1 | /* trees.c -- output deflated data using Huffman coding |
2 | * Copyright (C) 1995-2021 Jean-loup Gailly |
3 | * detect_data_type() function provided freely by Cosmin Truta, 2006 |
4 | * For conditions of distribution and use, see copyright notice in zlib.h |
5 | */ |
6 | |
7 | /* |
8 | * ALGORITHM |
9 | * |
10 | * The "deflation" process uses several Huffman trees. The more |
11 | * common source values are represented by shorter bit sequences. |
12 | * |
13 | * Each code tree is stored in a compressed form which is itself |
14 | * a Huffman encoding of the lengths of all the code strings (in |
15 | * ascending order by source values). The actual code strings are |
16 | * reconstructed from the lengths in the inflate process, as described |
17 | * in the deflate specification. |
18 | * |
19 | * REFERENCES |
20 | * |
21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
23 | * |
24 | * Storer, James A. |
25 | * Data Compression: Methods and Theory, pp. 49-50. |
26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
27 | * |
28 | * Sedgewick, R. |
29 | * Algorithms, p290. |
30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
31 | */ |
32 | |
33 | /* @(#) $Id$ */ |
34 | |
35 | /* #define GEN_TREES_H */ |
36 | |
37 | #include "deflate.h" |
38 | |
39 | #ifdef ZLIB_DEBUG |
40 | # include <ctype.h> |
41 | #endif |
42 | |
43 | /* =========================================================================== |
44 | * Constants |
45 | */ |
46 | |
47 | #define MAX_BL_BITS 7 |
48 | /* Bit length codes must not exceed MAX_BL_BITS bits */ |
49 | |
50 | #define END_BLOCK 256 |
51 | /* end of block literal code */ |
52 | |
53 | #define REP_3_6 16 |
54 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
55 | |
56 | #define REPZ_3_10 17 |
57 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
58 | |
59 | #define REPZ_11_138 18 |
60 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
61 | |
62 | local const int [LENGTH_CODES] /* extra bits for each length code */ |
63 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
64 | |
65 | local const int [D_CODES] /* extra bits for each distance code */ |
66 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
67 | |
68 | local const int [BL_CODES]/* extra bits for each bit length code */ |
69 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
70 | |
71 | local const uch bl_order[BL_CODES] |
72 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
73 | /* The lengths of the bit length codes are sent in order of decreasing |
74 | * probability, to avoid transmitting the lengths for unused bit length codes. |
75 | */ |
76 | |
77 | /* =========================================================================== |
78 | * Local data. These are initialized only once. |
79 | */ |
80 | |
81 | #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
82 | |
83 | #if defined(GEN_TREES_H) || !defined(STDC) |
84 | /* non ANSI compilers may not accept trees.h */ |
85 | |
86 | local ct_data static_ltree[L_CODES+2]; |
87 | /* The static literal tree. Since the bit lengths are imposed, there is no |
88 | * need for the L_CODES extra codes used during heap construction. However |
89 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
90 | * below). |
91 | */ |
92 | |
93 | local ct_data static_dtree[D_CODES]; |
94 | /* The static distance tree. (Actually a trivial tree since all codes use |
95 | * 5 bits.) |
96 | */ |
97 | |
98 | uch _dist_code[DIST_CODE_LEN]; |
99 | /* Distance codes. The first 256 values correspond to the distances |
100 | * 3 .. 258, the last 256 values correspond to the top 8 bits of |
101 | * the 15 bit distances. |
102 | */ |
103 | |
104 | uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
105 | /* length code for each normalized match length (0 == MIN_MATCH) */ |
106 | |
107 | local int base_length[LENGTH_CODES]; |
108 | /* First normalized length for each code (0 = MIN_MATCH) */ |
109 | |
110 | local int base_dist[D_CODES]; |
111 | /* First normalized distance for each code (0 = distance of 1) */ |
112 | |
113 | #else |
114 | # include "trees.h" |
115 | #endif /* GEN_TREES_H */ |
116 | |
117 | struct static_tree_desc_s { |
118 | const ct_data *static_tree; /* static tree or NULL */ |
119 | const intf *; /* extra bits for each code or NULL */ |
120 | int ; /* base index for extra_bits */ |
121 | int elems; /* max number of elements in the tree */ |
122 | int max_length; /* max bit length for the codes */ |
123 | }; |
124 | |
125 | #ifdef NO_INIT_GLOBAL_POINTERS |
126 | # define TCONST |
127 | #else |
128 | # define TCONST const |
129 | #endif |
130 | |
131 | local TCONST static_tree_desc static_l_desc = |
132 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
133 | |
134 | local TCONST static_tree_desc static_d_desc = |
135 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
136 | |
137 | local TCONST static_tree_desc static_bl_desc = |
138 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
139 | |
140 | /* =========================================================================== |
141 | * Output a short LSB first on the stream. |
142 | * IN assertion: there is enough room in pendingBuf. |
143 | */ |
144 | #define put_short(s, w) { \ |
145 | put_byte(s, (uch)((w) & 0xff)); \ |
146 | put_byte(s, (uch)((ush)(w) >> 8)); \ |
147 | } |
148 | |
149 | /* =========================================================================== |
150 | * Reverse the first len bits of a code, using straightforward code (a faster |
151 | * method would use a table) |
152 | * IN assertion: 1 <= len <= 15 |
153 | */ |
154 | local unsigned bi_reverse(unsigned code, int len) { |
155 | register unsigned res = 0; |
156 | do { |
157 | res |= code & 1; |
158 | code >>= 1, res <<= 1; |
159 | } while (--len > 0); |
160 | return res >> 1; |
161 | } |
162 | |
163 | /* =========================================================================== |
164 | * Flush the bit buffer, keeping at most 7 bits in it. |
165 | */ |
166 | local void bi_flush(deflate_state *s) { |
167 | if (s->bi_valid == 16) { |
168 | put_short(s, s->bi_buf); |
169 | s->bi_buf = 0; |
170 | s->bi_valid = 0; |
171 | } else if (s->bi_valid >= 8) { |
172 | put_byte(s, (Byte)s->bi_buf); |
173 | s->bi_buf >>= 8; |
174 | s->bi_valid -= 8; |
175 | } |
176 | } |
177 | |
178 | /* =========================================================================== |
179 | * Flush the bit buffer and align the output on a byte boundary |
180 | */ |
181 | local void bi_windup(deflate_state *s) { |
182 | if (s->bi_valid > 8) { |
183 | put_short(s, s->bi_buf); |
184 | } else if (s->bi_valid > 0) { |
185 | put_byte(s, (Byte)s->bi_buf); |
186 | } |
187 | s->bi_buf = 0; |
188 | s->bi_valid = 0; |
189 | #ifdef ZLIB_DEBUG |
190 | s->bits_sent = (s->bits_sent + 7) & ~7; |
191 | #endif |
192 | } |
193 | |
194 | /* =========================================================================== |
195 | * Generate the codes for a given tree and bit counts (which need not be |
196 | * optimal). |
197 | * IN assertion: the array bl_count contains the bit length statistics for |
198 | * the given tree and the field len is set for all tree elements. |
199 | * OUT assertion: the field code is set for all tree elements of non |
200 | * zero code length. |
201 | */ |
202 | local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) { |
203 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
204 | unsigned code = 0; /* running code value */ |
205 | int bits; /* bit index */ |
206 | int n; /* code index */ |
207 | |
208 | /* The distribution counts are first used to generate the code values |
209 | * without bit reversal. |
210 | */ |
211 | for (bits = 1; bits <= MAX_BITS; bits++) { |
212 | code = (code + bl_count[bits - 1]) << 1; |
213 | next_code[bits] = (ush)code; |
214 | } |
215 | /* Check that the bit counts in bl_count are consistent. The last code |
216 | * must be all ones. |
217 | */ |
218 | Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, |
219 | "inconsistent bit counts" ); |
220 | Tracev((stderr,"\ngen_codes: max_code %d " , max_code)); |
221 | |
222 | for (n = 0; n <= max_code; n++) { |
223 | int len = tree[n].Len; |
224 | if (len == 0) continue; |
225 | /* Now reverse the bits */ |
226 | tree[n].Code = (ush)bi_reverse(next_code[len]++, len); |
227 | |
228 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) " , |
229 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); |
230 | } |
231 | } |
232 | |
233 | #ifdef GEN_TREES_H |
234 | local void gen_trees_header(void); |
235 | #endif |
236 | |
237 | #ifndef ZLIB_DEBUG |
238 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
239 | /* Send a code of the given tree. c and tree must not have side effects */ |
240 | |
241 | #else /* !ZLIB_DEBUG */ |
242 | # define send_code(s, c, tree) \ |
243 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
244 | send_bits(s, tree[c].Code, tree[c].Len); } |
245 | #endif |
246 | |
247 | /* =========================================================================== |
248 | * Send a value on a given number of bits. |
249 | * IN assertion: length <= 16 and value fits in length bits. |
250 | */ |
251 | #ifdef ZLIB_DEBUG |
252 | local void send_bits(deflate_state *s, int value, int length) { |
253 | Tracevv((stderr," l %2d v %4x " , length, value)); |
254 | Assert(length > 0 && length <= 15, "invalid length" ); |
255 | s->bits_sent += (ulg)length; |
256 | |
257 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
258 | * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid)) |
259 | * unused bits in value. |
260 | */ |
261 | if (s->bi_valid > (int)Buf_size - length) { |
262 | s->bi_buf |= (ush)value << s->bi_valid; |
263 | put_short(s, s->bi_buf); |
264 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
265 | s->bi_valid += length - Buf_size; |
266 | } else { |
267 | s->bi_buf |= (ush)value << s->bi_valid; |
268 | s->bi_valid += length; |
269 | } |
270 | } |
271 | #else /* !ZLIB_DEBUG */ |
272 | |
273 | #define send_bits(s, value, length) \ |
274 | { int len = length;\ |
275 | if (s->bi_valid > (int)Buf_size - len) {\ |
276 | int val = (int)value;\ |
277 | s->bi_buf |= (ush)val << s->bi_valid;\ |
278 | put_short(s, s->bi_buf);\ |
279 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
280 | s->bi_valid += len - Buf_size;\ |
281 | } else {\ |
282 | s->bi_buf |= (ush)(value) << s->bi_valid;\ |
283 | s->bi_valid += len;\ |
284 | }\ |
285 | } |
286 | #endif /* ZLIB_DEBUG */ |
287 | |
288 | |
289 | /* the arguments must not have side effects */ |
290 | |
291 | /* =========================================================================== |
292 | * Initialize the various 'constant' tables. |
293 | */ |
294 | local void tr_static_init(void) { |
295 | #if defined(GEN_TREES_H) || !defined(STDC) |
296 | static int static_init_done = 0; |
297 | int n; /* iterates over tree elements */ |
298 | int bits; /* bit counter */ |
299 | int length; /* length value */ |
300 | int code; /* code value */ |
301 | int dist; /* distance index */ |
302 | ush bl_count[MAX_BITS+1]; |
303 | /* number of codes at each bit length for an optimal tree */ |
304 | |
305 | if (static_init_done) return; |
306 | |
307 | /* For some embedded targets, global variables are not initialized: */ |
308 | #ifdef NO_INIT_GLOBAL_POINTERS |
309 | static_l_desc.static_tree = static_ltree; |
310 | static_l_desc.extra_bits = extra_lbits; |
311 | static_d_desc.static_tree = static_dtree; |
312 | static_d_desc.extra_bits = extra_dbits; |
313 | static_bl_desc.extra_bits = extra_blbits; |
314 | #endif |
315 | |
316 | /* Initialize the mapping length (0..255) -> length code (0..28) */ |
317 | length = 0; |
318 | for (code = 0; code < LENGTH_CODES-1; code++) { |
319 | base_length[code] = length; |
320 | for (n = 0; n < (1 << extra_lbits[code]); n++) { |
321 | _length_code[length++] = (uch)code; |
322 | } |
323 | } |
324 | Assert (length == 256, "tr_static_init: length != 256" ); |
325 | /* Note that the length 255 (match length 258) can be represented |
326 | * in two different ways: code 284 + 5 bits or code 285, so we |
327 | * overwrite length_code[255] to use the best encoding: |
328 | */ |
329 | _length_code[length - 1] = (uch)code; |
330 | |
331 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
332 | dist = 0; |
333 | for (code = 0 ; code < 16; code++) { |
334 | base_dist[code] = dist; |
335 | for (n = 0; n < (1 << extra_dbits[code]); n++) { |
336 | _dist_code[dist++] = (uch)code; |
337 | } |
338 | } |
339 | Assert (dist == 256, "tr_static_init: dist != 256" ); |
340 | dist >>= 7; /* from now on, all distances are divided by 128 */ |
341 | for ( ; code < D_CODES; code++) { |
342 | base_dist[code] = dist << 7; |
343 | for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { |
344 | _dist_code[256 + dist++] = (uch)code; |
345 | } |
346 | } |
347 | Assert (dist == 256, "tr_static_init: 256 + dist != 512" ); |
348 | |
349 | /* Construct the codes of the static literal tree */ |
350 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
351 | n = 0; |
352 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
353 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
354 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
355 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
356 | /* Codes 286 and 287 do not exist, but we must include them in the |
357 | * tree construction to get a canonical Huffman tree (longest code |
358 | * all ones) |
359 | */ |
360 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
361 | |
362 | /* The static distance tree is trivial: */ |
363 | for (n = 0; n < D_CODES; n++) { |
364 | static_dtree[n].Len = 5; |
365 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
366 | } |
367 | static_init_done = 1; |
368 | |
369 | # ifdef GEN_TREES_H |
370 | gen_trees_header(); |
371 | # endif |
372 | #endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
373 | } |
374 | |
375 | /* =========================================================================== |
376 | * Generate the file trees.h describing the static trees. |
377 | */ |
378 | #ifdef GEN_TREES_H |
379 | # ifndef ZLIB_DEBUG |
380 | # include <stdio.h> |
381 | # endif |
382 | |
383 | # define SEPARATOR(i, last, width) \ |
384 | ((i) == (last)? "\n};\n\n" : \ |
385 | ((i) % (width) == (width) - 1 ? ",\n" : ", ")) |
386 | |
387 | void gen_trees_header(void) { |
388 | FILE *header = fopen("trees.h" , "w" ); |
389 | int i; |
390 | |
391 | Assert (header != NULL, "Can't open trees.h" ); |
392 | fprintf(header, |
393 | "/* header created automatically with -DGEN_TREES_H */\n\n" ); |
394 | |
395 | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n" ); |
396 | for (i = 0; i < L_CODES+2; i++) { |
397 | fprintf(header, "{{%3u},{%3u}}%s" , static_ltree[i].Code, |
398 | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
399 | } |
400 | |
401 | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n" ); |
402 | for (i = 0; i < D_CODES; i++) { |
403 | fprintf(header, "{{%2u},{%2u}}%s" , static_dtree[i].Code, |
404 | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
405 | } |
406 | |
407 | fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n" ); |
408 | for (i = 0; i < DIST_CODE_LEN; i++) { |
409 | fprintf(header, "%2u%s" , _dist_code[i], |
410 | SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
411 | } |
412 | |
413 | fprintf(header, |
414 | "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n" ); |
415 | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
416 | fprintf(header, "%2u%s" , _length_code[i], |
417 | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
418 | } |
419 | |
420 | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n" ); |
421 | for (i = 0; i < LENGTH_CODES; i++) { |
422 | fprintf(header, "%1u%s" , base_length[i], |
423 | SEPARATOR(i, LENGTH_CODES-1, 20)); |
424 | } |
425 | |
426 | fprintf(header, "local const int base_dist[D_CODES] = {\n" ); |
427 | for (i = 0; i < D_CODES; i++) { |
428 | fprintf(header, "%5u%s" , base_dist[i], |
429 | SEPARATOR(i, D_CODES-1, 10)); |
430 | } |
431 | |
432 | fclose(header); |
433 | } |
434 | #endif /* GEN_TREES_H */ |
435 | |
436 | /* =========================================================================== |
437 | * Initialize a new block. |
438 | */ |
439 | local void init_block(deflate_state *s) { |
440 | int n; /* iterates over tree elements */ |
441 | |
442 | /* Initialize the trees. */ |
443 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
444 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
445 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
446 | |
447 | s->dyn_ltree[END_BLOCK].Freq = 1; |
448 | s->opt_len = s->static_len = 0L; |
449 | s->sym_next = s->matches = 0; |
450 | } |
451 | |
452 | /* =========================================================================== |
453 | * Initialize the tree data structures for a new zlib stream. |
454 | */ |
455 | void ZLIB_INTERNAL _tr_init(deflate_state *s) { |
456 | tr_static_init(); |
457 | |
458 | s->l_desc.dyn_tree = s->dyn_ltree; |
459 | s->l_desc.stat_desc = &static_l_desc; |
460 | |
461 | s->d_desc.dyn_tree = s->dyn_dtree; |
462 | s->d_desc.stat_desc = &static_d_desc; |
463 | |
464 | s->bl_desc.dyn_tree = s->bl_tree; |
465 | s->bl_desc.stat_desc = &static_bl_desc; |
466 | |
467 | s->bi_buf = 0; |
468 | s->bi_valid = 0; |
469 | #ifdef ZLIB_DEBUG |
470 | s->compressed_len = 0L; |
471 | s->bits_sent = 0L; |
472 | #endif |
473 | |
474 | /* Initialize the first block of the first file: */ |
475 | init_block(s); |
476 | } |
477 | |
478 | #define SMALLEST 1 |
479 | /* Index within the heap array of least frequent node in the Huffman tree */ |
480 | |
481 | |
482 | /* =========================================================================== |
483 | * Remove the smallest element from the heap and recreate the heap with |
484 | * one less element. Updates heap and heap_len. |
485 | */ |
486 | #define pqremove(s, tree, top) \ |
487 | {\ |
488 | top = s->heap[SMALLEST]; \ |
489 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
490 | pqdownheap(s, tree, SMALLEST); \ |
491 | } |
492 | |
493 | /* =========================================================================== |
494 | * Compares to subtrees, using the tree depth as tie breaker when |
495 | * the subtrees have equal frequency. This minimizes the worst case length. |
496 | */ |
497 | #define smaller(tree, n, m, depth) \ |
498 | (tree[n].Freq < tree[m].Freq || \ |
499 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
500 | |
501 | /* =========================================================================== |
502 | * Restore the heap property by moving down the tree starting at node k, |
503 | * exchanging a node with the smallest of its two sons if necessary, stopping |
504 | * when the heap property is re-established (each father smaller than its |
505 | * two sons). |
506 | */ |
507 | local void pqdownheap(deflate_state *s, ct_data *tree, int k) { |
508 | int v = s->heap[k]; |
509 | int j = k << 1; /* left son of k */ |
510 | while (j <= s->heap_len) { |
511 | /* Set j to the smallest of the two sons: */ |
512 | if (j < s->heap_len && |
513 | smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { |
514 | j++; |
515 | } |
516 | /* Exit if v is smaller than both sons */ |
517 | if (smaller(tree, v, s->heap[j], s->depth)) break; |
518 | |
519 | /* Exchange v with the smallest son */ |
520 | s->heap[k] = s->heap[j]; k = j; |
521 | |
522 | /* And continue down the tree, setting j to the left son of k */ |
523 | j <<= 1; |
524 | } |
525 | s->heap[k] = v; |
526 | } |
527 | |
528 | /* =========================================================================== |
529 | * Compute the optimal bit lengths for a tree and update the total bit length |
530 | * for the current block. |
531 | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
532 | * above are the tree nodes sorted by increasing frequency. |
533 | * OUT assertions: the field len is set to the optimal bit length, the |
534 | * array bl_count contains the frequencies for each bit length. |
535 | * The length opt_len is updated; static_len is also updated if stree is |
536 | * not null. |
537 | */ |
538 | local void gen_bitlen(deflate_state *s, tree_desc *desc) { |
539 | ct_data *tree = desc->dyn_tree; |
540 | int max_code = desc->max_code; |
541 | const ct_data *stree = desc->stat_desc->static_tree; |
542 | const intf * = desc->stat_desc->extra_bits; |
543 | int base = desc->stat_desc->extra_base; |
544 | int max_length = desc->stat_desc->max_length; |
545 | int h; /* heap index */ |
546 | int n, m; /* iterate over the tree elements */ |
547 | int bits; /* bit length */ |
548 | int xbits; /* extra bits */ |
549 | ush f; /* frequency */ |
550 | int overflow = 0; /* number of elements with bit length too large */ |
551 | |
552 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
553 | |
554 | /* In a first pass, compute the optimal bit lengths (which may |
555 | * overflow in the case of the bit length tree). |
556 | */ |
557 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
558 | |
559 | for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { |
560 | n = s->heap[h]; |
561 | bits = tree[tree[n].Dad].Len + 1; |
562 | if (bits > max_length) bits = max_length, overflow++; |
563 | tree[n].Len = (ush)bits; |
564 | /* We overwrite tree[n].Dad which is no longer needed */ |
565 | |
566 | if (n > max_code) continue; /* not a leaf node */ |
567 | |
568 | s->bl_count[bits]++; |
569 | xbits = 0; |
570 | if (n >= base) xbits = extra[n - base]; |
571 | f = tree[n].Freq; |
572 | s->opt_len += (ulg)f * (unsigned)(bits + xbits); |
573 | if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); |
574 | } |
575 | if (overflow == 0) return; |
576 | |
577 | Tracev((stderr,"\nbit length overflow\n" )); |
578 | /* This happens for example on obj2 and pic of the Calgary corpus */ |
579 | |
580 | /* Find the first bit length which could increase: */ |
581 | do { |
582 | bits = max_length - 1; |
583 | while (s->bl_count[bits] == 0) bits--; |
584 | s->bl_count[bits]--; /* move one leaf down the tree */ |
585 | s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ |
586 | s->bl_count[max_length]--; |
587 | /* The brother of the overflow item also moves one step up, |
588 | * but this does not affect bl_count[max_length] |
589 | */ |
590 | overflow -= 2; |
591 | } while (overflow > 0); |
592 | |
593 | /* Now recompute all bit lengths, scanning in increasing frequency. |
594 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
595 | * lengths instead of fixing only the wrong ones. This idea is taken |
596 | * from 'ar' written by Haruhiko Okumura.) |
597 | */ |
598 | for (bits = max_length; bits != 0; bits--) { |
599 | n = s->bl_count[bits]; |
600 | while (n != 0) { |
601 | m = s->heap[--h]; |
602 | if (m > max_code) continue; |
603 | if ((unsigned) tree[m].Len != (unsigned) bits) { |
604 | Tracev((stderr,"code %d bits %d->%d\n" , m, tree[m].Len, bits)); |
605 | s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; |
606 | tree[m].Len = (ush)bits; |
607 | } |
608 | n--; |
609 | } |
610 | } |
611 | } |
612 | |
613 | #ifdef DUMP_BL_TREE |
614 | # include <stdio.h> |
615 | #endif |
616 | |
617 | /* =========================================================================== |
618 | * Construct one Huffman tree and assigns the code bit strings and lengths. |
619 | * Update the total bit length for the current block. |
620 | * IN assertion: the field freq is set for all tree elements. |
621 | * OUT assertions: the fields len and code are set to the optimal bit length |
622 | * and corresponding code. The length opt_len is updated; static_len is |
623 | * also updated if stree is not null. The field max_code is set. |
624 | */ |
625 | local void build_tree(deflate_state *s, tree_desc *desc) { |
626 | ct_data *tree = desc->dyn_tree; |
627 | const ct_data *stree = desc->stat_desc->static_tree; |
628 | int elems = desc->stat_desc->elems; |
629 | int n, m; /* iterate over heap elements */ |
630 | int max_code = -1; /* largest code with non zero frequency */ |
631 | int node; /* new node being created */ |
632 | |
633 | /* Construct the initial heap, with least frequent element in |
634 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1]. |
635 | * heap[0] is not used. |
636 | */ |
637 | s->heap_len = 0, s->heap_max = HEAP_SIZE; |
638 | |
639 | for (n = 0; n < elems; n++) { |
640 | if (tree[n].Freq != 0) { |
641 | s->heap[++(s->heap_len)] = max_code = n; |
642 | s->depth[n] = 0; |
643 | } else { |
644 | tree[n].Len = 0; |
645 | } |
646 | } |
647 | |
648 | /* The pkzip format requires that at least one distance code exists, |
649 | * and that at least one bit should be sent even if there is only one |
650 | * possible code. So to avoid special checks later on we force at least |
651 | * two codes of non zero frequency. |
652 | */ |
653 | while (s->heap_len < 2) { |
654 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
655 | tree[node].Freq = 1; |
656 | s->depth[node] = 0; |
657 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
658 | /* node is 0 or 1 so it does not have extra bits */ |
659 | } |
660 | desc->max_code = max_code; |
661 | |
662 | /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree, |
663 | * establish sub-heaps of increasing lengths: |
664 | */ |
665 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
666 | |
667 | /* Construct the Huffman tree by repeatedly combining the least two |
668 | * frequent nodes. |
669 | */ |
670 | node = elems; /* next internal node of the tree */ |
671 | do { |
672 | pqremove(s, tree, n); /* n = node of least frequency */ |
673 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
674 | |
675 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
676 | s->heap[--(s->heap_max)] = m; |
677 | |
678 | /* Create a new node father of n and m */ |
679 | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
680 | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
681 | s->depth[n] : s->depth[m]) + 1); |
682 | tree[n].Dad = tree[m].Dad = (ush)node; |
683 | #ifdef DUMP_BL_TREE |
684 | if (tree == s->bl_tree) { |
685 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)" , |
686 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
687 | } |
688 | #endif |
689 | /* and insert the new node in the heap */ |
690 | s->heap[SMALLEST] = node++; |
691 | pqdownheap(s, tree, SMALLEST); |
692 | |
693 | } while (s->heap_len >= 2); |
694 | |
695 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
696 | |
697 | /* At this point, the fields freq and dad are set. We can now |
698 | * generate the bit lengths. |
699 | */ |
700 | gen_bitlen(s, (tree_desc *)desc); |
701 | |
702 | /* The field len is now set, we can generate the bit codes */ |
703 | gen_codes ((ct_data *)tree, max_code, s->bl_count); |
704 | } |
705 | |
706 | /* =========================================================================== |
707 | * Scan a literal or distance tree to determine the frequencies of the codes |
708 | * in the bit length tree. |
709 | */ |
710 | local void scan_tree(deflate_state *s, ct_data *tree, int max_code) { |
711 | int n; /* iterates over all tree elements */ |
712 | int prevlen = -1; /* last emitted length */ |
713 | int curlen; /* length of current code */ |
714 | int nextlen = tree[0].Len; /* length of next code */ |
715 | int count = 0; /* repeat count of the current code */ |
716 | int max_count = 7; /* max repeat count */ |
717 | int min_count = 4; /* min repeat count */ |
718 | |
719 | if (nextlen == 0) max_count = 138, min_count = 3; |
720 | tree[max_code + 1].Len = (ush)0xffff; /* guard */ |
721 | |
722 | for (n = 0; n <= max_code; n++) { |
723 | curlen = nextlen; nextlen = tree[n + 1].Len; |
724 | if (++count < max_count && curlen == nextlen) { |
725 | continue; |
726 | } else if (count < min_count) { |
727 | s->bl_tree[curlen].Freq += count; |
728 | } else if (curlen != 0) { |
729 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
730 | s->bl_tree[REP_3_6].Freq++; |
731 | } else if (count <= 10) { |
732 | s->bl_tree[REPZ_3_10].Freq++; |
733 | } else { |
734 | s->bl_tree[REPZ_11_138].Freq++; |
735 | } |
736 | count = 0; prevlen = curlen; |
737 | if (nextlen == 0) { |
738 | max_count = 138, min_count = 3; |
739 | } else if (curlen == nextlen) { |
740 | max_count = 6, min_count = 3; |
741 | } else { |
742 | max_count = 7, min_count = 4; |
743 | } |
744 | } |
745 | } |
746 | |
747 | /* =========================================================================== |
748 | * Send a literal or distance tree in compressed form, using the codes in |
749 | * bl_tree. |
750 | */ |
751 | local void send_tree(deflate_state *s, ct_data *tree, int max_code) { |
752 | int n; /* iterates over all tree elements */ |
753 | int prevlen = -1; /* last emitted length */ |
754 | int curlen; /* length of current code */ |
755 | int nextlen = tree[0].Len; /* length of next code */ |
756 | int count = 0; /* repeat count of the current code */ |
757 | int max_count = 7; /* max repeat count */ |
758 | int min_count = 4; /* min repeat count */ |
759 | |
760 | /* tree[max_code + 1].Len = -1; */ /* guard already set */ |
761 | if (nextlen == 0) max_count = 138, min_count = 3; |
762 | |
763 | for (n = 0; n <= max_code; n++) { |
764 | curlen = nextlen; nextlen = tree[n + 1].Len; |
765 | if (++count < max_count && curlen == nextlen) { |
766 | continue; |
767 | } else if (count < min_count) { |
768 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
769 | |
770 | } else if (curlen != 0) { |
771 | if (curlen != prevlen) { |
772 | send_code(s, curlen, s->bl_tree); count--; |
773 | } |
774 | Assert(count >= 3 && count <= 6, " 3_6?" ); |
775 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); |
776 | |
777 | } else if (count <= 10) { |
778 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); |
779 | |
780 | } else { |
781 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); |
782 | } |
783 | count = 0; prevlen = curlen; |
784 | if (nextlen == 0) { |
785 | max_count = 138, min_count = 3; |
786 | } else if (curlen == nextlen) { |
787 | max_count = 6, min_count = 3; |
788 | } else { |
789 | max_count = 7, min_count = 4; |
790 | } |
791 | } |
792 | } |
793 | |
794 | /* =========================================================================== |
795 | * Construct the Huffman tree for the bit lengths and return the index in |
796 | * bl_order of the last bit length code to send. |
797 | */ |
798 | local int build_bl_tree(deflate_state *s) { |
799 | int max_blindex; /* index of last bit length code of non zero freq */ |
800 | |
801 | /* Determine the bit length frequencies for literal and distance trees */ |
802 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
803 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
804 | |
805 | /* Build the bit length tree: */ |
806 | build_tree(s, (tree_desc *)(&(s->bl_desc))); |
807 | /* opt_len now includes the length of the tree representations, except the |
808 | * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts. |
809 | */ |
810 | |
811 | /* Determine the number of bit length codes to send. The pkzip format |
812 | * requires that at least 4 bit length codes be sent. (appnote.txt says |
813 | * 3 but the actual value used is 4.) |
814 | */ |
815 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
816 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
817 | } |
818 | /* Update opt_len to include the bit length tree and counts */ |
819 | s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4; |
820 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld" , |
821 | s->opt_len, s->static_len)); |
822 | |
823 | return max_blindex; |
824 | } |
825 | |
826 | /* =========================================================================== |
827 | * Send the header for a block using dynamic Huffman trees: the counts, the |
828 | * lengths of the bit length codes, the literal tree and the distance tree. |
829 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
830 | */ |
831 | local void send_all_trees(deflate_state *s, int lcodes, int dcodes, |
832 | int blcodes) { |
833 | int rank; /* index in bl_order */ |
834 | |
835 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes" ); |
836 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
837 | "too many codes" ); |
838 | Tracev((stderr, "\nbl counts: " )); |
839 | send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ |
840 | send_bits(s, dcodes - 1, 5); |
841 | send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ |
842 | for (rank = 0; rank < blcodes; rank++) { |
843 | Tracev((stderr, "\nbl code %2d " , bl_order[rank])); |
844 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
845 | } |
846 | Tracev((stderr, "\nbl tree: sent %ld" , s->bits_sent)); |
847 | |
848 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */ |
849 | Tracev((stderr, "\nlit tree: sent %ld" , s->bits_sent)); |
850 | |
851 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */ |
852 | Tracev((stderr, "\ndist tree: sent %ld" , s->bits_sent)); |
853 | } |
854 | |
855 | /* =========================================================================== |
856 | * Send a stored block |
857 | */ |
858 | void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, |
859 | ulg stored_len, int last) { |
860 | send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */ |
861 | bi_windup(s); /* align on byte boundary */ |
862 | put_short(s, (ush)stored_len); |
863 | put_short(s, (ush)~stored_len); |
864 | if (stored_len) |
865 | zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); |
866 | s->pending += stored_len; |
867 | #ifdef ZLIB_DEBUG |
868 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
869 | s->compressed_len += (stored_len + 4) << 3; |
870 | s->bits_sent += 2*16; |
871 | s->bits_sent += stored_len << 3; |
872 | #endif |
873 | } |
874 | |
875 | /* =========================================================================== |
876 | * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
877 | */ |
878 | void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) { |
879 | bi_flush(s); |
880 | } |
881 | |
882 | /* =========================================================================== |
883 | * Send one empty static block to give enough lookahead for inflate. |
884 | * This takes 10 bits, of which 7 may remain in the bit buffer. |
885 | */ |
886 | void ZLIB_INTERNAL _tr_align(deflate_state *s) { |
887 | send_bits(s, STATIC_TREES<<1, 3); |
888 | send_code(s, END_BLOCK, static_ltree); |
889 | #ifdef ZLIB_DEBUG |
890 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
891 | #endif |
892 | bi_flush(s); |
893 | } |
894 | |
895 | /* =========================================================================== |
896 | * Send the block data compressed using the given Huffman trees |
897 | */ |
898 | local void compress_block(deflate_state *s, const ct_data *ltree, |
899 | const ct_data *dtree) { |
900 | unsigned dist; /* distance of matched string */ |
901 | int lc; /* match length or unmatched char (if dist == 0) */ |
902 | unsigned sx = 0; /* running index in sym_buf */ |
903 | unsigned code; /* the code to send */ |
904 | int ; /* number of extra bits to send */ |
905 | |
906 | if (s->sym_next != 0) do { |
907 | dist = s->sym_buf[sx++] & 0xff; |
908 | dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; |
909 | lc = s->sym_buf[sx++]; |
910 | if (dist == 0) { |
911 | send_code(s, lc, ltree); /* send a literal byte */ |
912 | Tracecv(isgraph(lc), (stderr," '%c' " , lc)); |
913 | } else { |
914 | /* Here, lc is the match length - MIN_MATCH */ |
915 | code = _length_code[lc]; |
916 | send_code(s, code + LITERALS + 1, ltree); /* send length code */ |
917 | extra = extra_lbits[code]; |
918 | if (extra != 0) { |
919 | lc -= base_length[code]; |
920 | send_bits(s, lc, extra); /* send the extra length bits */ |
921 | } |
922 | dist--; /* dist is now the match distance - 1 */ |
923 | code = d_code(dist); |
924 | Assert (code < D_CODES, "bad d_code" ); |
925 | |
926 | send_code(s, code, dtree); /* send the distance code */ |
927 | extra = extra_dbits[code]; |
928 | if (extra != 0) { |
929 | dist -= (unsigned)base_dist[code]; |
930 | send_bits(s, dist, extra); /* send the extra distance bits */ |
931 | } |
932 | } /* literal or match pair ? */ |
933 | |
934 | /* Check that the overlay between pending_buf and sym_buf is ok: */ |
935 | Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow" ); |
936 | |
937 | } while (sx < s->sym_next); |
938 | |
939 | send_code(s, END_BLOCK, ltree); |
940 | } |
941 | |
942 | /* =========================================================================== |
943 | * Check if the data type is TEXT or BINARY, using the following algorithm: |
944 | * - TEXT if the two conditions below are satisfied: |
945 | * a) There are no non-portable control characters belonging to the |
946 | * "block list" (0..6, 14..25, 28..31). |
947 | * b) There is at least one printable character belonging to the |
948 | * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
949 | * - BINARY otherwise. |
950 | * - The following partially-portable control characters form a |
951 | * "gray list" that is ignored in this detection algorithm: |
952 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
953 | * IN assertion: the fields Freq of dyn_ltree are set. |
954 | */ |
955 | local int detect_data_type(deflate_state *s) { |
956 | /* block_mask is the bit mask of block-listed bytes |
957 | * set bits 0..6, 14..25, and 28..31 |
958 | * 0xf3ffc07f = binary 11110011111111111100000001111111 |
959 | */ |
960 | unsigned long block_mask = 0xf3ffc07fUL; |
961 | int n; |
962 | |
963 | /* Check for non-textual ("block-listed") bytes. */ |
964 | for (n = 0; n <= 31; n++, block_mask >>= 1) |
965 | if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
966 | return Z_BINARY; |
967 | |
968 | /* Check for textual ("allow-listed") bytes. */ |
969 | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 |
970 | || s->dyn_ltree[13].Freq != 0) |
971 | return Z_TEXT; |
972 | for (n = 32; n < LITERALS; n++) |
973 | if (s->dyn_ltree[n].Freq != 0) |
974 | return Z_TEXT; |
975 | |
976 | /* There are no "block-listed" or "allow-listed" bytes: |
977 | * this stream either is empty or has tolerated ("gray-listed") bytes only. |
978 | */ |
979 | return Z_BINARY; |
980 | } |
981 | |
982 | /* =========================================================================== |
983 | * Determine the best encoding for the current block: dynamic trees, static |
984 | * trees or store, and write out the encoded block. |
985 | */ |
986 | void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, |
987 | ulg stored_len, int last) { |
988 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
989 | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
990 | |
991 | /* Build the Huffman trees unless a stored block is forced */ |
992 | if (s->level > 0) { |
993 | |
994 | /* Check if the file is binary or text */ |
995 | if (s->strm->data_type == Z_UNKNOWN) |
996 | s->strm->data_type = detect_data_type(s); |
997 | |
998 | /* Construct the literal and distance trees */ |
999 | build_tree(s, (tree_desc *)(&(s->l_desc))); |
1000 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld" , s->opt_len, |
1001 | s->static_len)); |
1002 | |
1003 | build_tree(s, (tree_desc *)(&(s->d_desc))); |
1004 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld" , s->opt_len, |
1005 | s->static_len)); |
1006 | /* At this point, opt_len and static_len are the total bit lengths of |
1007 | * the compressed block data, excluding the tree representations. |
1008 | */ |
1009 | |
1010 | /* Build the bit length tree for the above two trees, and get the index |
1011 | * in bl_order of the last bit length code to send. |
1012 | */ |
1013 | max_blindex = build_bl_tree(s); |
1014 | |
1015 | /* Determine the best encoding. Compute the block lengths in bytes. */ |
1016 | opt_lenb = (s->opt_len + 3 + 7) >> 3; |
1017 | static_lenb = (s->static_len + 3 + 7) >> 3; |
1018 | |
1019 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u " , |
1020 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
1021 | s->sym_next / 3)); |
1022 | |
1023 | #ifndef FORCE_STATIC |
1024 | if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) |
1025 | #endif |
1026 | opt_lenb = static_lenb; |
1027 | |
1028 | } else { |
1029 | Assert(buf != (char*)0, "lost buf" ); |
1030 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
1031 | } |
1032 | |
1033 | #ifdef FORCE_STORED |
1034 | if (buf != (char*)0) { /* force stored block */ |
1035 | #else |
1036 | if (stored_len + 4 <= opt_lenb && buf != (char*)0) { |
1037 | /* 4: two words for the lengths */ |
1038 | #endif |
1039 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
1040 | * Otherwise we can't have processed more than WSIZE input bytes since |
1041 | * the last block flush, because compression would have been |
1042 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
1043 | * transform a block into a stored block. |
1044 | */ |
1045 | _tr_stored_block(s, buf, stored_len, last); |
1046 | |
1047 | } else if (static_lenb == opt_lenb) { |
1048 | send_bits(s, (STATIC_TREES<<1) + last, 3); |
1049 | compress_block(s, (const ct_data *)static_ltree, |
1050 | (const ct_data *)static_dtree); |
1051 | #ifdef ZLIB_DEBUG |
1052 | s->compressed_len += 3 + s->static_len; |
1053 | #endif |
1054 | } else { |
1055 | send_bits(s, (DYN_TREES<<1) + last, 3); |
1056 | send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, |
1057 | max_blindex + 1); |
1058 | compress_block(s, (const ct_data *)s->dyn_ltree, |
1059 | (const ct_data *)s->dyn_dtree); |
1060 | #ifdef ZLIB_DEBUG |
1061 | s->compressed_len += 3 + s->opt_len; |
1062 | #endif |
1063 | } |
1064 | Assert (s->compressed_len == s->bits_sent, "bad compressed size" ); |
1065 | /* The above check is made mod 2^32, for files larger than 512 MB |
1066 | * and uLong implemented on 32 bits. |
1067 | */ |
1068 | init_block(s); |
1069 | |
1070 | if (last) { |
1071 | bi_windup(s); |
1072 | #ifdef ZLIB_DEBUG |
1073 | s->compressed_len += 7; /* align on byte boundary */ |
1074 | #endif |
1075 | } |
1076 | Tracev((stderr,"\ncomprlen %lu(%lu) " , s->compressed_len >> 3, |
1077 | s->compressed_len - 7*last)); |
1078 | } |
1079 | |
1080 | /* =========================================================================== |
1081 | * Save the match info and tally the frequency counts. Return true if |
1082 | * the current block must be flushed. |
1083 | */ |
1084 | int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) { |
1085 | s->sym_buf[s->sym_next++] = (uch)dist; |
1086 | s->sym_buf[s->sym_next++] = (uch)(dist >> 8); |
1087 | s->sym_buf[s->sym_next++] = (uch)lc; |
1088 | if (dist == 0) { |
1089 | /* lc is the unmatched char */ |
1090 | s->dyn_ltree[lc].Freq++; |
1091 | } else { |
1092 | s->matches++; |
1093 | /* Here, lc is the match length - MIN_MATCH */ |
1094 | dist--; /* dist = match distance - 1 */ |
1095 | Assert((ush)dist < (ush)MAX_DIST(s) && |
1096 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
1097 | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match" ); |
1098 | |
1099 | s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++; |
1100 | s->dyn_dtree[d_code(dist)].Freq++; |
1101 | } |
1102 | return (s->sym_next == s->sym_end); |
1103 | } |
1104 | |