_table); |
701 | #endif /* DYNAMIC_CRC_TABLE */ |
702 | |
703 | /* Pre-condition the CRC */ |
704 | crc = (~crc) & 0xffffffff; |
705 | |
706 | #ifdef W |
707 | |
708 | /* If provided enough bytes, do a braided CRC calculation. */ |
709 | if (len >= N * W + W - 1) { |
710 | z_size_t blks; |
711 | z_word_t const *words; |
712 | unsigned endian; |
713 | int k; |
714 | |
715 | /* Compute the CRC up to a z_word_t boundary. */ |
716 | while (len && ((z_size_t)buf & (W - 1)) != 0) { |
717 | len--; |
718 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
719 | } |
720 | |
721 | /* Compute the CRC on as many N z_word_t blocks as are available. */ |
722 | blks = len / (N * W); |
723 | len -= blks * N * W; |
724 | words = (z_word_t const *)buf; |
725 | |
726 | /* Do endian check at execution time instead of compile time, since ARM |
727 | processors can change the endianness at execution time. If the |
728 | compiler knows what the endianness will be, it can optimize out the |
729 | check and the unused branch. */ |
730 | endian = 1; |
731 | if (*(unsigned char *)&endian) { |
732 | /* Little endian. */ |
733 | |
734 | z_crc_t crc0; |
735 | z_word_t word0; |
736 | #if N > 1 |
737 | z_crc_t crc1; |
738 | z_word_t word1; |
739 | #if N > 2 |
740 | z_crc_t crc2; |
741 | z_word_t word2; |
742 | #if N > 3 |
743 | z_crc_t crc3; |
744 | z_word_t word3; |
745 | #if N > 4 |
746 | z_crc_t crc4; |
747 | z_word_t word4; |
748 | #if N > 5 |
749 | z_crc_t crc5; |
750 | z_word_t word5; |
751 | #endif |
752 | #endif |
753 | #endif |
754 | #endif |
755 | #endif |
756 | |
757 | /* Initialize the CRC for each braid. */ |
758 | crc0 = crc; |
759 | #if N > 1 |
760 | crc1 = 0; |
761 | #if N > 2 |
762 | crc2 = 0; |
763 | #if N > 3 |
764 | crc3 = 0; |
765 | #if N > 4 |
766 | crc4 = 0; |
767 | #if N > 5 |
768 | crc5 = 0; |
769 | #endif |
770 | #endif |
771 | #endif |
772 | #endif |
773 | #endif |
774 | |
775 | /* |
776 | Process the first blks-1 blocks, computing the CRCs on each braid |
777 | independently. |
778 | */ |
779 | while (--blks) { |
780 | /* Load the word for each braid into registers. */ |
781 | word0 = crc0 ^ words[0]; |
782 | #if N > 1 |
783 | word1 = crc1 ^ words[1]; |
784 | #if N > 2 |
785 | word2 = crc2 ^ words[2]; |
786 | #if N > 3 |
787 | word3 = crc3 ^ words[3]; |
788 | #if N > 4 |
789 | word4 = crc4 ^ words[4]; |
790 | #if N > 5 |
791 | word5 = crc5 ^ words[5]; |
792 | #endif |
793 | #endif |
794 | #endif |
795 | #endif |
796 | #endif |
797 | words += N; |
798 | |
799 | /* Compute and update the CRC for each word. The loop should |
800 | get unrolled. */ |
801 | crc0 = crc_braid_table[0][word0 & 0xff]; |
802 | #if N > 1 |
803 | crc1 = crc_braid_table[0][word1 & 0xff]; |
804 | #if N > 2 |
805 | crc2 = crc_braid_table[0][word2 & 0xff]; |
806 | #if N > 3 |
807 | crc3 = crc_braid_table[0][word3 & 0xff]; |
808 | #if N > 4 |
809 | crc4 = crc_braid_table[0][word4 & 0xff]; |
810 | #if N > 5 |
811 | crc5 = crc_braid_table[0][word5 & 0xff]; |
812 | #endif |
813 | #endif |
814 | #endif |
815 | #endif |
816 | #endif |
817 | for (k = 1; k < W; k++) { |
818 | crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; |
819 | #if N > 1 |
820 | crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; |
821 | #if N > 2 |
822 | crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; |
823 | #if N > 3 |
824 | crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; |
825 | #if N > 4 |
826 | crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; |
827 | #if N > 5 |
828 | crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; |
829 | #endif |
830 | #endif |
831 | #endif |
832 | #endif |
833 | #endif |
834 | } |
835 | } |
836 | |
837 | /* |
838 | Process the last block, combining the CRCs of the N braids at the |
839 | same time. |
840 | */ |
841 | crc = crc_word(crc0 ^ words[0]); |
842 | #if N > 1 |
843 | crc = crc_word(crc1 ^ words[1] ^ crc); |
844 | #if N > 2 |
845 | crc = crc_word(crc2 ^ words[2] ^ crc); |
846 | #if N > 3 |
847 | crc = crc_word(crc3 ^ words[3] ^ crc); |
848 | #if N > 4 |
849 | crc = crc_word(crc4 ^ words[4] ^ crc); |
850 | #if N > 5 |
851 | crc = crc_word(crc5 ^ words[5] ^ crc); |
852 | #endif |
853 | #endif |
854 | #endif |
855 | #endif |
856 | #endif |
857 | words += N; |
858 | } |
859 | else { |
860 | /* Big endian. */ |
861 | |
862 | z_word_t crc0, word0, comb; |
863 | #if N > 1 |
864 | z_word_t crc1, word1; |
865 | #if N > 2 |
866 | z_word_t crc2, word2; |
867 | #if N > 3 |
868 | z_word_t crc3, word3; |
869 | #if N > 4 |
870 | z_word_t crc4, word4; |
871 | #if N > 5 |
872 | z_word_t crc5, word5; |
873 | #endif |
874 | #endif |
875 | #endif |
876 | #endif |
877 | #endif |
878 | |
879 | /* Initialize the CRC for each braid. */ |
880 | crc0 = byte_swap(crc); |
881 | #if N > 1 |
882 | crc1 = 0; |
883 | #if N > 2 |
884 | crc2 = 0; |
885 | #if N > 3 |
886 | crc3 = 0; |
887 | #if N > 4 |
888 | crc4 = 0; |
889 | #if N > 5 |
890 | crc5 = 0; |
891 | #endif |
892 | #endif |
893 | #endif |
894 | #endif |
895 | #endif |
896 | |
897 | /* |
898 | Process the first blks-1 blocks, computing the CRCs on each braid |
899 | independently. |
900 | */ |
901 | while (--blks) { |
902 | /* Load the word for each braid into registers. */ |
903 | word0 = crc0 ^ words[0]; |
904 | #if N > 1 |
905 | word1 = crc1 ^ words[1]; |
906 | #if N > 2 |
907 | word2 = crc2 ^ words[2]; |
908 | #if N > 3 |
909 | word3 = crc3 ^ words[3]; |
910 | #if N > 4 |
911 | word4 = crc4 ^ words[4]; |
912 | #if N > 5 |
913 | word5 = crc5 ^ words[5]; |
914 | #endif |
915 | #endif |
916 | #endif |
917 | #endif |
918 | #endif |
919 | words += N; |
920 | |
921 | /* Compute and update the CRC for each word. The loop should |
922 | get unrolled. */ |
923 | crc0 = crc_braid_big_table[0][word0 & 0xff]; |
924 | #if N > 1 |
925 | crc1 = crc_braid_big_table[0][word1 & 0xff]; |
926 | #if N > 2 |
927 | crc2 = crc_braid_big_table[0][word2 & 0xff]; |
928 | #if N > 3 |
929 | crc3 = crc_braid_big_table[0][word3 & 0xff]; |
930 | #if N > 4 |
931 | crc4 = crc_braid_big_table[0][word4 & 0xff]; |
932 | #if N > 5 |
933 | crc5 = crc_braid_big_table[0][word5 & 0xff]; |
934 | #endif |
935 | #endif |
936 | #endif |
937 | #endif |
938 | #endif |
939 | for (k = 1; k < W; k++) { |
940 | crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; |
941 | #if N > 1 |
942 | crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; |
943 | #if N > 2 |
944 | crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; |
945 | #if N > 3 |
946 | crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; |
947 | #if N > 4 |
948 | crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; |
949 | #if N > 5 |
950 | crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; |
951 | #endif |
952 | #endif |
953 | #endif |
954 | #endif |
955 | #endif |
956 | } |
957 | } |
958 | |
959 | /* |
960 | Process the last block, combining the CRCs of the N braids at the |
961 | same time. |
962 | */ |
963 | comb = crc_word_big(crc0 ^ words[0]); |
964 | #if N > 1 |
965 | comb = crc_word_big(crc1 ^ words[1] ^ comb); |
966 | #if N > 2 |
967 | comb = crc_word_big(crc2 ^ words[2] ^ comb); |
968 | #if N > 3 |
969 | comb = crc_word_big(crc3 ^ words[3] ^ comb); |
970 | #if N > 4 |
971 | comb = crc_word_big(crc4 ^ words[4] ^ comb); |
972 | #if N > 5 |
973 | comb = crc_word_big(crc5 ^ words[5] ^ comb); |
974 | #endif |
975 | #endif |
976 | #endif |
977 | #endif |
978 | #endif |
979 | words += N; |
980 | crc = byte_swap(comb); |
981 | } |
982 | |
983 | /* |
984 | Update the pointer to the remaining bytes to process. |
985 | */ |
986 | buf = (unsigned char const *)words; |
987 | } |
988 | |
989 | #endif /* W */ |
990 | |
991 | /* Complete the computation of the CRC on any remaining bytes. */ |
992 | while (len >= 8) { |
993 | len -= 8; |
994 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
995 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
996 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
997 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
998 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
999 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1000 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1001 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1002 | } |
1003 | while (len) { |
1004 | len--; |
1005 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1006 | } |
1007 | |
1008 | /* Return the CRC, post-conditioned. */ |
1009 | return crc ^ 0xffffffff; |
1010 | } |
1011 | |
1012 | #endif |
1013 | |
1014 | /* ========================================================================= */ |
1015 | unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf, |
1016 | uInt len) { |
1017 | return crc32_z(crc, buf, len); |
1018 | } |
1019 | |
1020 | /* ========================================================================= */ |
1021 | uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) { |
1022 | #ifdef DYNAMIC_CRC_TABLE |
1023 | once(&made, make_crc_table); |
1024 | #endif /* DYNAMIC_CRC_TABLE */ |
1025 | return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff); |
1026 | } |
1027 | |
1028 | /* ========================================================================= */ |
1029 | uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) { |
1030 | return crc32_combine64(crc1, crc2, (z_off64_t)len2); |
1031 | } |
1032 | |
1033 | /* ========================================================================= */ |
1034 | uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) { |
1035 | #ifdef DYNAMIC_CRC_TABLE |
1036 | once(&made, make_crc_table); |
1037 | #endif /* DYNAMIC_CRC_TABLE */ |
1038 | return x2nmodp(len2, 3); |
1039 | } |
1040 | |
1041 | /* ========================================================================= */ |
1042 | uLong ZEXPORT crc32_combine_gen(z_off_t len2) { |
1043 | return crc32_combine_gen64((z_off64_t)len2); |
1044 | } |
1045 | |
1046 | /* ========================================================================= */ |
1047 | uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) { |
1048 | return multmodp(op, crc1) ^ (crc2 & 0xffffffff); |
1049 | } |
1050 | |