1/* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2022 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 *
5 * This interleaved implementation of a CRC makes use of pipelined multiple
6 * arithmetic-logic units, commonly found in modern CPU cores. It is due to
7 * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
8 */
9
10/* @(#) $Id$ */
11
12/*
13 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
14 protection on the static variables used to control the first-use generation
15 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
16 first call get_crc_table() to initialize the tables before allowing more than
17 one thread to use crc32().
18
19 MAKECRCH can be #defined to write out crc32.h. A main() routine is also
20 produced, so that this one source file can be compiled to an executable.
21 */
22
23#ifdef MAKECRCH
24# include <stdio.h>
25# ifndef DYNAMIC_CRC_TABLE
26# define DYNAMIC_CRC_TABLE
27# endif /* !DYNAMIC_CRC_TABLE */
28#endif /* MAKECRCH */
29
30#include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
31
32 /*
33 A CRC of a message is computed on N braids of words in the message, where
34 each word consists of W bytes (4 or 8). If N is 3, for example, then three
35 running sparse CRCs are calculated respectively on each braid, at these
36 indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
37 This is done starting at a word boundary, and continues until as many blocks
38 of N * W bytes as are available have been processed. The results are combined
39 into a single CRC at the end. For this code, N must be in the range 1..6 and
40 W must be 4 or 8. The upper limit on N can be increased if desired by adding
41 more #if blocks, extending the patterns apparent in the code. In addition,
42 crc32.h would need to be regenerated, if the maximum N value is increased.
43
44 N and W are chosen empirically by benchmarking the execution time on a given
45 processor. The choices for N and W below were based on testing on Intel Kaby
46 Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
47 Octeon II processors. The Intel, AMD, and ARM processors were all fastest
48 with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
49 They were all tested with either gcc or clang, all using the -O3 optimization
50 level. Your mileage may vary.
51 */
52
53/* Define N */
54#ifdef Z_TESTN
55# define N Z_TESTN
56#else
57# define N 5
58#endif
59#if N < 1 || N > 6
60# error N must be in 1..6
61#endif
62
63/*
64 z_crc_t must be at least 32 bits. z_word_t must be at least as long as
65 z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
66 that bytes are eight bits.
67 */
68
69/*
70 Define W and the associated z_word_t type. If W is not defined, then a
71 braided calculation is not used, and the associated tables and code are not
72 compiled.
73 */
74#ifdef Z_TESTW
75# if Z_TESTW-1 != -1
76# define W Z_TESTW
77# endif
78#else
79# ifdef MAKECRCH
80# define W 8 /* required for MAKECRCH */
81# else
82# if defined(__x86_64__) || defined(__aarch64__)
83# define W 8
84# else
85# define W 4
86# endif
87# endif
88#endif
89#ifdef W
90# if W == 8 && defined(Z_U8)
91 typedef Z_U8 z_word_t;
92# elif defined(Z_U4)
93# undef W
94# define W 4
95 typedef Z_U4 z_word_t;
96# else
97# undef W
98# endif
99#endif
100
101/* If available, use the ARM processor CRC32 instruction. */
102#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
103# define ARMCRC32
104#endif
105
106#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
107/*
108 Swap the bytes in a z_word_t to convert between little and big endian. Any
109 self-respecting compiler will optimize this to a single machine byte-swap
110 instruction, if one is available. This assumes that word_t is either 32 bits
111 or 64 bits.
112 */
113local z_word_t byte_swap(z_word_t word) {
114# if W == 8
115 return
116 (word & 0xff00000000000000) >> 56 |
117 (word & 0xff000000000000) >> 40 |
118 (word & 0xff0000000000) >> 24 |
119 (word & 0xff00000000) >> 8 |
120 (word & 0xff000000) << 8 |
121 (word & 0xff0000) << 24 |
122 (word & 0xff00) << 40 |
123 (word & 0xff) << 56;
124# else /* W == 4 */
125 return
126 (word & 0xff000000) >> 24 |
127 (word & 0xff0000) >> 8 |
128 (word & 0xff00) << 8 |
129 (word & 0xff) << 24;
130# endif
131}
132#endif
133
134#ifdef DYNAMIC_CRC_TABLE
135/* =========================================================================
136 * Table of powers of x for combining CRC-32s, filled in by make_crc_table()
137 * below.
138 */
139 local z_crc_t FAR x2n_table[32];
140#else
141/* =========================================================================
142 * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
143 * of x for combining CRC-32s, all made by make_crc_table().
144 */
145# include "crc32.h"
146#endif
147
148/* CRC polynomial. */
149#define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
150
151/*
152 Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
153 reflected. For speed, this requires that a not be zero.
154 */
155local z_crc_t multmodp(z_crc_t a, z_crc_t b) {
156 z_crc_t m, p;
157
158 m = (z_crc_t)1 << 31;
159 p = 0;
160 for (;;) {
161 if (a & m) {
162 p ^= b;
163 if ((a & (m - 1)) == 0)
164 break;
165 }
166 m >>= 1;
167 b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
168 }
169 return p;
170}
171
172/*
173 Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
174 initialized.
175 */
176local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
177 z_crc_t p;
178
179 p = (z_crc_t)1 << 31; /* x^0 == 1 */
180 while (n) {
181 if (n & 1)
182 p = multmodp(x2n_table[k & 31], p);
183 n >>= 1;
184 k++;
185 }
186 return p;
187}
188
189#ifdef DYNAMIC_CRC_TABLE
190/* =========================================================================
191 * Build the tables for byte-wise and braided CRC-32 calculations, and a table
192 * of powers of x for combining CRC-32s.
193 */
194local z_crc_t FAR crc_table[256];
195#ifdef W
196 local z_word_t FAR crc_big_table[256];
197 local z_crc_t FAR crc_braid_table[W][256];
198 local z_word_t FAR crc_braid_big_table[W][256];
199 local void braid(z_crc_t [][256], z_word_t [][256], int, int);
200#endif
201#ifdef MAKECRCH
202 local void write_table(FILE *, const z_crc_t FAR *, int);
203 local void write_table32hi(FILE *, const z_word_t FAR *, int);
204 local void write_table64(FILE *, const z_word_t FAR *, int);
205#endif /* MAKECRCH */
206
207/*
208 Define a once() function depending on the availability of atomics. If this is
209 compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
210 multiple threads, and if atomics are not available, then get_crc_table() must
211 be called to initialize the tables and must return before any threads are
212 allowed to compute or combine CRCs.
213 */
214
215/* Definition of once functionality. */
216typedef struct once_s once_t;
217
218/* Check for the availability of atomics. */
219#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
220 !defined(__STDC_NO_ATOMICS__)
221
222#include <stdatomic.h>
223
224/* Structure for once(), which must be initialized with ONCE_INIT. */
225struct once_s {
226 atomic_flag begun;
227 atomic_int done;
228};
229#define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
230
231/*
232 Run the provided init() function exactly once, even if multiple threads
233 invoke once() at the same time. The state must be a once_t initialized with
234 ONCE_INIT.
235 */
236local void once(once_t *state, void (*init)(void)) {
237 if (!atomic_load(&state->done)) {
238 if (atomic_flag_test_and_set(&state->begun))
239 while (!atomic_load(&state->done))
240 ;
241 else {
242 init();
243 atomic_store(&state->done, 1);
244 }
245 }
246}
247
248#else /* no atomics */
249
250/* Structure for once(), which must be initialized with ONCE_INIT. */
251struct once_s {
252 volatile int begun;
253 volatile int done;
254};
255#define ONCE_INIT {0, 0}
256
257/* Test and set. Alas, not atomic, but tries to minimize the period of
258 vulnerability. */
259local int test_and_set(int volatile *flag) {
260 int was;
261
262 was = *flag;
263 *flag = 1;
264 return was;
265}
266
267/* Run the provided init() function once. This is not thread-safe. */
268local void once(once_t *state, void (*init)(void)) {
269 if (!state->done) {
270 if (test_and_set(&state->begun))
271 while (!state->done)
272 ;
273 else {
274 init();
275 state->done = 1;
276 }
277 }
278}
279
280#endif
281
282/* State for once(). */
283local once_t made = ONCE_INIT;
284
285/*
286 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
287 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
288
289 Polynomials over GF(2) are represented in binary, one bit per coefficient,
290 with the lowest powers in the most significant bit. Then adding polynomials
291 is just exclusive-or, and multiplying a polynomial by x is a right shift by
292 one. If we call the above polynomial p, and represent a byte as the
293 polynomial q, also with the lowest power in the most significant bit (so the
294 byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
295 where a mod b means the remainder after dividing a by b.
296
297 This calculation is done using the shift-register method of multiplying and
298 taking the remainder. The register is initialized to zero, and for each
299 incoming bit, x^32 is added mod p to the register if the bit is a one (where
300 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
301 (which is shifting right by one and adding x^32 mod p if the bit shifted out
302 is a one). We start with the highest power (least significant bit) of q and
303 repeat for all eight bits of q.
304
305 The table is simply the CRC of all possible eight bit values. This is all the
306 information needed to generate CRCs on data a byte at a time for all
307 combinations of CRC register values and incoming bytes.
308 */
309
310local void make_crc_table(void) {
311 unsigned i, j, n;
312 z_crc_t p;
313
314 /* initialize the CRC of bytes tables */
315 for (i = 0; i < 256; i++) {
316 p = i;
317 for (j = 0; j < 8; j++)
318 p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
319 crc_table[i] = p;
320#ifdef W
321 crc_big_table[i] = byte_swap(p);
322#endif
323 }
324
325 /* initialize the x^2^n mod p(x) table */
326 p = (z_crc_t)1 << 30; /* x^1 */
327 x2n_table[0] = p;
328 for (n = 1; n < 32; n++)
329 x2n_table[n] = p = multmodp(p, p);
330
331#ifdef W
332 /* initialize the braiding tables -- needs x2n_table[] */
333 braid(crc_braid_table, crc_braid_big_table, N, W);
334#endif
335
336#ifdef MAKECRCH
337 {
338 /*
339 The crc32.h header file contains tables for both 32-bit and 64-bit
340 z_word_t's, and so requires a 64-bit type be available. In that case,
341 z_word_t must be defined to be 64-bits. This code then also generates
342 and writes out the tables for the case that z_word_t is 32 bits.
343 */
344#if !defined(W) || W != 8
345# error Need a 64-bit integer type in order to generate crc32.h.
346#endif
347 FILE *out;
348 int k, n;
349 z_crc_t ltl[8][256];
350 z_word_t big[8][256];
351
352 out = fopen("crc32.h", "w");
353 if (out == NULL) return;
354
355 /* write out little-endian CRC table to crc32.h */
356 fprintf(out,
357 "/* crc32.h -- tables for rapid CRC calculation\n"
358 " * Generated automatically by crc32.c\n */\n"
359 "\n"
360 "local const z_crc_t FAR crc_table[] = {\n"
361 " ");
362 write_table(out, crc_table, 256);
363 fprintf(out,
364 "};\n");
365
366 /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
367 fprintf(out,
368 "\n"
369 "#ifdef W\n"
370 "\n"
371 "#if W == 8\n"
372 "\n"
373 "local const z_word_t FAR crc_big_table[] = {\n"
374 " ");
375 write_table64(out, crc_big_table, 256);
376 fprintf(out,
377 "};\n");
378
379 /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
380 fprintf(out,
381 "\n"
382 "#else /* W == 4 */\n"
383 "\n"
384 "local const z_word_t FAR crc_big_table[] = {\n"
385 " ");
386 write_table32hi(out, crc_big_table, 256);
387 fprintf(out,
388 "};\n"
389 "\n"
390 "#endif\n");
391
392 /* write out braid tables for each value of N */
393 for (n = 1; n <= 6; n++) {
394 fprintf(out,
395 "\n"
396 "#if N == %d\n", n);
397
398 /* compute braid tables for this N and 64-bit word_t */
399 braid(ltl, big, n, 8);
400
401 /* write out braid tables for 64-bit z_word_t to crc32.h */
402 fprintf(out,
403 "\n"
404 "#if W == 8\n"
405 "\n"
406 "local const z_crc_t FAR crc_braid_table[][256] = {\n");
407 for (k = 0; k < 8; k++) {
408 fprintf(out, " {");
409 write_table(out, ltl[k], 256);
410 fprintf(out, "}%s", k < 7 ? ",\n" : "");
411 }
412 fprintf(out,
413 "};\n"
414 "\n"
415 "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
416 for (k = 0; k < 8; k++) {
417 fprintf(out, " {");
418 write_table64(out, big[k], 256);
419 fprintf(out, "}%s", k < 7 ? ",\n" : "");
420 }
421 fprintf(out,
422 "};\n");
423
424 /* compute braid tables for this N and 32-bit word_t */
425 braid(ltl, big, n, 4);
426
427 /* write out braid tables for 32-bit z_word_t to crc32.h */
428 fprintf(out,
429 "\n"
430 "#else /* W == 4 */\n"
431 "\n"
432 "local const z_crc_t FAR crc_braid_table[][256] = {\n");
433 for (k = 0; k < 4; k++) {
434 fprintf(out, " {");
435 write_table(out, ltl[k], 256);
436 fprintf(out, "}%s", k < 3 ? ",\n" : "");
437 }
438 fprintf(out,
439 "};\n"
440 "\n"
441 "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
442 for (k = 0; k < 4; k++) {
443 fprintf(out, " {");
444 write_table32hi(out, big[k], 256);
445 fprintf(out, "}%s", k < 3 ? ",\n" : "");
446 }
447 fprintf(out,
448 "};\n"
449 "\n"
450 "#endif\n"
451 "\n"
452 "#endif\n");
453 }
454 fprintf(out,
455 "\n"
456 "#endif\n");
457
458 /* write out zeros operator table to crc32.h */
459 fprintf(out,
460 "\n"
461 "local const z_crc_t FAR x2n_table[] = {\n"
462 " ");
463 write_table(out, x2n_table, 32);
464 fprintf(out,
465 "};\n");
466 fclose(out);
467 }
468#endif /* MAKECRCH */
469}
470
471#ifdef MAKECRCH
472
473/*
474 Write the 32-bit values in table[0..k-1] to out, five per line in
475 hexadecimal separated by commas.
476 */
477local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
478 int n;
479
480 for (n = 0; n < k; n++)
481 fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
482 (unsigned long)(table[n]),
483 n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
484}
485
486/*
487 Write the high 32-bits of each value in table[0..k-1] to out, five per line
488 in hexadecimal separated by commas.
489 */
490local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
491 int n;
492
493 for (n = 0; n < k; n++)
494 fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
495 (unsigned long)(table[n] >> 32),
496 n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
497}
498
499/*
500 Write the 64-bit values in table[0..k-1] to out, three per line in
501 hexadecimal separated by commas. This assumes that if there is a 64-bit
502 type, then there is also a long long integer type, and it is at least 64
503 bits. If not, then the type cast and format string can be adjusted
504 accordingly.
505 */
506local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
507 int n;
508
509 for (n = 0; n < k; n++)
510 fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ",
511 (unsigned long long)(table[n]),
512 n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
513}
514
515/* Actually do the deed. */
516int main(void) {
517 make_crc_table();
518 return 0;
519}
520
521#endif /* MAKECRCH */
522
523#ifdef W
524/*
525 Generate the little and big-endian braid tables for the given n and z_word_t
526 size w. Each array must have room for w blocks of 256 elements.
527 */
528local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
529 int k;
530 z_crc_t i, p, q;
531 for (k = 0; k < w; k++) {
532 p = x2nmodp((n * w + 3 - k) << 3, 0);
533 ltl[k][0] = 0;
534 big[w - 1 - k][0] = 0;
535 for (i = 1; i < 256; i++) {
536 ltl[k][i] = q = multmodp(i << 24, p);
537 big[w - 1 - k][i] = byte_swap(q);
538 }
539 }
540}
541#endif
542
543#endif /* DYNAMIC_CRC_TABLE */
544
545/* =========================================================================
546 * This function can be used by asm versions of crc32(), and to force the
547 * generation of the CRC tables in a threaded application.
548 */
549const z_crc_t FAR * ZEXPORT get_crc_table(void) {
550#ifdef DYNAMIC_CRC_TABLE
551 once(&made, make_crc_table);
552#endif /* DYNAMIC_CRC_TABLE */
553 return (const z_crc_t FAR *)crc_table;
554}
555
556/* =========================================================================
557 * Use ARM machine instructions if available. This will compute the CRC about
558 * ten times faster than the braided calculation. This code does not check for
559 * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
560 * only be defined if the compilation specifies an ARM processor architecture
561 * that has the instructions. For example, compiling with -march=armv8.1-a or
562 * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
563 * instructions.
564 */
565#ifdef ARMCRC32
566
567/*
568 Constants empirically determined to maximize speed. These values are from
569 measurements on a Cortex-A57. Your mileage may vary.
570 */
571#define Z_BATCH 3990 /* number of words in a batch */
572#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
573#define Z_BATCH_MIN 800 /* fewest words in a final batch */
574
575unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
576 z_size_t len) {
577 z_crc_t val;
578 z_word_t crc1, crc2;
579 const z_word_t *word;
580 z_word_t val0, val1, val2;
581 z_size_t last, last2, i;
582 z_size_t num;
583
584 /* Return initial CRC, if requested. */
585 if (buf == Z_NULL) return 0;
586
587#ifdef DYNAMIC_CRC_TABLE
588 once(&made, make_crc_table);
589#endif /* DYNAMIC_CRC_TABLE */
590
591 /* Pre-condition the CRC */
592 crc = (~crc) & 0xffffffff;
593
594 /* Compute the CRC up to a word boundary. */
595 while (len && ((z_size_t)buf & 7) != 0) {
596 len--;
597 val = *buf++;
598 __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
599 }
600
601 /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
602 word = (z_word_t const *)buf;
603 num = len >> 3;
604 len &= 7;
605
606 /* Do three interleaved CRCs to realize the throughput of one crc32x
607 instruction per cycle. Each CRC is calculated on Z_BATCH words. The
608 three CRCs are combined into a single CRC after each set of batches. */
609 while (num >= 3 * Z_BATCH) {
610 crc1 = 0;
611 crc2 = 0;
612 for (i = 0; i < Z_BATCH; i++) {
613 val0 = word[i];
614 val1 = word[i + Z_BATCH];
615 val2 = word[i + 2 * Z_BATCH];
616 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
617 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
618 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
619 }
620 word += 3 * Z_BATCH;
621 num -= 3 * Z_BATCH;
622 crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
623 crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
624 }
625
626 /* Do one last smaller batch with the remaining words, if there are enough
627 to pay for the combination of CRCs. */
628 last = num / 3;
629 if (last >= Z_BATCH_MIN) {
630 last2 = last << 1;
631 crc1 = 0;
632 crc2 = 0;
633 for (i = 0; i < last; i++) {
634 val0 = word[i];
635 val1 = word[i + last];
636 val2 = word[i + last2];
637 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
638 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
639 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
640 }
641 word += 3 * last;
642 num -= 3 * last;
643 val = x2nmodp(last, 6);
644 crc = multmodp(val, crc) ^ crc1;
645 crc = multmodp(val, crc) ^ crc2;
646 }
647
648 /* Compute the CRC on any remaining words. */
649 for (i = 0; i < num; i++) {
650 val0 = word[i];
651 __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
652 }
653 word += num;
654
655 /* Complete the CRC on any remaining bytes. */
656 buf = (const unsigned char FAR *)word;
657 while (len) {
658 len--;
659 val = *buf++;
660 __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
661 }
662
663 /* Return the CRC, post-conditioned. */
664 return crc ^ 0xffffffff;
665}
666
667#else
668
669#ifdef W
670
671/*
672 Return the CRC of the W bytes in the word_t data, taking the
673 least-significant byte of the word as the first byte of data, without any pre
674 or post conditioning. This is used to combine the CRCs of each braid.
675 */
676local z_crc_t crc_word(z_word_t data) {
677 int k;
678 for (k = 0; k < W; k++)
679 data = (data >> 8) ^ crc_table[data & 0xff];
680 return (z_crc_t)data;
681}
682
683local z_word_t crc_word_big(z_word_t data) {
684 int k;
685 for (k = 0; k < W; k++)
686 data = (data << 8) ^
687 crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
688 return data;
689}
690
691#endif
692
693/* ========================================================================= */
694unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
695 z_size_t len) {
696 /* Return initial CRC, if requested. */
697 if (buf == Z_NULL) return 0;
698
699#ifdef DYNAMIC_CRC_TABLE
700 once(&made, make_crc_table);
701#endif /* DYNAMIC_CRC_TABLE */
702
703 /* Pre-condition the CRC */
704 crc = (~crc) & 0xffffffff;
705
706#ifdef W
707
708 /* If provided enough bytes, do a braided CRC calculation. */
709 if (len >= N * W + W - 1) {
710 z_size_t blks;
711 z_word_t const *words;
712 unsigned endian;
713 int k;
714
715 /* Compute the CRC up to a z_word_t boundary. */
716 while (len && ((z_size_t)buf & (W - 1)) != 0) {
717 len--;
718 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
719 }
720
721 /* Compute the CRC on as many N z_word_t blocks as are available. */
722 blks = len / (N * W);
723 len -= blks * N * W;
724 words = (z_word_t const *)buf;
725
726 /* Do endian check at execution time instead of compile time, since ARM
727 processors can change the endianness at execution time. If the
728 compiler knows what the endianness will be, it can optimize out the
729 check and the unused branch. */
730 endian = 1;
731 if (*(unsigned char *)&endian) {
732 /* Little endian. */
733
734 z_crc_t crc0;
735 z_word_t word0;
736#if N > 1
737 z_crc_t crc1;
738 z_word_t word1;
739#if N > 2
740 z_crc_t crc2;
741 z_word_t word2;
742#if N > 3
743 z_crc_t crc3;
744 z_word_t word3;
745#if N > 4
746 z_crc_t crc4;
747 z_word_t word4;
748#if N > 5
749 z_crc_t crc5;
750 z_word_t word5;
751#endif
752#endif
753#endif
754#endif
755#endif
756
757 /* Initialize the CRC for each braid. */
758 crc0 = crc;
759#if N > 1
760 crc1 = 0;
761#if N > 2
762 crc2 = 0;
763#if N > 3
764 crc3 = 0;
765#if N > 4
766 crc4 = 0;
767#if N > 5
768 crc5 = 0;
769#endif
770#endif
771#endif
772#endif
773#endif
774
775 /*
776 Process the first blks-1 blocks, computing the CRCs on each braid
777 independently.
778 */
779 while (--blks) {
780 /* Load the word for each braid into registers. */
781 word0 = crc0 ^ words[0];
782#if N > 1
783 word1 = crc1 ^ words[1];
784#if N > 2
785 word2 = crc2 ^ words[2];
786#if N > 3
787 word3 = crc3 ^ words[3];
788#if N > 4
789 word4 = crc4 ^ words[4];
790#if N > 5
791 word5 = crc5 ^ words[5];
792#endif
793#endif
794#endif
795#endif
796#endif
797 words += N;
798
799 /* Compute and update the CRC for each word. The loop should
800 get unrolled. */
801 crc0 = crc_braid_table[0][word0 & 0xff];
802#if N > 1
803 crc1 = crc_braid_table[0][word1 & 0xff];
804#if N > 2
805 crc2 = crc_braid_table[0][word2 & 0xff];
806#if N > 3
807 crc3 = crc_braid_table[0][word3 & 0xff];
808#if N > 4
809 crc4 = crc_braid_table[0][word4 & 0xff];
810#if N > 5
811 crc5 = crc_braid_table[0][word5 & 0xff];
812#endif
813#endif
814#endif
815#endif
816#endif
817 for (k = 1; k < W; k++) {
818 crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
819#if N > 1
820 crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
821#if N > 2
822 crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
823#if N > 3
824 crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
825#if N > 4
826 crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
827#if N > 5
828 crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
829#endif
830#endif
831#endif
832#endif
833#endif
834 }
835 }
836
837 /*
838 Process the last block, combining the CRCs of the N braids at the
839 same time.
840 */
841 crc = crc_word(crc0 ^ words[0]);
842#if N > 1
843 crc = crc_word(crc1 ^ words[1] ^ crc);
844#if N > 2
845 crc = crc_word(crc2 ^ words[2] ^ crc);
846#if N > 3
847 crc = crc_word(crc3 ^ words[3] ^ crc);
848#if N > 4
849 crc = crc_word(crc4 ^ words[4] ^ crc);
850#if N > 5
851 crc = crc_word(crc5 ^ words[5] ^ crc);
852#endif
853#endif
854#endif
855#endif
856#endif
857 words += N;
858 }
859 else {
860 /* Big endian. */
861
862 z_word_t crc0, word0, comb;
863#if N > 1
864 z_word_t crc1, word1;
865#if N > 2
866 z_word_t crc2, word2;
867#if N > 3
868 z_word_t crc3, word3;
869#if N > 4
870 z_word_t crc4, word4;
871#if N > 5
872 z_word_t crc5, word5;
873#endif
874#endif
875#endif
876#endif
877#endif
878
879 /* Initialize the CRC for each braid. */
880 crc0 = byte_swap(crc);
881#if N > 1
882 crc1 = 0;
883#if N > 2
884 crc2 = 0;
885#if N > 3
886 crc3 = 0;
887#if N > 4
888 crc4 = 0;
889#if N > 5
890 crc5 = 0;
891#endif
892#endif
893#endif
894#endif
895#endif
896
897 /*
898 Process the first blks-1 blocks, computing the CRCs on each braid
899 independently.
900 */
901 while (--blks) {
902 /* Load the word for each braid into registers. */
903 word0 = crc0 ^ words[0];
904#if N > 1
905 word1 = crc1 ^ words[1];
906#if N > 2
907 word2 = crc2 ^ words[2];
908#if N > 3
909 word3 = crc3 ^ words[3];
910#if N > 4
911 word4 = crc4 ^ words[4];
912#if N > 5
913 word5 = crc5 ^ words[5];
914#endif
915#endif
916#endif
917#endif
918#endif
919 words += N;
920
921 /* Compute and update the CRC for each word. The loop should
922 get unrolled. */
923 crc0 = crc_braid_big_table[0][word0 & 0xff];
924#if N > 1
925 crc1 = crc_braid_big_table[0][word1 & 0xff];
926#if N > 2
927 crc2 = crc_braid_big_table[0][word2 & 0xff];
928#if N > 3
929 crc3 = crc_braid_big_table[0][word3 & 0xff];
930#if N > 4
931 crc4 = crc_braid_big_table[0][word4 & 0xff];
932#if N > 5
933 crc5 = crc_braid_big_table[0][word5 & 0xff];
934#endif
935#endif
936#endif
937#endif
938#endif
939 for (k = 1; k < W; k++) {
940 crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
941#if N > 1
942 crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
943#if N > 2
944 crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
945#if N > 3
946 crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
947#if N > 4
948 crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
949#if N > 5
950 crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
951#endif
952#endif
953#endif
954#endif
955#endif
956 }
957 }
958
959 /*
960 Process the last block, combining the CRCs of the N braids at the
961 same time.
962 */
963 comb = crc_word_big(crc0 ^ words[0]);
964#if N > 1
965 comb = crc_word_big(crc1 ^ words[1] ^ comb);
966#if N > 2
967 comb = crc_word_big(crc2 ^ words[2] ^ comb);
968#if N > 3
969 comb = crc_word_big(crc3 ^ words[3] ^ comb);
970#if N > 4
971 comb = crc_word_big(crc4 ^ words[4] ^ comb);
972#if N > 5
973 comb = crc_word_big(crc5 ^ words[5] ^ comb);
974#endif
975#endif
976#endif
977#endif
978#endif
979 words += N;
980 crc = byte_swap(comb);
981 }
982
983 /*
984 Update the pointer to the remaining bytes to process.
985 */
986 buf = (unsigned char const *)words;
987 }
988
989#endif /* W */
990
991 /* Complete the computation of the CRC on any remaining bytes. */
992 while (len >= 8) {
993 len -= 8;
994 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
995 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
996 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
997 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
998 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
999 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1000 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1001 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1002 }
1003 while (len) {
1004 len--;
1005 crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1006 }
1007
1008 /* Return the CRC, post-conditioned. */
1009 return crc ^ 0xffffffff;
1010}
1011
1012#endif
1013
1014/* ========================================================================= */
1015unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
1016 uInt len) {
1017 return crc32_z(crc, buf, len);
1018}
1019
1020/* ========================================================================= */
1021uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) {
1022#ifdef DYNAMIC_CRC_TABLE
1023 once(&made, make_crc_table);
1024#endif /* DYNAMIC_CRC_TABLE */
1025 return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
1026}
1027
1028/* ========================================================================= */
1029uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) {
1030 return crc32_combine64(crc1, crc2, (z_off64_t)len2);
1031}
1032
1033/* ========================================================================= */
1034uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) {
1035#ifdef DYNAMIC_CRC_TABLE
1036 once(&made, make_crc_table);
1037#endif /* DYNAMIC_CRC_TABLE */
1038 return x2nmodp(len2, 3);
1039}
1040
1041/* ========================================================================= */
1042uLong ZEXPORT crc32_combine_gen(z_off_t len2) {
1043 return crc32_combine_gen64((z_off64_t)len2);
1044}
1045
1046/* ========================================================================= */
1047uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) {
1048 return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
1049}
1050