1 | /* ****************************************************************** |
2 | * FSE : Finite State Entropy codec |
3 | * Public Prototypes declaration |
4 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
5 | * |
6 | * You can contact the author at : |
7 | * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
8 | * |
9 | * This source code is licensed under both the BSD-style license (found in the |
10 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
11 | * in the COPYING file in the root directory of this source tree). |
12 | * You may select, at your option, one of the above-listed licenses. |
13 | ****************************************************************** */ |
14 | |
15 | #if defined (__cplusplus) |
16 | extern "C" { |
17 | #endif |
18 | |
19 | #ifndef FSE_H |
20 | #define FSE_H |
21 | |
22 | |
23 | /*-***************************************** |
24 | * Dependencies |
25 | ******************************************/ |
26 | #include "zstd_deps.h" /* size_t, ptrdiff_t */ |
27 | |
28 | |
29 | /*-***************************************** |
30 | * FSE_PUBLIC_API : control library symbols visibility |
31 | ******************************************/ |
32 | #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) |
33 | # define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) |
34 | #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ |
35 | # define FSE_PUBLIC_API __declspec(dllexport) |
36 | #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) |
37 | # define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ |
38 | #else |
39 | # define FSE_PUBLIC_API |
40 | #endif |
41 | |
42 | /*------ Version ------*/ |
43 | #define FSE_VERSION_MAJOR 0 |
44 | #define FSE_VERSION_MINOR 9 |
45 | #define FSE_VERSION_RELEASE 0 |
46 | |
47 | #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE |
48 | #define FSE_QUOTE(str) #str |
49 | #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) |
50 | #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) |
51 | |
52 | #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) |
53 | FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ |
54 | |
55 | |
56 | /*-***************************************** |
57 | * Tool functions |
58 | ******************************************/ |
59 | FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ |
60 | |
61 | /* Error Management */ |
62 | FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ |
63 | FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ |
64 | |
65 | |
66 | /*-***************************************** |
67 | * FSE detailed API |
68 | ******************************************/ |
69 | /*! |
70 | FSE_compress() does the following: |
71 | 1. count symbol occurrence from source[] into table count[] (see hist.h) |
72 | 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) |
73 | 3. save normalized counters to memory buffer using writeNCount() |
74 | 4. build encoding table 'CTable' from normalized counters |
75 | 5. encode the data stream using encoding table 'CTable' |
76 | |
77 | FSE_decompress() does the following: |
78 | 1. read normalized counters with readNCount() |
79 | 2. build decoding table 'DTable' from normalized counters |
80 | 3. decode the data stream using decoding table 'DTable' |
81 | |
82 | The following API allows targeting specific sub-functions for advanced tasks. |
83 | For example, it's possible to compress several blocks using the same 'CTable', |
84 | or to save and provide normalized distribution using external method. |
85 | */ |
86 | |
87 | /* *** COMPRESSION *** */ |
88 | |
89 | /*! FSE_optimalTableLog(): |
90 | dynamically downsize 'tableLog' when conditions are met. |
91 | It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. |
92 | @return : recommended tableLog (necessarily <= 'maxTableLog') */ |
93 | FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); |
94 | |
95 | /*! FSE_normalizeCount(): |
96 | normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) |
97 | 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). |
98 | useLowProbCount is a boolean parameter which trades off compressed size for |
99 | faster header decoding. When it is set to 1, the compressed data will be slightly |
100 | smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be |
101 | faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0 |
102 | is a good default, since header deserialization makes a big speed difference. |
103 | Otherwise, useLowProbCount=1 is a good default, since the speed difference is small. |
104 | @return : tableLog, |
105 | or an errorCode, which can be tested using FSE_isError() */ |
106 | FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, |
107 | const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount); |
108 | |
109 | /*! FSE_NCountWriteBound(): |
110 | Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. |
111 | Typically useful for allocation purpose. */ |
112 | FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); |
113 | |
114 | /*! FSE_writeNCount(): |
115 | Compactly save 'normalizedCounter' into 'buffer'. |
116 | @return : size of the compressed table, |
117 | or an errorCode, which can be tested using FSE_isError(). */ |
118 | FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, |
119 | const short* normalizedCounter, |
120 | unsigned maxSymbolValue, unsigned tableLog); |
121 | |
122 | /*! Constructor and Destructor of FSE_CTable. |
123 | Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ |
124 | typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ |
125 | |
126 | /*! FSE_buildCTable(): |
127 | Builds `ct`, which must be already allocated, using FSE_createCTable(). |
128 | @return : 0, or an errorCode, which can be tested using FSE_isError() */ |
129 | FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
130 | |
131 | /*! FSE_compress_usingCTable(): |
132 | Compress `src` using `ct` into `dst` which must be already allocated. |
133 | @return : size of compressed data (<= `dstCapacity`), |
134 | or 0 if compressed data could not fit into `dst`, |
135 | or an errorCode, which can be tested using FSE_isError() */ |
136 | FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); |
137 | |
138 | /*! |
139 | Tutorial : |
140 | ---------- |
141 | The first step is to count all symbols. FSE_count() does this job very fast. |
142 | Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. |
143 | 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] |
144 | maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) |
145 | FSE_count() will return the number of occurrence of the most frequent symbol. |
146 | This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. |
147 | If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
148 | |
149 | The next step is to normalize the frequencies. |
150 | FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. |
151 | It also guarantees a minimum of 1 to any Symbol with frequency >= 1. |
152 | You can use 'tableLog'==0 to mean "use default tableLog value". |
153 | If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), |
154 | which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). |
155 | |
156 | The result of FSE_normalizeCount() will be saved into a table, |
157 | called 'normalizedCounter', which is a table of signed short. |
158 | 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. |
159 | The return value is tableLog if everything proceeded as expected. |
160 | It is 0 if there is a single symbol within distribution. |
161 | If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). |
162 | |
163 | 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). |
164 | 'buffer' must be already allocated. |
165 | For guaranteed success, buffer size must be at least FSE_headerBound(). |
166 | The result of the function is the number of bytes written into 'buffer'. |
167 | If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). |
168 | |
169 | 'normalizedCounter' can then be used to create the compression table 'CTable'. |
170 | The space required by 'CTable' must be already allocated, using FSE_createCTable(). |
171 | You can then use FSE_buildCTable() to fill 'CTable'. |
172 | If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). |
173 | |
174 | 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). |
175 | Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' |
176 | The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. |
177 | If it returns '0', compressed data could not fit into 'dst'. |
178 | If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
179 | */ |
180 | |
181 | |
182 | /* *** DECOMPRESSION *** */ |
183 | |
184 | /*! FSE_readNCount(): |
185 | Read compactly saved 'normalizedCounter' from 'rBuffer'. |
186 | @return : size read from 'rBuffer', |
187 | or an errorCode, which can be tested using FSE_isError(). |
188 | maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ |
189 | FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, |
190 | unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, |
191 | const void* rBuffer, size_t rBuffSize); |
192 | |
193 | /*! FSE_readNCount_bmi2(): |
194 | * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise. |
195 | */ |
196 | FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter, |
197 | unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, |
198 | const void* rBuffer, size_t rBuffSize, int bmi2); |
199 | |
200 | typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ |
201 | |
202 | /*! |
203 | Tutorial : |
204 | ---------- |
205 | (Note : these functions only decompress FSE-compressed blocks. |
206 | If block is uncompressed, use memcpy() instead |
207 | If block is a single repeated byte, use memset() instead ) |
208 | |
209 | The first step is to obtain the normalized frequencies of symbols. |
210 | This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). |
211 | 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. |
212 | In practice, that means it's necessary to know 'maxSymbolValue' beforehand, |
213 | or size the table to handle worst case situations (typically 256). |
214 | FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. |
215 | The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. |
216 | Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. |
217 | If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
218 | |
219 | The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. |
220 | This is performed by the function FSE_buildDTable(). |
221 | The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). |
222 | If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
223 | |
224 | `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). |
225 | `cSrcSize` must be strictly correct, otherwise decompression will fail. |
226 | FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). |
227 | If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) |
228 | */ |
229 | |
230 | #endif /* FSE_H */ |
231 | |
232 | #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY) |
233 | #define FSE_H_FSE_STATIC_LINKING_ONLY |
234 | |
235 | /* *** Dependency *** */ |
236 | #include "bitstream.h" |
237 | |
238 | |
239 | /* ***************************************** |
240 | * Static allocation |
241 | *******************************************/ |
242 | /* FSE buffer bounds */ |
243 | #define FSE_NCOUNTBOUND 512 |
244 | #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) |
245 | #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ |
246 | |
247 | /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ |
248 | #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2)) |
249 | #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog))) |
250 | |
251 | /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ |
252 | #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) |
253 | #define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) |
254 | |
255 | |
256 | /* ***************************************** |
257 | * FSE advanced API |
258 | ***************************************** */ |
259 | |
260 | unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); |
261 | /**< same as FSE_optimalTableLog(), which used `minus==2` */ |
262 | |
263 | size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); |
264 | /**< build a fake FSE_CTable, designed to compress always the same symbolValue */ |
265 | |
266 | /* FSE_buildCTable_wksp() : |
267 | * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). |
268 | * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. |
269 | * See FSE_buildCTable_wksp() for breakdown of workspace usage. |
270 | */ |
271 | #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */) |
272 | #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) |
273 | size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
274 | |
275 | #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8) |
276 | #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned)) |
277 | FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
278 | /**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */ |
279 | |
280 | #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1) |
281 | #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned)) |
282 | size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2); |
283 | /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`. |
284 | * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */ |
285 | |
286 | typedef enum { |
287 | FSE_repeat_none, /**< Cannot use the previous table */ |
288 | FSE_repeat_check, /**< Can use the previous table but it must be checked */ |
289 | FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */ |
290 | } FSE_repeat; |
291 | |
292 | /* ***************************************** |
293 | * FSE symbol compression API |
294 | *******************************************/ |
295 | /*! |
296 | This API consists of small unitary functions, which highly benefit from being inlined. |
297 | Hence their body are included in next section. |
298 | */ |
299 | typedef struct { |
300 | ptrdiff_t value; |
301 | const void* stateTable; |
302 | const void* symbolTT; |
303 | unsigned stateLog; |
304 | } FSE_CState_t; |
305 | |
306 | static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); |
307 | |
308 | static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); |
309 | |
310 | static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); |
311 | |
312 | /**< |
313 | These functions are inner components of FSE_compress_usingCTable(). |
314 | They allow the creation of custom streams, mixing multiple tables and bit sources. |
315 | |
316 | A key property to keep in mind is that encoding and decoding are done **in reverse direction**. |
317 | So the first symbol you will encode is the last you will decode, like a LIFO stack. |
318 | |
319 | You will need a few variables to track your CStream. They are : |
320 | |
321 | FSE_CTable ct; // Provided by FSE_buildCTable() |
322 | BIT_CStream_t bitStream; // bitStream tracking structure |
323 | FSE_CState_t state; // State tracking structure (can have several) |
324 | |
325 | |
326 | The first thing to do is to init bitStream and state. |
327 | size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); |
328 | FSE_initCState(&state, ct); |
329 | |
330 | Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); |
331 | You can then encode your input data, byte after byte. |
332 | FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. |
333 | Remember decoding will be done in reverse direction. |
334 | FSE_encodeByte(&bitStream, &state, symbol); |
335 | |
336 | At any time, you can also add any bit sequence. |
337 | Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders |
338 | BIT_addBits(&bitStream, bitField, nbBits); |
339 | |
340 | The above methods don't commit data to memory, they just store it into local register, for speed. |
341 | Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). |
342 | Writing data to memory is a manual operation, performed by the flushBits function. |
343 | BIT_flushBits(&bitStream); |
344 | |
345 | Your last FSE encoding operation shall be to flush your last state value(s). |
346 | FSE_flushState(&bitStream, &state); |
347 | |
348 | Finally, you must close the bitStream. |
349 | The function returns the size of CStream in bytes. |
350 | If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) |
351 | If there is an error, it returns an errorCode (which can be tested using FSE_isError()). |
352 | size_t size = BIT_closeCStream(&bitStream); |
353 | */ |
354 | |
355 | |
356 | /* ***************************************** |
357 | * FSE symbol decompression API |
358 | *******************************************/ |
359 | typedef struct { |
360 | size_t state; |
361 | const void* table; /* precise table may vary, depending on U16 */ |
362 | } FSE_DState_t; |
363 | |
364 | |
365 | static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); |
366 | |
367 | static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
368 | |
369 | static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); |
370 | |
371 | /**< |
372 | Let's now decompose FSE_decompress_usingDTable() into its unitary components. |
373 | You will decode FSE-encoded symbols from the bitStream, |
374 | and also any other bitFields you put in, **in reverse order**. |
375 | |
376 | You will need a few variables to track your bitStream. They are : |
377 | |
378 | BIT_DStream_t DStream; // Stream context |
379 | FSE_DState_t DState; // State context. Multiple ones are possible |
380 | FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() |
381 | |
382 | The first thing to do is to init the bitStream. |
383 | errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); |
384 | |
385 | You should then retrieve your initial state(s) |
386 | (in reverse flushing order if you have several ones) : |
387 | errorCode = FSE_initDState(&DState, &DStream, DTablePtr); |
388 | |
389 | You can then decode your data, symbol after symbol. |
390 | For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. |
391 | Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). |
392 | unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); |
393 | |
394 | You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) |
395 | Note : maximum allowed nbBits is 25, for 32-bits compatibility |
396 | size_t bitField = BIT_readBits(&DStream, nbBits); |
397 | |
398 | All above operations only read from local register (which size depends on size_t). |
399 | Refueling the register from memory is manually performed by the reload method. |
400 | endSignal = FSE_reloadDStream(&DStream); |
401 | |
402 | BIT_reloadDStream() result tells if there is still some more data to read from DStream. |
403 | BIT_DStream_unfinished : there is still some data left into the DStream. |
404 | BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. |
405 | BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. |
406 | BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. |
407 | |
408 | When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, |
409 | to properly detect the exact end of stream. |
410 | After each decoded symbol, check if DStream is fully consumed using this simple test : |
411 | BIT_reloadDStream(&DStream) >= BIT_DStream_completed |
412 | |
413 | When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. |
414 | Checking if DStream has reached its end is performed by : |
415 | BIT_endOfDStream(&DStream); |
416 | Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. |
417 | FSE_endOfDState(&DState); |
418 | */ |
419 | |
420 | |
421 | /* ***************************************** |
422 | * FSE unsafe API |
423 | *******************************************/ |
424 | static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
425 | /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ |
426 | |
427 | |
428 | /* ***************************************** |
429 | * Implementation of inlined functions |
430 | *******************************************/ |
431 | typedef struct { |
432 | int deltaFindState; |
433 | U32 deltaNbBits; |
434 | } FSE_symbolCompressionTransform; /* total 8 bytes */ |
435 | |
436 | MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) |
437 | { |
438 | const void* ptr = ct; |
439 | const U16* u16ptr = (const U16*) ptr; |
440 | const U32 tableLog = MEM_read16(ptr); |
441 | statePtr->value = (ptrdiff_t)1<<tableLog; |
442 | statePtr->stateTable = u16ptr+2; |
443 | statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); |
444 | statePtr->stateLog = tableLog; |
445 | } |
446 | |
447 | |
448 | /*! FSE_initCState2() : |
449 | * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) |
450 | * uses the smallest state value possible, saving the cost of this symbol */ |
451 | MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) |
452 | { |
453 | FSE_initCState(statePtr, ct); |
454 | { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; |
455 | const U16* stateTable = (const U16*)(statePtr->stateTable); |
456 | U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); |
457 | statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; |
458 | statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; |
459 | } |
460 | } |
461 | |
462 | MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) |
463 | { |
464 | FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; |
465 | const U16* const stateTable = (const U16*)(statePtr->stateTable); |
466 | U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); |
467 | BIT_addBits(bitC, statePtr->value, nbBitsOut); |
468 | statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; |
469 | } |
470 | |
471 | MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) |
472 | { |
473 | BIT_addBits(bitC, statePtr->value, statePtr->stateLog); |
474 | BIT_flushBits(bitC); |
475 | } |
476 | |
477 | |
478 | /* FSE_getMaxNbBits() : |
479 | * Approximate maximum cost of a symbol, in bits. |
480 | * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) |
481 | * note 1 : assume symbolValue is valid (<= maxSymbolValue) |
482 | * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ |
483 | MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) |
484 | { |
485 | const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; |
486 | return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; |
487 | } |
488 | |
489 | /* FSE_bitCost() : |
490 | * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) |
491 | * note 1 : assume symbolValue is valid (<= maxSymbolValue) |
492 | * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ |
493 | MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) |
494 | { |
495 | const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; |
496 | U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; |
497 | U32 const threshold = (minNbBits+1) << 16; |
498 | assert(tableLog < 16); |
499 | assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ |
500 | { U32 const tableSize = 1 << tableLog; |
501 | U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); |
502 | U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ |
503 | U32 const bitMultiplier = 1 << accuracyLog; |
504 | assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); |
505 | assert(normalizedDeltaFromThreshold <= bitMultiplier); |
506 | return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; |
507 | } |
508 | } |
509 | |
510 | |
511 | /* ====== Decompression ====== */ |
512 | |
513 | typedef struct { |
514 | U16 tableLog; |
515 | U16 fastMode; |
516 | } ; /* sizeof U32 */ |
517 | |
518 | typedef struct |
519 | { |
520 | unsigned short newState; |
521 | unsigned char symbol; |
522 | unsigned char nbBits; |
523 | } FSE_decode_t; /* size == U32 */ |
524 | |
525 | MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) |
526 | { |
527 | const void* ptr = dt; |
528 | const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; |
529 | DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); |
530 | BIT_reloadDStream(bitD); |
531 | DStatePtr->table = dt + 1; |
532 | } |
533 | |
534 | MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) |
535 | { |
536 | FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
537 | return DInfo.symbol; |
538 | } |
539 | |
540 | MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
541 | { |
542 | FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
543 | U32 const nbBits = DInfo.nbBits; |
544 | size_t const lowBits = BIT_readBits(bitD, nbBits); |
545 | DStatePtr->state = DInfo.newState + lowBits; |
546 | } |
547 | |
548 | MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
549 | { |
550 | FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
551 | U32 const nbBits = DInfo.nbBits; |
552 | BYTE const symbol = DInfo.symbol; |
553 | size_t const lowBits = BIT_readBits(bitD, nbBits); |
554 | |
555 | DStatePtr->state = DInfo.newState + lowBits; |
556 | return symbol; |
557 | } |
558 | |
559 | /*! FSE_decodeSymbolFast() : |
560 | unsafe, only works if no symbol has a probability > 50% */ |
561 | MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
562 | { |
563 | FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
564 | U32 const nbBits = DInfo.nbBits; |
565 | BYTE const symbol = DInfo.symbol; |
566 | size_t const lowBits = BIT_readBitsFast(bitD, nbBits); |
567 | |
568 | DStatePtr->state = DInfo.newState + lowBits; |
569 | return symbol; |
570 | } |
571 | |
572 | MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) |
573 | { |
574 | return DStatePtr->state == 0; |
575 | } |
576 | |
577 | |
578 | |
579 | #ifndef FSE_COMMONDEFS_ONLY |
580 | |
581 | /* ************************************************************** |
582 | * Tuning parameters |
583 | ****************************************************************/ |
584 | /*!MEMORY_USAGE : |
585 | * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) |
586 | * Increasing memory usage improves compression ratio |
587 | * Reduced memory usage can improve speed, due to cache effect |
588 | * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ |
589 | #ifndef FSE_MAX_MEMORY_USAGE |
590 | # define FSE_MAX_MEMORY_USAGE 14 |
591 | #endif |
592 | #ifndef FSE_DEFAULT_MEMORY_USAGE |
593 | # define FSE_DEFAULT_MEMORY_USAGE 13 |
594 | #endif |
595 | #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE) |
596 | # error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE" |
597 | #endif |
598 | |
599 | /*!FSE_MAX_SYMBOL_VALUE : |
600 | * Maximum symbol value authorized. |
601 | * Required for proper stack allocation */ |
602 | #ifndef FSE_MAX_SYMBOL_VALUE |
603 | # define FSE_MAX_SYMBOL_VALUE 255 |
604 | #endif |
605 | |
606 | /* ************************************************************** |
607 | * template functions type & suffix |
608 | ****************************************************************/ |
609 | #define FSE_FUNCTION_TYPE BYTE |
610 | #define FSE_FUNCTION_EXTENSION |
611 | #define FSE_DECODE_TYPE FSE_decode_t |
612 | |
613 | |
614 | #endif /* !FSE_COMMONDEFS_ONLY */ |
615 | |
616 | |
617 | /* *************************************************************** |
618 | * Constants |
619 | *****************************************************************/ |
620 | #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) |
621 | #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) |
622 | #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) |
623 | #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) |
624 | #define FSE_MIN_TABLELOG 5 |
625 | |
626 | #define FSE_TABLELOG_ABSOLUTE_MAX 15 |
627 | #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX |
628 | # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" |
629 | #endif |
630 | |
631 | #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3) |
632 | |
633 | |
634 | #endif /* FSE_STATIC_LINKING_ONLY */ |
635 | |
636 | |
637 | #if defined (__cplusplus) |
638 | } |
639 | #endif |
640 | |