1 | /* |
2 | * xxHash - Fast Hash algorithm |
3 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
4 | * |
5 | * You can contact the author at : |
6 | * - xxHash homepage: https://cyan4973.github.io/xxHash/ |
7 | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
8 | * |
9 | * This source code is licensed under both the BSD-style license (found in the |
10 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
11 | * in the COPYING file in the root directory of this source tree). |
12 | * You may select, at your option, one of the above-listed licenses. |
13 | */ |
14 | |
15 | |
16 | #ifndef XXH_NO_XXH3 |
17 | # define XXH_NO_XXH3 |
18 | #endif |
19 | |
20 | #ifndef XXH_NAMESPACE |
21 | # define XXH_NAMESPACE ZSTD_ |
22 | #endif |
23 | |
24 | /*! |
25 | * @mainpage xxHash |
26 | * |
27 | * @file xxhash.h |
28 | * xxHash prototypes and implementation |
29 | */ |
30 | /* TODO: update */ |
31 | /* Notice extracted from xxHash homepage: |
32 | |
33 | xxHash is an extremely fast hash algorithm, running at RAM speed limits. |
34 | It also successfully passes all tests from the SMHasher suite. |
35 | |
36 | Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
37 | |
38 | Name Speed Q.Score Author |
39 | xxHash 5.4 GB/s 10 |
40 | CrapWow 3.2 GB/s 2 Andrew |
41 | MurmurHash 3a 2.7 GB/s 10 Austin Appleby |
42 | SpookyHash 2.0 GB/s 10 Bob Jenkins |
43 | SBox 1.4 GB/s 9 Bret Mulvey |
44 | Lookup3 1.2 GB/s 9 Bob Jenkins |
45 | SuperFastHash 1.2 GB/s 1 Paul Hsieh |
46 | CityHash64 1.05 GB/s 10 Pike & Alakuijala |
47 | FNV 0.55 GB/s 5 Fowler, Noll, Vo |
48 | CRC32 0.43 GB/s 9 |
49 | MD5-32 0.33 GB/s 10 Ronald L. Rivest |
50 | SHA1-32 0.28 GB/s 10 |
51 | |
52 | Q.Score is a measure of quality of the hash function. |
53 | It depends on successfully passing SMHasher test set. |
54 | 10 is a perfect score. |
55 | |
56 | Note: SMHasher's CRC32 implementation is not the fastest one. |
57 | Other speed-oriented implementations can be faster, |
58 | especially in combination with PCLMUL instruction: |
59 | https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 |
60 | |
61 | A 64-bit version, named XXH64, is available since r35. |
62 | It offers much better speed, but for 64-bit applications only. |
63 | Name Speed on 64 bits Speed on 32 bits |
64 | XXH64 13.8 GB/s 1.9 GB/s |
65 | XXH32 6.8 GB/s 6.0 GB/s |
66 | */ |
67 | |
68 | #if defined (__cplusplus) |
69 | extern "C" { |
70 | #endif |
71 | |
72 | /* **************************** |
73 | * INLINE mode |
74 | ******************************/ |
75 | /*! |
76 | * XXH_INLINE_ALL (and XXH_PRIVATE_API) |
77 | * Use these build macros to inline xxhash into the target unit. |
78 | * Inlining improves performance on small inputs, especially when the length is |
79 | * expressed as a compile-time constant: |
80 | * |
81 | * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
82 | * |
83 | * It also keeps xxHash symbols private to the unit, so they are not exported. |
84 | * |
85 | * Usage: |
86 | * #define XXH_INLINE_ALL |
87 | * #include "xxhash.h" |
88 | * |
89 | * Do not compile and link xxhash.o as a separate object, as it is not useful. |
90 | */ |
91 | #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
92 | && !defined(XXH_INLINE_ALL_31684351384) |
93 | /* this section should be traversed only once */ |
94 | # define XXH_INLINE_ALL_31684351384 |
95 | /* give access to the advanced API, required to compile implementations */ |
96 | # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
97 | # define XXH_STATIC_LINKING_ONLY |
98 | /* make all functions private */ |
99 | # undef XXH_PUBLIC_API |
100 | # if defined(__GNUC__) |
101 | # define XXH_PUBLIC_API static __inline __attribute__((unused)) |
102 | # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
103 | # define XXH_PUBLIC_API static inline |
104 | # elif defined(_MSC_VER) |
105 | # define XXH_PUBLIC_API static __inline |
106 | # else |
107 | /* note: this version may generate warnings for unused static functions */ |
108 | # define XXH_PUBLIC_API static |
109 | # endif |
110 | |
111 | /* |
112 | * This part deals with the special case where a unit wants to inline xxHash, |
113 | * but "xxhash.h" has previously been included without XXH_INLINE_ALL, |
114 | * such as part of some previously included *.h header file. |
115 | * Without further action, the new include would just be ignored, |
116 | * and functions would effectively _not_ be inlined (silent failure). |
117 | * The following macros solve this situation by prefixing all inlined names, |
118 | * avoiding naming collision with previous inclusions. |
119 | */ |
120 | /* Before that, we unconditionally #undef all symbols, |
121 | * in case they were already defined with XXH_NAMESPACE. |
122 | * They will then be redefined for XXH_INLINE_ALL |
123 | */ |
124 | # undef XXH_versionNumber |
125 | /* XXH32 */ |
126 | # undef XXH32 |
127 | # undef XXH32_createState |
128 | # undef XXH32_freeState |
129 | # undef XXH32_reset |
130 | # undef XXH32_update |
131 | # undef XXH32_digest |
132 | # undef XXH32_copyState |
133 | # undef XXH32_canonicalFromHash |
134 | # undef XXH32_hashFromCanonical |
135 | /* XXH64 */ |
136 | # undef XXH64 |
137 | # undef XXH64_createState |
138 | # undef XXH64_freeState |
139 | # undef XXH64_reset |
140 | # undef XXH64_update |
141 | # undef XXH64_digest |
142 | # undef XXH64_copyState |
143 | # undef XXH64_canonicalFromHash |
144 | # undef XXH64_hashFromCanonical |
145 | /* XXH3_64bits */ |
146 | # undef XXH3_64bits |
147 | # undef XXH3_64bits_withSecret |
148 | # undef XXH3_64bits_withSeed |
149 | # undef XXH3_64bits_withSecretandSeed |
150 | # undef XXH3_createState |
151 | # undef XXH3_freeState |
152 | # undef XXH3_copyState |
153 | # undef XXH3_64bits_reset |
154 | # undef XXH3_64bits_reset_withSeed |
155 | # undef XXH3_64bits_reset_withSecret |
156 | # undef XXH3_64bits_update |
157 | # undef XXH3_64bits_digest |
158 | # undef XXH3_generateSecret |
159 | /* XXH3_128bits */ |
160 | # undef XXH128 |
161 | # undef XXH3_128bits |
162 | # undef XXH3_128bits_withSeed |
163 | # undef XXH3_128bits_withSecret |
164 | # undef XXH3_128bits_reset |
165 | # undef XXH3_128bits_reset_withSeed |
166 | # undef XXH3_128bits_reset_withSecret |
167 | # undef XXH3_128bits_reset_withSecretandSeed |
168 | # undef XXH3_128bits_update |
169 | # undef XXH3_128bits_digest |
170 | # undef XXH128_isEqual |
171 | # undef XXH128_cmp |
172 | # undef XXH128_canonicalFromHash |
173 | # undef XXH128_hashFromCanonical |
174 | /* Finally, free the namespace itself */ |
175 | # undef XXH_NAMESPACE |
176 | |
177 | /* employ the namespace for XXH_INLINE_ALL */ |
178 | # define XXH_NAMESPACE XXH_INLINE_ |
179 | /* |
180 | * Some identifiers (enums, type names) are not symbols, |
181 | * but they must nonetheless be renamed to avoid redeclaration. |
182 | * Alternative solution: do not redeclare them. |
183 | * However, this requires some #ifdefs, and has a more dispersed impact. |
184 | * Meanwhile, renaming can be achieved in a single place. |
185 | */ |
186 | # define XXH_IPREF(Id) XXH_NAMESPACE ## Id |
187 | # define XXH_OK XXH_IPREF(XXH_OK) |
188 | # define XXH_ERROR XXH_IPREF(XXH_ERROR) |
189 | # define XXH_errorcode XXH_IPREF(XXH_errorcode) |
190 | # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
191 | # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
192 | # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
193 | # define XXH32_state_s XXH_IPREF(XXH32_state_s) |
194 | # define XXH32_state_t XXH_IPREF(XXH32_state_t) |
195 | # define XXH64_state_s XXH_IPREF(XXH64_state_s) |
196 | # define XXH64_state_t XXH_IPREF(XXH64_state_t) |
197 | # define XXH3_state_s XXH_IPREF(XXH3_state_s) |
198 | # define XXH3_state_t XXH_IPREF(XXH3_state_t) |
199 | # define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
200 | /* Ensure the header is parsed again, even if it was previously included */ |
201 | # undef XXHASH_H_5627135585666179 |
202 | # undef XXHASH_H_STATIC_13879238742 |
203 | #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
204 | |
205 | |
206 | |
207 | /* **************************************************************** |
208 | * Stable API |
209 | *****************************************************************/ |
210 | #ifndef XXHASH_H_5627135585666179 |
211 | #define XXHASH_H_5627135585666179 1 |
212 | |
213 | |
214 | /*! |
215 | * @defgroup public Public API |
216 | * Contains details on the public xxHash functions. |
217 | * @{ |
218 | */ |
219 | /* specific declaration modes for Windows */ |
220 | #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
221 | # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
222 | # ifdef XXH_EXPORT |
223 | # define XXH_PUBLIC_API __declspec(dllexport) |
224 | # elif XXH_IMPORT |
225 | # define XXH_PUBLIC_API __declspec(dllimport) |
226 | # endif |
227 | # else |
228 | # define XXH_PUBLIC_API /* do nothing */ |
229 | # endif |
230 | #endif |
231 | |
232 | #ifdef XXH_DOXYGEN |
233 | /*! |
234 | * @brief Emulate a namespace by transparently prefixing all symbols. |
235 | * |
236 | * If you want to include _and expose_ xxHash functions from within your own |
237 | * library, but also want to avoid symbol collisions with other libraries which |
238 | * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix |
239 | * any public symbol from xxhash library with the value of XXH_NAMESPACE |
240 | * (therefore, avoid empty or numeric values). |
241 | * |
242 | * Note that no change is required within the calling program as long as it |
243 | * includes `xxhash.h`: Regular symbol names will be automatically translated |
244 | * by this header. |
245 | */ |
246 | # define XXH_NAMESPACE /* YOUR NAME HERE */ |
247 | # undef XXH_NAMESPACE |
248 | #endif |
249 | |
250 | #ifdef XXH_NAMESPACE |
251 | # define XXH_CAT(A,B) A##B |
252 | # define XXH_NAME2(A,B) XXH_CAT(A,B) |
253 | # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
254 | /* XXH32 */ |
255 | # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
256 | # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
257 | # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
258 | # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
259 | # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
260 | # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
261 | # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
262 | # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
263 | # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
264 | /* XXH64 */ |
265 | # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
266 | # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
267 | # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
268 | # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
269 | # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
270 | # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
271 | # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
272 | # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
273 | # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
274 | /* XXH3_64bits */ |
275 | # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
276 | # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
277 | # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
278 | # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) |
279 | # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
280 | # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
281 | # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
282 | # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
283 | # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
284 | # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
285 | # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) |
286 | # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
287 | # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
288 | # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
289 | # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) |
290 | /* XXH3_128bits */ |
291 | # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
292 | # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
293 | # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
294 | # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
295 | # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) |
296 | # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
297 | # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
298 | # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
299 | # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) |
300 | # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
301 | # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
302 | # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
303 | # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
304 | # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
305 | # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
306 | #endif |
307 | |
308 | |
309 | /* ************************************* |
310 | * Version |
311 | ***************************************/ |
312 | #define XXH_VERSION_MAJOR 0 |
313 | #define XXH_VERSION_MINOR 8 |
314 | #define XXH_VERSION_RELEASE 1 |
315 | #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
316 | |
317 | /*! |
318 | * @brief Obtains the xxHash version. |
319 | * |
320 | * This is mostly useful when xxHash is compiled as a shared library, |
321 | * since the returned value comes from the library, as opposed to header file. |
322 | * |
323 | * @return `XXH_VERSION_NUMBER` of the invoked library. |
324 | */ |
325 | XXH_PUBLIC_API unsigned XXH_versionNumber (void); |
326 | |
327 | |
328 | /* **************************** |
329 | * Common basic types |
330 | ******************************/ |
331 | #include <stddef.h> /* size_t */ |
332 | typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; |
333 | |
334 | |
335 | /*-********************************************************************** |
336 | * 32-bit hash |
337 | ************************************************************************/ |
338 | #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */ |
339 | /*! |
340 | * @brief An unsigned 32-bit integer. |
341 | * |
342 | * Not necessarily defined to `uint32_t` but functionally equivalent. |
343 | */ |
344 | typedef uint32_t XXH32_hash_t; |
345 | |
346 | #elif !defined (__VMS) \ |
347 | && (defined (__cplusplus) \ |
348 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
349 | # include <stdint.h> |
350 | typedef uint32_t XXH32_hash_t; |
351 | |
352 | #else |
353 | # include <limits.h> |
354 | # if UINT_MAX == 0xFFFFFFFFUL |
355 | typedef unsigned int XXH32_hash_t; |
356 | # else |
357 | # if ULONG_MAX == 0xFFFFFFFFUL |
358 | typedef unsigned long XXH32_hash_t; |
359 | # else |
360 | # error "unsupported platform: need a 32-bit type" |
361 | # endif |
362 | # endif |
363 | #endif |
364 | |
365 | /*! |
366 | * @} |
367 | * |
368 | * @defgroup xxh32_family XXH32 family |
369 | * @ingroup public |
370 | * Contains functions used in the classic 32-bit xxHash algorithm. |
371 | * |
372 | * @note |
373 | * XXH32 is useful for older platforms, with no or poor 64-bit performance. |
374 | * Note that @ref xxh3_family provides competitive speed |
375 | * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results. |
376 | * |
377 | * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families |
378 | * @see @ref xxh32_impl for implementation details |
379 | * @{ |
380 | */ |
381 | |
382 | /*! |
383 | * @brief Calculates the 32-bit hash of @p input using xxHash32. |
384 | * |
385 | * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s |
386 | * |
387 | * @param input The block of data to be hashed, at least @p length bytes in size. |
388 | * @param length The length of @p input, in bytes. |
389 | * @param seed The 32-bit seed to alter the hash's output predictably. |
390 | * |
391 | * @pre |
392 | * The memory between @p input and @p input + @p length must be valid, |
393 | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
394 | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
395 | * |
396 | * @return The calculated 32-bit hash value. |
397 | * |
398 | * @see |
399 | * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
400 | * Direct equivalents for the other variants of xxHash. |
401 | * @see |
402 | * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. |
403 | */ |
404 | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
405 | |
406 | /*! |
407 | * Streaming functions generate the xxHash value from an incremental input. |
408 | * This method is slower than single-call functions, due to state management. |
409 | * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
410 | * |
411 | * An XXH state must first be allocated using `XXH*_createState()`. |
412 | * |
413 | * Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
414 | * |
415 | * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
416 | * |
417 | * The function returns an error code, with 0 meaning OK, and any other value |
418 | * meaning there is an error. |
419 | * |
420 | * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
421 | * This function returns the nn-bits hash as an int or long long. |
422 | * |
423 | * It's still possible to continue inserting input into the hash state after a |
424 | * digest, and generate new hash values later on by invoking `XXH*_digest()`. |
425 | * |
426 | * When done, release the state using `XXH*_freeState()`. |
427 | * |
428 | * Example code for incrementally hashing a file: |
429 | * @code{.c} |
430 | * #include <stdio.h> |
431 | * #include <xxhash.h> |
432 | * #define BUFFER_SIZE 256 |
433 | * |
434 | * // Note: XXH64 and XXH3 use the same interface. |
435 | * XXH32_hash_t |
436 | * hashFile(FILE* stream) |
437 | * { |
438 | * XXH32_state_t* state; |
439 | * unsigned char buf[BUFFER_SIZE]; |
440 | * size_t amt; |
441 | * XXH32_hash_t hash; |
442 | * |
443 | * state = XXH32_createState(); // Create a state |
444 | * assert(state != NULL); // Error check here |
445 | * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed |
446 | * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) { |
447 | * XXH32_update(state, buf, amt); // Hash the file in chunks |
448 | * } |
449 | * hash = XXH32_digest(state); // Finalize the hash |
450 | * XXH32_freeState(state); // Clean up |
451 | * return hash; |
452 | * } |
453 | * @endcode |
454 | */ |
455 | |
456 | /*! |
457 | * @typedef struct XXH32_state_s XXH32_state_t |
458 | * @brief The opaque state struct for the XXH32 streaming API. |
459 | * |
460 | * @see XXH32_state_s for details. |
461 | */ |
462 | typedef struct XXH32_state_s XXH32_state_t; |
463 | |
464 | /*! |
465 | * @brief Allocates an @ref XXH32_state_t. |
466 | * |
467 | * Must be freed with XXH32_freeState(). |
468 | * @return An allocated XXH32_state_t on success, `NULL` on failure. |
469 | */ |
470 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); |
471 | /*! |
472 | * @brief Frees an @ref XXH32_state_t. |
473 | * |
474 | * Must be allocated with XXH32_createState(). |
475 | * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). |
476 | * @return XXH_OK. |
477 | */ |
478 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
479 | /*! |
480 | * @brief Copies one @ref XXH32_state_t to another. |
481 | * |
482 | * @param dst_state The state to copy to. |
483 | * @param src_state The state to copy from. |
484 | * @pre |
485 | * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
486 | */ |
487 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
488 | |
489 | /*! |
490 | * @brief Resets an @ref XXH32_state_t to begin a new hash. |
491 | * |
492 | * This function resets and seeds a state. Call it before @ref XXH32_update(). |
493 | * |
494 | * @param statePtr The state struct to reset. |
495 | * @param seed The 32-bit seed to alter the hash result predictably. |
496 | * |
497 | * @pre |
498 | * @p statePtr must not be `NULL`. |
499 | * |
500 | * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
501 | */ |
502 | XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
503 | |
504 | /*! |
505 | * @brief Consumes a block of @p input to an @ref XXH32_state_t. |
506 | * |
507 | * Call this to incrementally consume blocks of data. |
508 | * |
509 | * @param statePtr The state struct to update. |
510 | * @param input The block of data to be hashed, at least @p length bytes in size. |
511 | * @param length The length of @p input, in bytes. |
512 | * |
513 | * @pre |
514 | * @p statePtr must not be `NULL`. |
515 | * @pre |
516 | * The memory between @p input and @p input + @p length must be valid, |
517 | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
518 | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
519 | * |
520 | * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
521 | */ |
522 | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
523 | |
524 | /*! |
525 | * @brief Returns the calculated hash value from an @ref XXH32_state_t. |
526 | * |
527 | * @note |
528 | * Calling XXH32_digest() will not affect @p statePtr, so you can update, |
529 | * digest, and update again. |
530 | * |
531 | * @param statePtr The state struct to calculate the hash from. |
532 | * |
533 | * @pre |
534 | * @p statePtr must not be `NULL`. |
535 | * |
536 | * @return The calculated xxHash32 value from that state. |
537 | */ |
538 | XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
539 | |
540 | /******* Canonical representation *******/ |
541 | |
542 | /* |
543 | * The default return values from XXH functions are unsigned 32 and 64 bit |
544 | * integers. |
545 | * This the simplest and fastest format for further post-processing. |
546 | * |
547 | * However, this leaves open the question of what is the order on the byte level, |
548 | * since little and big endian conventions will store the same number differently. |
549 | * |
550 | * The canonical representation settles this issue by mandating big-endian |
551 | * convention, the same convention as human-readable numbers (large digits first). |
552 | * |
553 | * When writing hash values to storage, sending them over a network, or printing |
554 | * them, it's highly recommended to use the canonical representation to ensure |
555 | * portability across a wider range of systems, present and future. |
556 | * |
557 | * The following functions allow transformation of hash values to and from |
558 | * canonical format. |
559 | */ |
560 | |
561 | /*! |
562 | * @brief Canonical (big endian) representation of @ref XXH32_hash_t. |
563 | */ |
564 | typedef struct { |
565 | unsigned char digest[4]; /*!< Hash bytes, big endian */ |
566 | } XXH32_canonical_t; |
567 | |
568 | /*! |
569 | * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. |
570 | * |
571 | * @param dst The @ref XXH32_canonical_t pointer to be stored to. |
572 | * @param hash The @ref XXH32_hash_t to be converted. |
573 | * |
574 | * @pre |
575 | * @p dst must not be `NULL`. |
576 | */ |
577 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
578 | |
579 | /*! |
580 | * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. |
581 | * |
582 | * @param src The @ref XXH32_canonical_t to convert. |
583 | * |
584 | * @pre |
585 | * @p src must not be `NULL`. |
586 | * |
587 | * @return The converted hash. |
588 | */ |
589 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
590 | |
591 | |
592 | #ifdef __has_attribute |
593 | # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) |
594 | #else |
595 | # define XXH_HAS_ATTRIBUTE(x) 0 |
596 | #endif |
597 | |
598 | /* C-language Attributes are added in C23. */ |
599 | #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute) |
600 | # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) |
601 | #else |
602 | # define XXH_HAS_C_ATTRIBUTE(x) 0 |
603 | #endif |
604 | |
605 | #if defined(__cplusplus) && defined(__has_cpp_attribute) |
606 | # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) |
607 | #else |
608 | # define XXH_HAS_CPP_ATTRIBUTE(x) 0 |
609 | #endif |
610 | |
611 | /* |
612 | Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute |
613 | introduced in CPP17 and C23. |
614 | CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough |
615 | C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough |
616 | */ |
617 | #if XXH_HAS_C_ATTRIBUTE(x) |
618 | # define XXH_FALLTHROUGH [[fallthrough]] |
619 | #elif XXH_HAS_CPP_ATTRIBUTE(x) |
620 | # define XXH_FALLTHROUGH [[fallthrough]] |
621 | #elif XXH_HAS_ATTRIBUTE(__fallthrough__) |
622 | # define XXH_FALLTHROUGH __attribute__ ((fallthrough)) |
623 | #else |
624 | # define XXH_FALLTHROUGH |
625 | #endif |
626 | |
627 | /*! |
628 | * @} |
629 | * @ingroup public |
630 | * @{ |
631 | */ |
632 | |
633 | #ifndef XXH_NO_LONG_LONG |
634 | /*-********************************************************************** |
635 | * 64-bit hash |
636 | ************************************************************************/ |
637 | #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */ |
638 | /*! |
639 | * @brief An unsigned 64-bit integer. |
640 | * |
641 | * Not necessarily defined to `uint64_t` but functionally equivalent. |
642 | */ |
643 | typedef uint64_t XXH64_hash_t; |
644 | #elif !defined (__VMS) \ |
645 | && (defined (__cplusplus) \ |
646 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
647 | # include <stdint.h> |
648 | typedef uint64_t XXH64_hash_t; |
649 | #else |
650 | # include <limits.h> |
651 | # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL |
652 | /* LP64 ABI says uint64_t is unsigned long */ |
653 | typedef unsigned long XXH64_hash_t; |
654 | # else |
655 | /* the following type must have a width of 64-bit */ |
656 | typedef unsigned long long XXH64_hash_t; |
657 | # endif |
658 | #endif |
659 | |
660 | /*! |
661 | * @} |
662 | * |
663 | * @defgroup xxh64_family XXH64 family |
664 | * @ingroup public |
665 | * @{ |
666 | * Contains functions used in the classic 64-bit xxHash algorithm. |
667 | * |
668 | * @note |
669 | * XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
670 | * and offers true 64/128 bit hash results. |
671 | * It provides better speed for systems with vector processing capabilities. |
672 | */ |
673 | |
674 | |
675 | /*! |
676 | * @brief Calculates the 64-bit hash of @p input using xxHash64. |
677 | * |
678 | * This function usually runs faster on 64-bit systems, but slower on 32-bit |
679 | * systems (see benchmark). |
680 | * |
681 | * @param input The block of data to be hashed, at least @p length bytes in size. |
682 | * @param length The length of @p input, in bytes. |
683 | * @param seed The 64-bit seed to alter the hash's output predictably. |
684 | * |
685 | * @pre |
686 | * The memory between @p input and @p input + @p length must be valid, |
687 | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
688 | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
689 | * |
690 | * @return The calculated 64-bit hash. |
691 | * |
692 | * @see |
693 | * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
694 | * Direct equivalents for the other variants of xxHash. |
695 | * @see |
696 | * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. |
697 | */ |
698 | XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed); |
699 | |
700 | /******* Streaming *******/ |
701 | /*! |
702 | * @brief The opaque state struct for the XXH64 streaming API. |
703 | * |
704 | * @see XXH64_state_s for details. |
705 | */ |
706 | typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
707 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); |
708 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
709 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
710 | |
711 | XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); |
712 | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); |
713 | XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); |
714 | |
715 | /******* Canonical representation *******/ |
716 | typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
717 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); |
718 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); |
719 | |
720 | #ifndef XXH_NO_XXH3 |
721 | /*! |
722 | * @} |
723 | * ************************************************************************ |
724 | * @defgroup xxh3_family XXH3 family |
725 | * @ingroup public |
726 | * @{ |
727 | * |
728 | * XXH3 is a more recent hash algorithm featuring: |
729 | * - Improved speed for both small and large inputs |
730 | * - True 64-bit and 128-bit outputs |
731 | * - SIMD acceleration |
732 | * - Improved 32-bit viability |
733 | * |
734 | * Speed analysis methodology is explained here: |
735 | * |
736 | * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
737 | * |
738 | * Compared to XXH64, expect XXH3 to run approximately |
739 | * ~2x faster on large inputs and >3x faster on small ones, |
740 | * exact differences vary depending on platform. |
741 | * |
742 | * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, |
743 | * but does not require it. |
744 | * Any 32-bit and 64-bit targets that can run XXH32 smoothly |
745 | * can run XXH3 at competitive speeds, even without vector support. |
746 | * Further details are explained in the implementation. |
747 | * |
748 | * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, |
749 | * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro. |
750 | * |
751 | * XXH3 implementation is portable: |
752 | * it has a generic C90 formulation that can be compiled on any platform, |
753 | * all implementations generage exactly the same hash value on all platforms. |
754 | * Starting from v0.8.0, it's also labelled "stable", meaning that |
755 | * any future version will also generate the same hash value. |
756 | * |
757 | * XXH3 offers 2 variants, _64bits and _128bits. |
758 | * |
759 | * When only 64 bits are needed, prefer invoking the _64bits variant, as it |
760 | * reduces the amount of mixing, resulting in faster speed on small inputs. |
761 | * It's also generally simpler to manipulate a scalar return type than a struct. |
762 | * |
763 | * The API supports one-shot hashing, streaming mode, and custom secrets. |
764 | */ |
765 | |
766 | /*-********************************************************************** |
767 | * XXH3 64-bit variant |
768 | ************************************************************************/ |
769 | |
770 | /* XXH3_64bits(): |
771 | * default 64-bit variant, using default secret and default seed of 0. |
772 | * It's the fastest variant. */ |
773 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); |
774 | |
775 | /* |
776 | * XXH3_64bits_withSeed(): |
777 | * This variant generates a custom secret on the fly |
778 | * based on default secret altered using the `seed` value. |
779 | * While this operation is decently fast, note that it's not completely free. |
780 | * Note: seed==0 produces the same results as XXH3_64bits(). |
781 | */ |
782 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
783 | |
784 | /*! |
785 | * The bare minimum size for a custom secret. |
786 | * |
787 | * @see |
788 | * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), |
789 | * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). |
790 | */ |
791 | #define XXH3_SECRET_SIZE_MIN 136 |
792 | |
793 | /* |
794 | * XXH3_64bits_withSecret(): |
795 | * It's possible to provide any blob of bytes as a "secret" to generate the hash. |
796 | * This makes it more difficult for an external actor to prepare an intentional collision. |
797 | * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). |
798 | * However, the quality of the secret impacts the dispersion of the hash algorithm. |
799 | * Therefore, the secret _must_ look like a bunch of random bytes. |
800 | * Avoid "trivial" or structured data such as repeated sequences or a text document. |
801 | * Whenever in doubt about the "randomness" of the blob of bytes, |
802 | * consider employing "XXH3_generateSecret()" instead (see below). |
803 | * It will generate a proper high entropy secret derived from the blob of bytes. |
804 | * Another advantage of using XXH3_generateSecret() is that |
805 | * it guarantees that all bits within the initial blob of bytes |
806 | * will impact every bit of the output. |
807 | * This is not necessarily the case when using the blob of bytes directly |
808 | * because, when hashing _small_ inputs, only a portion of the secret is employed. |
809 | */ |
810 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
811 | |
812 | |
813 | /******* Streaming *******/ |
814 | /* |
815 | * Streaming requires state maintenance. |
816 | * This operation costs memory and CPU. |
817 | * As a consequence, streaming is slower than one-shot hashing. |
818 | * For better performance, prefer one-shot functions whenever applicable. |
819 | */ |
820 | |
821 | /*! |
822 | * @brief The state struct for the XXH3 streaming API. |
823 | * |
824 | * @see XXH3_state_s for details. |
825 | */ |
826 | typedef struct XXH3_state_s XXH3_state_t; |
827 | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); |
828 | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
829 | XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); |
830 | |
831 | /* |
832 | * XXH3_64bits_reset(): |
833 | * Initialize with default parameters. |
834 | * digest will be equivalent to `XXH3_64bits()`. |
835 | */ |
836 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); |
837 | /* |
838 | * XXH3_64bits_reset_withSeed(): |
839 | * Generate a custom secret from `seed`, and store it into `statePtr`. |
840 | * digest will be equivalent to `XXH3_64bits_withSeed()`. |
841 | */ |
842 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
843 | /* |
844 | * XXH3_64bits_reset_withSecret(): |
845 | * `secret` is referenced, it _must outlive_ the hash streaming session. |
846 | * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, |
847 | * and the quality of produced hash values depends on secret's entropy |
848 | * (secret's content should look like a bunch of random bytes). |
849 | * When in doubt about the randomness of a candidate `secret`, |
850 | * consider employing `XXH3_generateSecret()` instead (see below). |
851 | */ |
852 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
853 | |
854 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
855 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); |
856 | |
857 | /* note : canonical representation of XXH3 is the same as XXH64 |
858 | * since they both produce XXH64_hash_t values */ |
859 | |
860 | |
861 | /*-********************************************************************** |
862 | * XXH3 128-bit variant |
863 | ************************************************************************/ |
864 | |
865 | /*! |
866 | * @brief The return value from 128-bit hashes. |
867 | * |
868 | * Stored in little endian order, although the fields themselves are in native |
869 | * endianness. |
870 | */ |
871 | typedef struct { |
872 | XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ |
873 | XXH64_hash_t high64; /*!< `value >> 64` */ |
874 | } XXH128_hash_t; |
875 | |
876 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); |
877 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
878 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
879 | |
880 | /******* Streaming *******/ |
881 | /* |
882 | * Streaming requires state maintenance. |
883 | * This operation costs memory and CPU. |
884 | * As a consequence, streaming is slower than one-shot hashing. |
885 | * For better performance, prefer one-shot functions whenever applicable. |
886 | * |
887 | * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
888 | * Use already declared XXH3_createState() and XXH3_freeState(). |
889 | * |
890 | * All reset and streaming functions have same meaning as their 64-bit counterpart. |
891 | */ |
892 | |
893 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); |
894 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
895 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
896 | |
897 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
898 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); |
899 | |
900 | /* Following helper functions make it possible to compare XXH128_hast_t values. |
901 | * Since XXH128_hash_t is a structure, this capability is not offered by the language. |
902 | * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
903 | |
904 | /*! |
905 | * XXH128_isEqual(): |
906 | * Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
907 | */ |
908 | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
909 | |
910 | /*! |
911 | * XXH128_cmp(): |
912 | * |
913 | * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
914 | * |
915 | * return: >0 if *h128_1 > *h128_2 |
916 | * =0 if *h128_1 == *h128_2 |
917 | * <0 if *h128_1 < *h128_2 |
918 | */ |
919 | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); |
920 | |
921 | |
922 | /******* Canonical representation *******/ |
923 | typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
924 | XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); |
925 | XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); |
926 | |
927 | |
928 | #endif /* !XXH_NO_XXH3 */ |
929 | #endif /* XXH_NO_LONG_LONG */ |
930 | |
931 | /*! |
932 | * @} |
933 | */ |
934 | #endif /* XXHASH_H_5627135585666179 */ |
935 | |
936 | |
937 | |
938 | #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
939 | #define XXHASH_H_STATIC_13879238742 |
940 | /* **************************************************************************** |
941 | * This section contains declarations which are not guaranteed to remain stable. |
942 | * They may change in future versions, becoming incompatible with a different |
943 | * version of the library. |
944 | * These declarations should only be used with static linking. |
945 | * Never use them in association with dynamic linking! |
946 | ***************************************************************************** */ |
947 | |
948 | /* |
949 | * These definitions are only present to allow static allocation |
950 | * of XXH states, on stack or in a struct, for example. |
951 | * Never **ever** access their members directly. |
952 | */ |
953 | |
954 | /*! |
955 | * @internal |
956 | * @brief Structure for XXH32 streaming API. |
957 | * |
958 | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
959 | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
960 | * an opaque type. This allows fields to safely be changed. |
961 | * |
962 | * Typedef'd to @ref XXH32_state_t. |
963 | * Do not access the members of this struct directly. |
964 | * @see XXH64_state_s, XXH3_state_s |
965 | */ |
966 | struct XXH32_state_s { |
967 | XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ |
968 | XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ |
969 | XXH32_hash_t v[4]; /*!< Accumulator lanes */ |
970 | XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ |
971 | XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ |
972 | XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */ |
973 | }; /* typedef'd to XXH32_state_t */ |
974 | |
975 | |
976 | #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
977 | |
978 | /*! |
979 | * @internal |
980 | * @brief Structure for XXH64 streaming API. |
981 | * |
982 | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
983 | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
984 | * an opaque type. This allows fields to safely be changed. |
985 | * |
986 | * Typedef'd to @ref XXH64_state_t. |
987 | * Do not access the members of this struct directly. |
988 | * @see XXH32_state_s, XXH3_state_s |
989 | */ |
990 | struct XXH64_state_s { |
991 | XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ |
992 | XXH64_hash_t v[4]; /*!< Accumulator lanes */ |
993 | XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ |
994 | XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ |
995 | XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ |
996 | XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */ |
997 | }; /* typedef'd to XXH64_state_t */ |
998 | |
999 | |
1000 | #ifndef XXH_NO_XXH3 |
1001 | |
1002 | #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ |
1003 | # include <stdalign.h> |
1004 | # define XXH_ALIGN(n) alignas(n) |
1005 | #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ |
1006 | /* In C++ alignas() is a keyword */ |
1007 | # define XXH_ALIGN(n) alignas(n) |
1008 | #elif defined(__GNUC__) |
1009 | # define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
1010 | #elif defined(_MSC_VER) |
1011 | # define XXH_ALIGN(n) __declspec(align(n)) |
1012 | #else |
1013 | # define XXH_ALIGN(n) /* disabled */ |
1014 | #endif |
1015 | |
1016 | /* Old GCC versions only accept the attribute after the type in structures. */ |
1017 | #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
1018 | && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ |
1019 | && defined(__GNUC__) |
1020 | # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
1021 | #else |
1022 | # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
1023 | #endif |
1024 | |
1025 | /*! |
1026 | * @brief The size of the internal XXH3 buffer. |
1027 | * |
1028 | * This is the optimal update size for incremental hashing. |
1029 | * |
1030 | * @see XXH3_64b_update(), XXH3_128b_update(). |
1031 | */ |
1032 | #define XXH3_INTERNALBUFFER_SIZE 256 |
1033 | |
1034 | /*! |
1035 | * @brief Default size of the secret buffer (and @ref XXH3_kSecret). |
1036 | * |
1037 | * This is the size used in @ref XXH3_kSecret and the seeded functions. |
1038 | * |
1039 | * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. |
1040 | */ |
1041 | #define XXH3_SECRET_DEFAULT_SIZE 192 |
1042 | |
1043 | /*! |
1044 | * @internal |
1045 | * @brief Structure for XXH3 streaming API. |
1046 | * |
1047 | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
1048 | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. |
1049 | * Otherwise it is an opaque type. |
1050 | * Never use this definition in combination with dynamic library. |
1051 | * This allows fields to safely be changed in the future. |
1052 | * |
1053 | * @note ** This structure has a strict alignment requirement of 64 bytes!! ** |
1054 | * Do not allocate this with `malloc()` or `new`, |
1055 | * it will not be sufficiently aligned. |
1056 | * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. |
1057 | * |
1058 | * Typedef'd to @ref XXH3_state_t. |
1059 | * Do never access the members of this struct directly. |
1060 | * |
1061 | * @see XXH3_INITSTATE() for stack initialization. |
1062 | * @see XXH3_createState(), XXH3_freeState(). |
1063 | * @see XXH32_state_s, XXH64_state_s |
1064 | */ |
1065 | struct XXH3_state_s { |
1066 | XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
1067 | /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */ |
1068 | XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
1069 | /*!< Used to store a custom secret generated from a seed. */ |
1070 | XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
1071 | /*!< The internal buffer. @see XXH32_state_s::mem32 */ |
1072 | XXH32_hash_t bufferedSize; |
1073 | /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ |
1074 | XXH32_hash_t useSeed; |
1075 | /*!< Reserved field. Needed for padding on 64-bit. */ |
1076 | size_t nbStripesSoFar; |
1077 | /*!< Number or stripes processed. */ |
1078 | XXH64_hash_t totalLen; |
1079 | /*!< Total length hashed. 64-bit even on 32-bit targets. */ |
1080 | size_t nbStripesPerBlock; |
1081 | /*!< Number of stripes per block. */ |
1082 | size_t secretLimit; |
1083 | /*!< Size of @ref customSecret or @ref extSecret */ |
1084 | XXH64_hash_t seed; |
1085 | /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ |
1086 | XXH64_hash_t reserved64; |
1087 | /*!< Reserved field. */ |
1088 | const unsigned char* extSecret; |
1089 | /*!< Reference to an external secret for the _withSecret variants, NULL |
1090 | * for other variants. */ |
1091 | /* note: there may be some padding at the end due to alignment on 64 bytes */ |
1092 | }; /* typedef'd to XXH3_state_t */ |
1093 | |
1094 | #undef XXH_ALIGN_MEMBER |
1095 | |
1096 | /*! |
1097 | * @brief Initializes a stack-allocated `XXH3_state_s`. |
1098 | * |
1099 | * When the @ref XXH3_state_t structure is merely emplaced on stack, |
1100 | * it should be initialized with XXH3_INITSTATE() or a memset() |
1101 | * in case its first reset uses XXH3_NNbits_reset_withSeed(). |
1102 | * This init can be omitted if the first reset uses default or _withSecret mode. |
1103 | * This operation isn't necessary when the state is created with XXH3_createState(). |
1104 | * Note that this doesn't prepare the state for a streaming operation, |
1105 | * it's still necessary to use XXH3_NNbits_reset*() afterwards. |
1106 | */ |
1107 | #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } |
1108 | |
1109 | |
1110 | /* XXH128() : |
1111 | * simple alias to pre-selected XXH3_128bits variant |
1112 | */ |
1113 | XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); |
1114 | |
1115 | |
1116 | /* === Experimental API === */ |
1117 | /* Symbols defined below must be considered tied to a specific library version. */ |
1118 | |
1119 | /* |
1120 | * XXH3_generateSecret(): |
1121 | * |
1122 | * Derive a high-entropy secret from any user-defined content, named customSeed. |
1123 | * The generated secret can be used in combination with `*_withSecret()` functions. |
1124 | * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, |
1125 | * as it becomes much more difficult for an external actor to guess how to impact the calculation logic. |
1126 | * |
1127 | * The function accepts as input a custom seed of any length and any content, |
1128 | * and derives from it a high-entropy secret of length @secretSize |
1129 | * into an already allocated buffer @secretBuffer. |
1130 | * @secretSize must be >= XXH3_SECRET_SIZE_MIN |
1131 | * |
1132 | * The generated secret can then be used with any `*_withSecret()` variant. |
1133 | * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, |
1134 | * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` |
1135 | * are part of this list. They all accept a `secret` parameter |
1136 | * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN) |
1137 | * _and_ feature very high entropy (consist of random-looking bytes). |
1138 | * These conditions can be a high bar to meet, so |
1139 | * XXH3_generateSecret() can be employed to ensure proper quality. |
1140 | * |
1141 | * customSeed can be anything. It can have any size, even small ones, |
1142 | * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes. |
1143 | * The resulting `secret` will nonetheless provide all required qualities. |
1144 | * |
1145 | * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
1146 | */ |
1147 | XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize); |
1148 | |
1149 | |
1150 | /* |
1151 | * XXH3_generateSecret_fromSeed(): |
1152 | * |
1153 | * Generate the same secret as the _withSeed() variants. |
1154 | * |
1155 | * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily). |
1156 | * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes. |
1157 | * |
1158 | * The generated secret can be used in combination with |
1159 | *`*_withSecret()` and `_withSecretandSeed()` variants. |
1160 | * This generator is notably useful in combination with `_withSecretandSeed()`, |
1161 | * as a way to emulate a faster `_withSeed()` variant. |
1162 | */ |
1163 | XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed); |
1164 | |
1165 | /* |
1166 | * *_withSecretandSeed() : |
1167 | * These variants generate hash values using either |
1168 | * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) |
1169 | * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX). |
1170 | * |
1171 | * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. |
1172 | * `_withSeed()` has to generate the secret on the fly for "large" keys. |
1173 | * It's fast, but can be perceptible for "not so large" keys (< 1 KB). |
1174 | * `_withSecret()` has to generate the masks on the fly for "small" keys, |
1175 | * which requires more instructions than _withSeed() variants. |
1176 | * Therefore, _withSecretandSeed variant combines the best of both worlds. |
1177 | * |
1178 | * When @secret has been generated by XXH3_generateSecret_fromSeed(), |
1179 | * this variant produces *exactly* the same results as `_withSeed()` variant, |
1180 | * hence offering only a pure speed benefit on "large" input, |
1181 | * by skipping the need to regenerate the secret for every large input. |
1182 | * |
1183 | * Another usage scenario is to hash the secret to a 64-bit hash value, |
1184 | * for example with XXH3_64bits(), which then becomes the seed, |
1185 | * and then employ both the seed and the secret in _withSecretandSeed(). |
1186 | * On top of speed, an added benefit is that each bit in the secret |
1187 | * has a 50% chance to swap each bit in the output, |
1188 | * via its impact to the seed. |
1189 | * This is not guaranteed when using the secret directly in "small data" scenarios, |
1190 | * because only portions of the secret are employed for small data. |
1191 | */ |
1192 | XXH_PUBLIC_API XXH64_hash_t |
1193 | XXH3_64bits_withSecretandSeed(const void* data, size_t len, |
1194 | const void* secret, size_t secretSize, |
1195 | XXH64_hash_t seed); |
1196 | |
1197 | XXH_PUBLIC_API XXH128_hash_t |
1198 | XXH3_128bits_withSecretandSeed(const void* data, size_t len, |
1199 | const void* secret, size_t secretSize, |
1200 | XXH64_hash_t seed64); |
1201 | |
1202 | XXH_PUBLIC_API XXH_errorcode |
1203 | XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, |
1204 | const void* secret, size_t secretSize, |
1205 | XXH64_hash_t seed64); |
1206 | |
1207 | XXH_PUBLIC_API XXH_errorcode |
1208 | XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, |
1209 | const void* secret, size_t secretSize, |
1210 | XXH64_hash_t seed64); |
1211 | |
1212 | |
1213 | #endif /* XXH_NO_XXH3 */ |
1214 | #endif /* XXH_NO_LONG_LONG */ |
1215 | #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
1216 | # define XXH_IMPLEMENTATION |
1217 | #endif |
1218 | |
1219 | #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
1220 | |
1221 | |
1222 | /* ======================================================================== */ |
1223 | /* ======================================================================== */ |
1224 | /* ======================================================================== */ |
1225 | |
1226 | |
1227 | /*-********************************************************************** |
1228 | * xxHash implementation |
1229 | *-********************************************************************** |
1230 | * xxHash's implementation used to be hosted inside xxhash.c. |
1231 | * |
1232 | * However, inlining requires implementation to be visible to the compiler, |
1233 | * hence be included alongside the header. |
1234 | * Previously, implementation was hosted inside xxhash.c, |
1235 | * which was then #included when inlining was activated. |
1236 | * This construction created issues with a few build and install systems, |
1237 | * as it required xxhash.c to be stored in /include directory. |
1238 | * |
1239 | * xxHash implementation is now directly integrated within xxhash.h. |
1240 | * As a consequence, xxhash.c is no longer needed in /include. |
1241 | * |
1242 | * xxhash.c is still available and is still useful. |
1243 | * In a "normal" setup, when xxhash is not inlined, |
1244 | * xxhash.h only exposes the prototypes and public symbols, |
1245 | * while xxhash.c can be built into an object file xxhash.o |
1246 | * which can then be linked into the final binary. |
1247 | ************************************************************************/ |
1248 | |
1249 | #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
1250 | || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
1251 | # define XXH_IMPLEM_13a8737387 |
1252 | |
1253 | /* ************************************* |
1254 | * Tuning parameters |
1255 | ***************************************/ |
1256 | |
1257 | /*! |
1258 | * @defgroup tuning Tuning parameters |
1259 | * @{ |
1260 | * |
1261 | * Various macros to control xxHash's behavior. |
1262 | */ |
1263 | #ifdef XXH_DOXYGEN |
1264 | /*! |
1265 | * @brief Define this to disable 64-bit code. |
1266 | * |
1267 | * Useful if only using the @ref xxh32_family and you have a strict C90 compiler. |
1268 | */ |
1269 | # define XXH_NO_LONG_LONG |
1270 | # undef XXH_NO_LONG_LONG /* don't actually */ |
1271 | /*! |
1272 | * @brief Controls how unaligned memory is accessed. |
1273 | * |
1274 | * By default, access to unaligned memory is controlled by `memcpy()`, which is |
1275 | * safe and portable. |
1276 | * |
1277 | * Unfortunately, on some target/compiler combinations, the generated assembly |
1278 | * is sub-optimal. |
1279 | * |
1280 | * The below switch allow selection of a different access method |
1281 | * in the search for improved performance. |
1282 | * |
1283 | * @par Possible options: |
1284 | * |
1285 | * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` |
1286 | * @par |
1287 | * Use `memcpy()`. Safe and portable. Note that most modern compilers will |
1288 | * eliminate the function call and treat it as an unaligned access. |
1289 | * |
1290 | * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))` |
1291 | * @par |
1292 | * Depends on compiler extensions and is therefore not portable. |
1293 | * This method is safe _if_ your compiler supports it, |
1294 | * and *generally* as fast or faster than `memcpy`. |
1295 | * |
1296 | * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast |
1297 | * @par |
1298 | * Casts directly and dereferences. This method doesn't depend on the |
1299 | * compiler, but it violates the C standard as it directly dereferences an |
1300 | * unaligned pointer. It can generate buggy code on targets which do not |
1301 | * support unaligned memory accesses, but in some circumstances, it's the |
1302 | * only known way to get the most performance. |
1303 | * |
1304 | * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift |
1305 | * @par |
1306 | * Also portable. This can generate the best code on old compilers which don't |
1307 | * inline small `memcpy()` calls, and it might also be faster on big-endian |
1308 | * systems which lack a native byteswap instruction. However, some compilers |
1309 | * will emit literal byteshifts even if the target supports unaligned access. |
1310 | * . |
1311 | * |
1312 | * @warning |
1313 | * Methods 1 and 2 rely on implementation-defined behavior. Use these with |
1314 | * care, as what works on one compiler/platform/optimization level may cause |
1315 | * another to read garbage data or even crash. |
1316 | * |
1317 | * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. |
1318 | * |
1319 | * Prefer these methods in priority order (0 > 3 > 1 > 2) |
1320 | */ |
1321 | # define XXH_FORCE_MEMORY_ACCESS 0 |
1322 | |
1323 | /*! |
1324 | * @def XXH_FORCE_ALIGN_CHECK |
1325 | * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() |
1326 | * and XXH64() only). |
1327 | * |
1328 | * This is an important performance trick for architectures without decent |
1329 | * unaligned memory access performance. |
1330 | * |
1331 | * It checks for input alignment, and when conditions are met, uses a "fast |
1332 | * path" employing direct 32-bit/64-bit reads, resulting in _dramatically |
1333 | * faster_ read speed. |
1334 | * |
1335 | * The check costs one initial branch per hash, which is generally negligible, |
1336 | * but not zero. |
1337 | * |
1338 | * Moreover, it's not useful to generate an additional code path if memory |
1339 | * access uses the same instruction for both aligned and unaligned |
1340 | * addresses (e.g. x86 and aarch64). |
1341 | * |
1342 | * In these cases, the alignment check can be removed by setting this macro to 0. |
1343 | * Then the code will always use unaligned memory access. |
1344 | * Align check is automatically disabled on x86, x64 & arm64, |
1345 | * which are platforms known to offer good unaligned memory accesses performance. |
1346 | * |
1347 | * This option does not affect XXH3 (only XXH32 and XXH64). |
1348 | */ |
1349 | # define XXH_FORCE_ALIGN_CHECK 0 |
1350 | |
1351 | /*! |
1352 | * @def XXH_NO_INLINE_HINTS |
1353 | * @brief When non-zero, sets all functions to `static`. |
1354 | * |
1355 | * By default, xxHash tries to force the compiler to inline almost all internal |
1356 | * functions. |
1357 | * |
1358 | * This can usually improve performance due to reduced jumping and improved |
1359 | * constant folding, but significantly increases the size of the binary which |
1360 | * might not be favorable. |
1361 | * |
1362 | * Additionally, sometimes the forced inlining can be detrimental to performance, |
1363 | * depending on the architecture. |
1364 | * |
1365 | * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
1366 | * compiler full control on whether to inline or not. |
1367 | * |
1368 | * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using |
1369 | * -fno-inline with GCC or Clang, this will automatically be defined. |
1370 | */ |
1371 | # define XXH_NO_INLINE_HINTS 0 |
1372 | |
1373 | /*! |
1374 | * @def XXH32_ENDJMP |
1375 | * @brief Whether to use a jump for `XXH32_finalize`. |
1376 | * |
1377 | * For performance, `XXH32_finalize` uses multiple branches in the finalizer. |
1378 | * This is generally preferable for performance, |
1379 | * but depending on exact architecture, a jmp may be preferable. |
1380 | * |
1381 | * This setting is only possibly making a difference for very small inputs. |
1382 | */ |
1383 | # define XXH32_ENDJMP 0 |
1384 | |
1385 | /*! |
1386 | * @internal |
1387 | * @brief Redefines old internal names. |
1388 | * |
1389 | * For compatibility with code that uses xxHash's internals before the names |
1390 | * were changed to improve namespacing. There is no other reason to use this. |
1391 | */ |
1392 | # define XXH_OLD_NAMES |
1393 | # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ |
1394 | #endif /* XXH_DOXYGEN */ |
1395 | /*! |
1396 | * @} |
1397 | */ |
1398 | |
1399 | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
1400 | /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */ |
1401 | # if !defined(__clang__) && \ |
1402 | ( \ |
1403 | (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
1404 | ( \ |
1405 | defined(__GNUC__) && ( \ |
1406 | (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \ |
1407 | ( \ |
1408 | defined(__mips__) && \ |
1409 | (__mips <= 5 || __mips_isa_rev < 6) && \ |
1410 | (!defined(__mips16) || defined(__mips_mips16e2)) \ |
1411 | ) \ |
1412 | ) \ |
1413 | ) \ |
1414 | ) |
1415 | # define XXH_FORCE_MEMORY_ACCESS 1 |
1416 | # endif |
1417 | #endif |
1418 | |
1419 | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
1420 | # if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \ |
1421 | || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ |
1422 | # define XXH_FORCE_ALIGN_CHECK 0 |
1423 | # else |
1424 | # define XXH_FORCE_ALIGN_CHECK 1 |
1425 | # endif |
1426 | #endif |
1427 | |
1428 | #ifndef XXH_NO_INLINE_HINTS |
1429 | # if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ |
1430 | || defined(__NO_INLINE__) /* -O0, -fno-inline */ |
1431 | # define XXH_NO_INLINE_HINTS 1 |
1432 | # else |
1433 | # define XXH_NO_INLINE_HINTS 0 |
1434 | # endif |
1435 | #endif |
1436 | |
1437 | #ifndef XXH32_ENDJMP |
1438 | /* generally preferable for performance */ |
1439 | # define XXH32_ENDJMP 0 |
1440 | #endif |
1441 | |
1442 | /*! |
1443 | * @defgroup impl Implementation |
1444 | * @{ |
1445 | */ |
1446 | |
1447 | |
1448 | /* ************************************* |
1449 | * Includes & Memory related functions |
1450 | ***************************************/ |
1451 | /* Modify the local functions below should you wish to use some other memory routines */ |
1452 | /* for ZSTD_malloc(), ZSTD_free() */ |
1453 | #define ZSTD_DEPS_NEED_MALLOC |
1454 | #include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */ |
1455 | static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); } |
1456 | static void XXH_free (void* p) { ZSTD_free(p); } |
1457 | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); } |
1458 | |
1459 | |
1460 | /* ************************************* |
1461 | * Compiler Specific Options |
1462 | ***************************************/ |
1463 | #ifdef _MSC_VER /* Visual Studio warning fix */ |
1464 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
1465 | #endif |
1466 | |
1467 | #if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
1468 | # if defined(__GNUC__) || defined(__clang__) |
1469 | # define XXH_FORCE_INLINE static __attribute__((unused)) |
1470 | # else |
1471 | # define XXH_FORCE_INLINE static |
1472 | # endif |
1473 | # define XXH_NO_INLINE static |
1474 | /* enable inlining hints */ |
1475 | #elif defined(__GNUC__) || defined(__clang__) |
1476 | # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
1477 | # define XXH_NO_INLINE static __attribute__((noinline)) |
1478 | #elif defined(_MSC_VER) /* Visual Studio */ |
1479 | # define XXH_FORCE_INLINE static __forceinline |
1480 | # define XXH_NO_INLINE static __declspec(noinline) |
1481 | #elif defined (__cplusplus) \ |
1482 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
1483 | # define XXH_FORCE_INLINE static inline |
1484 | # define XXH_NO_INLINE static |
1485 | #else |
1486 | # define XXH_FORCE_INLINE static |
1487 | # define XXH_NO_INLINE static |
1488 | #endif |
1489 | |
1490 | |
1491 | |
1492 | /* ************************************* |
1493 | * Debug |
1494 | ***************************************/ |
1495 | /*! |
1496 | * @ingroup tuning |
1497 | * @def XXH_DEBUGLEVEL |
1498 | * @brief Sets the debugging level. |
1499 | * |
1500 | * XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
1501 | * compiler's command line options. The value must be a number. |
1502 | */ |
1503 | #ifndef XXH_DEBUGLEVEL |
1504 | # ifdef DEBUGLEVEL /* backwards compat */ |
1505 | # define XXH_DEBUGLEVEL DEBUGLEVEL |
1506 | # else |
1507 | # define XXH_DEBUGLEVEL 0 |
1508 | # endif |
1509 | #endif |
1510 | |
1511 | #if (XXH_DEBUGLEVEL>=1) |
1512 | # include <assert.h> /* note: can still be disabled with NDEBUG */ |
1513 | # define XXH_ASSERT(c) assert(c) |
1514 | #else |
1515 | # define XXH_ASSERT(c) ((void)0) |
1516 | #endif |
1517 | |
1518 | /* note: use after variable declarations */ |
1519 | #ifndef XXH_STATIC_ASSERT |
1520 | # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ |
1521 | # include <assert.h> |
1522 | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
1523 | # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ |
1524 | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
1525 | # else |
1526 | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) |
1527 | # endif |
1528 | # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) |
1529 | #endif |
1530 | |
1531 | /*! |
1532 | * @internal |
1533 | * @def XXH_COMPILER_GUARD(var) |
1534 | * @brief Used to prevent unwanted optimizations for @p var. |
1535 | * |
1536 | * It uses an empty GCC inline assembly statement with a register constraint |
1537 | * which forces @p var into a general purpose register (e.g. eax, ebx, ecx |
1538 | * on x86) and marks it as modified. |
1539 | * |
1540 | * This is used in a few places to avoid unwanted autovectorization (e.g. |
1541 | * XXH32_round()). All vectorization we want is explicit via intrinsics, |
1542 | * and _usually_ isn't wanted elsewhere. |
1543 | * |
1544 | * We also use it to prevent unwanted constant folding for AArch64 in |
1545 | * XXH3_initCustomSecret_scalar(). |
1546 | */ |
1547 | #if defined(__GNUC__) || defined(__clang__) |
1548 | # define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var)) |
1549 | #else |
1550 | # define XXH_COMPILER_GUARD(var) ((void)0) |
1551 | #endif |
1552 | |
1553 | /* ************************************* |
1554 | * Basic Types |
1555 | ***************************************/ |
1556 | #if !defined (__VMS) \ |
1557 | && (defined (__cplusplus) \ |
1558 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
1559 | # include <stdint.h> |
1560 | typedef uint8_t xxh_u8; |
1561 | #else |
1562 | typedef unsigned char xxh_u8; |
1563 | #endif |
1564 | typedef XXH32_hash_t xxh_u32; |
1565 | |
1566 | #ifdef XXH_OLD_NAMES |
1567 | # define BYTE xxh_u8 |
1568 | # define U8 xxh_u8 |
1569 | # define U32 xxh_u32 |
1570 | #endif |
1571 | |
1572 | /* *** Memory access *** */ |
1573 | |
1574 | /*! |
1575 | * @internal |
1576 | * @fn xxh_u32 XXH_read32(const void* ptr) |
1577 | * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. |
1578 | * |
1579 | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1580 | * |
1581 | * @param ptr The pointer to read from. |
1582 | * @return The 32-bit native endian integer from the bytes at @p ptr. |
1583 | */ |
1584 | |
1585 | /*! |
1586 | * @internal |
1587 | * @fn xxh_u32 XXH_readLE32(const void* ptr) |
1588 | * @brief Reads an unaligned 32-bit little endian integer from @p ptr. |
1589 | * |
1590 | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1591 | * |
1592 | * @param ptr The pointer to read from. |
1593 | * @return The 32-bit little endian integer from the bytes at @p ptr. |
1594 | */ |
1595 | |
1596 | /*! |
1597 | * @internal |
1598 | * @fn xxh_u32 XXH_readBE32(const void* ptr) |
1599 | * @brief Reads an unaligned 32-bit big endian integer from @p ptr. |
1600 | * |
1601 | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1602 | * |
1603 | * @param ptr The pointer to read from. |
1604 | * @return The 32-bit big endian integer from the bytes at @p ptr. |
1605 | */ |
1606 | |
1607 | /*! |
1608 | * @internal |
1609 | * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) |
1610 | * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. |
1611 | * |
1612 | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1613 | * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is |
1614 | * always @ref XXH_alignment::XXH_unaligned. |
1615 | * |
1616 | * @param ptr The pointer to read from. |
1617 | * @param align Whether @p ptr is aligned. |
1618 | * @pre |
1619 | * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte |
1620 | * aligned. |
1621 | * @return The 32-bit little endian integer from the bytes at @p ptr. |
1622 | */ |
1623 | |
1624 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
1625 | /* |
1626 | * Manual byteshift. Best for old compilers which don't inline memcpy. |
1627 | * We actually directly use XXH_readLE32 and XXH_readBE32. |
1628 | */ |
1629 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
1630 | |
1631 | /* |
1632 | * Force direct memory access. Only works on CPU which support unaligned memory |
1633 | * access in hardware. |
1634 | */ |
1635 | static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
1636 | |
1637 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
1638 | |
1639 | /* |
1640 | * __pack instructions are safer but compiler specific, hence potentially |
1641 | * problematic for some compilers. |
1642 | * |
1643 | * Currently only defined for GCC and ICC. |
1644 | */ |
1645 | #ifdef XXH_OLD_NAMES |
1646 | typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
1647 | #endif |
1648 | static xxh_u32 XXH_read32(const void* ptr) |
1649 | { |
1650 | typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; |
1651 | return ((const xxh_unalign*)ptr)->u32; |
1652 | } |
1653 | |
1654 | #else |
1655 | |
1656 | /* |
1657 | * Portable and safe solution. Generally efficient. |
1658 | * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
1659 | */ |
1660 | static xxh_u32 XXH_read32(const void* memPtr) |
1661 | { |
1662 | xxh_u32 val; |
1663 | XXH_memcpy(&val, memPtr, sizeof(val)); |
1664 | return val; |
1665 | } |
1666 | |
1667 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
1668 | |
1669 | |
1670 | /* *** Endianness *** */ |
1671 | |
1672 | /*! |
1673 | * @ingroup tuning |
1674 | * @def XXH_CPU_LITTLE_ENDIAN |
1675 | * @brief Whether the target is little endian. |
1676 | * |
1677 | * Defined to 1 if the target is little endian, or 0 if it is big endian. |
1678 | * It can be defined externally, for example on the compiler command line. |
1679 | * |
1680 | * If it is not defined, |
1681 | * a runtime check (which is usually constant folded) is used instead. |
1682 | * |
1683 | * @note |
1684 | * This is not necessarily defined to an integer constant. |
1685 | * |
1686 | * @see XXH_isLittleEndian() for the runtime check. |
1687 | */ |
1688 | #ifndef XXH_CPU_LITTLE_ENDIAN |
1689 | /* |
1690 | * Try to detect endianness automatically, to avoid the nonstandard behavior |
1691 | * in `XXH_isLittleEndian()` |
1692 | */ |
1693 | # if defined(_WIN32) /* Windows is always little endian */ \ |
1694 | || defined(__LITTLE_ENDIAN__) \ |
1695 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
1696 | # define XXH_CPU_LITTLE_ENDIAN 1 |
1697 | # elif defined(__BIG_ENDIAN__) \ |
1698 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
1699 | # define XXH_CPU_LITTLE_ENDIAN 0 |
1700 | # else |
1701 | /*! |
1702 | * @internal |
1703 | * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. |
1704 | * |
1705 | * Most compilers will constant fold this. |
1706 | */ |
1707 | static int XXH_isLittleEndian(void) |
1708 | { |
1709 | /* |
1710 | * Portable and well-defined behavior. |
1711 | * Don't use static: it is detrimental to performance. |
1712 | */ |
1713 | const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
1714 | return one.c[0]; |
1715 | } |
1716 | # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
1717 | # endif |
1718 | #endif |
1719 | |
1720 | |
1721 | |
1722 | |
1723 | /* **************************************** |
1724 | * Compiler-specific Functions and Macros |
1725 | ******************************************/ |
1726 | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
1727 | |
1728 | #ifdef __has_builtin |
1729 | # define XXH_HAS_BUILTIN(x) __has_builtin(x) |
1730 | #else |
1731 | # define XXH_HAS_BUILTIN(x) 0 |
1732 | #endif |
1733 | |
1734 | /*! |
1735 | * @internal |
1736 | * @def XXH_rotl32(x,r) |
1737 | * @brief 32-bit rotate left. |
1738 | * |
1739 | * @param x The 32-bit integer to be rotated. |
1740 | * @param r The number of bits to rotate. |
1741 | * @pre |
1742 | * @p r > 0 && @p r < 32 |
1743 | * @note |
1744 | * @p x and @p r may be evaluated multiple times. |
1745 | * @return The rotated result. |
1746 | */ |
1747 | #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
1748 | && XXH_HAS_BUILTIN(__builtin_rotateleft64) |
1749 | # define XXH_rotl32 __builtin_rotateleft32 |
1750 | # define XXH_rotl64 __builtin_rotateleft64 |
1751 | /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
1752 | #elif defined(_MSC_VER) |
1753 | # define XXH_rotl32(x,r) _rotl(x,r) |
1754 | # define XXH_rotl64(x,r) _rotl64(x,r) |
1755 | #else |
1756 | # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
1757 | # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
1758 | #endif |
1759 | |
1760 | /*! |
1761 | * @internal |
1762 | * @fn xxh_u32 XXH_swap32(xxh_u32 x) |
1763 | * @brief A 32-bit byteswap. |
1764 | * |
1765 | * @param x The 32-bit integer to byteswap. |
1766 | * @return @p x, byteswapped. |
1767 | */ |
1768 | #if defined(_MSC_VER) /* Visual Studio */ |
1769 | # define XXH_swap32 _byteswap_ulong |
1770 | #elif XXH_GCC_VERSION >= 403 |
1771 | # define XXH_swap32 __builtin_bswap32 |
1772 | #else |
1773 | static xxh_u32 XXH_swap32 (xxh_u32 x) |
1774 | { |
1775 | return ((x << 24) & 0xff000000 ) | |
1776 | ((x << 8) & 0x00ff0000 ) | |
1777 | ((x >> 8) & 0x0000ff00 ) | |
1778 | ((x >> 24) & 0x000000ff ); |
1779 | } |
1780 | #endif |
1781 | |
1782 | |
1783 | /* *************************** |
1784 | * Memory reads |
1785 | *****************************/ |
1786 | |
1787 | /*! |
1788 | * @internal |
1789 | * @brief Enum to indicate whether a pointer is aligned. |
1790 | */ |
1791 | typedef enum { |
1792 | XXH_aligned, /*!< Aligned */ |
1793 | XXH_unaligned /*!< Possibly unaligned */ |
1794 | } XXH_alignment; |
1795 | |
1796 | /* |
1797 | * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
1798 | * |
1799 | * This is ideal for older compilers which don't inline memcpy. |
1800 | */ |
1801 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
1802 | |
1803 | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
1804 | { |
1805 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
1806 | return bytePtr[0] |
1807 | | ((xxh_u32)bytePtr[1] << 8) |
1808 | | ((xxh_u32)bytePtr[2] << 16) |
1809 | | ((xxh_u32)bytePtr[3] << 24); |
1810 | } |
1811 | |
1812 | XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
1813 | { |
1814 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
1815 | return bytePtr[3] |
1816 | | ((xxh_u32)bytePtr[2] << 8) |
1817 | | ((xxh_u32)bytePtr[1] << 16) |
1818 | | ((xxh_u32)bytePtr[0] << 24); |
1819 | } |
1820 | |
1821 | #else |
1822 | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
1823 | { |
1824 | return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
1825 | } |
1826 | |
1827 | static xxh_u32 XXH_readBE32(const void* ptr) |
1828 | { |
1829 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
1830 | } |
1831 | #endif |
1832 | |
1833 | XXH_FORCE_INLINE xxh_u32 |
1834 | XXH_readLE32_align(const void* ptr, XXH_alignment align) |
1835 | { |
1836 | if (align==XXH_unaligned) { |
1837 | return XXH_readLE32(ptr); |
1838 | } else { |
1839 | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
1840 | } |
1841 | } |
1842 | |
1843 | |
1844 | /* ************************************* |
1845 | * Misc |
1846 | ***************************************/ |
1847 | /*! @ingroup public */ |
1848 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
1849 | |
1850 | |
1851 | /* ******************************************************************* |
1852 | * 32-bit hash functions |
1853 | *********************************************************************/ |
1854 | /*! |
1855 | * @} |
1856 | * @defgroup xxh32_impl XXH32 implementation |
1857 | * @ingroup impl |
1858 | * @{ |
1859 | */ |
1860 | /* #define instead of static const, to be used as initializers */ |
1861 | #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ |
1862 | #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ |
1863 | #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ |
1864 | #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ |
1865 | #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ |
1866 | |
1867 | #ifdef XXH_OLD_NAMES |
1868 | # define PRIME32_1 XXH_PRIME32_1 |
1869 | # define PRIME32_2 XXH_PRIME32_2 |
1870 | # define PRIME32_3 XXH_PRIME32_3 |
1871 | # define PRIME32_4 XXH_PRIME32_4 |
1872 | # define PRIME32_5 XXH_PRIME32_5 |
1873 | #endif |
1874 | |
1875 | /*! |
1876 | * @internal |
1877 | * @brief Normal stripe processing routine. |
1878 | * |
1879 | * This shuffles the bits so that any bit from @p input impacts several bits in |
1880 | * @p acc. |
1881 | * |
1882 | * @param acc The accumulator lane. |
1883 | * @param input The stripe of input to mix. |
1884 | * @return The mixed accumulator lane. |
1885 | */ |
1886 | static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
1887 | { |
1888 | acc += input * XXH_PRIME32_2; |
1889 | acc = XXH_rotl32(acc, 13); |
1890 | acc *= XXH_PRIME32_1; |
1891 | #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
1892 | /* |
1893 | * UGLY HACK: |
1894 | * A compiler fence is the only thing that prevents GCC and Clang from |
1895 | * autovectorizing the XXH32 loop (pragmas and attributes don't work for some |
1896 | * reason) without globally disabling SSE4.1. |
1897 | * |
1898 | * The reason we want to avoid vectorization is because despite working on |
1899 | * 4 integers at a time, there are multiple factors slowing XXH32 down on |
1900 | * SSE4: |
1901 | * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
1902 | * newer chips!) making it slightly slower to multiply four integers at |
1903 | * once compared to four integers independently. Even when pmulld was |
1904 | * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
1905 | * just to multiply unless doing a long operation. |
1906 | * |
1907 | * - Four instructions are required to rotate, |
1908 | * movqda tmp, v // not required with VEX encoding |
1909 | * pslld tmp, 13 // tmp <<= 13 |
1910 | * psrld v, 19 // x >>= 19 |
1911 | * por v, tmp // x |= tmp |
1912 | * compared to one for scalar: |
1913 | * roll v, 13 // reliably fast across the board |
1914 | * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
1915 | * |
1916 | * - Instruction level parallelism is actually more beneficial here because |
1917 | * the SIMD actually serializes this operation: While v1 is rotating, v2 |
1918 | * can load data, while v3 can multiply. SSE forces them to operate |
1919 | * together. |
1920 | * |
1921 | * This is also enabled on AArch64, as Clang autovectorizes it incorrectly |
1922 | * and it is pointless writing a NEON implementation that is basically the |
1923 | * same speed as scalar for XXH32. |
1924 | */ |
1925 | XXH_COMPILER_GUARD(acc); |
1926 | #endif |
1927 | return acc; |
1928 | } |
1929 | |
1930 | /*! |
1931 | * @internal |
1932 | * @brief Mixes all bits to finalize the hash. |
1933 | * |
1934 | * The final mix ensures that all input bits have a chance to impact any bit in |
1935 | * the output digest, resulting in an unbiased distribution. |
1936 | * |
1937 | * @param h32 The hash to avalanche. |
1938 | * @return The avalanched hash. |
1939 | */ |
1940 | static xxh_u32 XXH32_avalanche(xxh_u32 h32) |
1941 | { |
1942 | h32 ^= h32 >> 15; |
1943 | h32 *= XXH_PRIME32_2; |
1944 | h32 ^= h32 >> 13; |
1945 | h32 *= XXH_PRIME32_3; |
1946 | h32 ^= h32 >> 16; |
1947 | return(h32); |
1948 | } |
1949 | |
1950 | #define XXH_get32bits(p) XXH_readLE32_align(p, align) |
1951 | |
1952 | /*! |
1953 | * @internal |
1954 | * @brief Processes the last 0-15 bytes of @p ptr. |
1955 | * |
1956 | * There may be up to 15 bytes remaining to consume from the input. |
1957 | * This final stage will digest them to ensure that all input bytes are present |
1958 | * in the final mix. |
1959 | * |
1960 | * @param h32 The hash to finalize. |
1961 | * @param ptr The pointer to the remaining input. |
1962 | * @param len The remaining length, modulo 16. |
1963 | * @param align Whether @p ptr is aligned. |
1964 | * @return The finalized hash. |
1965 | */ |
1966 | static xxh_u32 |
1967 | XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) |
1968 | { |
1969 | #define XXH_PROCESS1 do { \ |
1970 | h32 += (*ptr++) * XXH_PRIME32_5; \ |
1971 | h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ |
1972 | } while (0) |
1973 | |
1974 | #define XXH_PROCESS4 do { \ |
1975 | h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
1976 | ptr += 4; \ |
1977 | h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ |
1978 | } while (0) |
1979 | |
1980 | if (ptr==NULL) XXH_ASSERT(len == 0); |
1981 | |
1982 | /* Compact rerolled version; generally faster */ |
1983 | if (!XXH32_ENDJMP) { |
1984 | len &= 15; |
1985 | while (len >= 4) { |
1986 | XXH_PROCESS4; |
1987 | len -= 4; |
1988 | } |
1989 | while (len > 0) { |
1990 | XXH_PROCESS1; |
1991 | --len; |
1992 | } |
1993 | return XXH32_avalanche(h32); |
1994 | } else { |
1995 | switch(len&15) /* or switch(bEnd - p) */ { |
1996 | case 12: XXH_PROCESS4; |
1997 | XXH_FALLTHROUGH; |
1998 | case 8: XXH_PROCESS4; |
1999 | XXH_FALLTHROUGH; |
2000 | case 4: XXH_PROCESS4; |
2001 | return XXH32_avalanche(h32); |
2002 | |
2003 | case 13: XXH_PROCESS4; |
2004 | XXH_FALLTHROUGH; |
2005 | case 9: XXH_PROCESS4; |
2006 | XXH_FALLTHROUGH; |
2007 | case 5: XXH_PROCESS4; |
2008 | XXH_PROCESS1; |
2009 | return XXH32_avalanche(h32); |
2010 | |
2011 | case 14: XXH_PROCESS4; |
2012 | XXH_FALLTHROUGH; |
2013 | case 10: XXH_PROCESS4; |
2014 | XXH_FALLTHROUGH; |
2015 | case 6: XXH_PROCESS4; |
2016 | XXH_PROCESS1; |
2017 | XXH_PROCESS1; |
2018 | return XXH32_avalanche(h32); |
2019 | |
2020 | case 15: XXH_PROCESS4; |
2021 | XXH_FALLTHROUGH; |
2022 | case 11: XXH_PROCESS4; |
2023 | XXH_FALLTHROUGH; |
2024 | case 7: XXH_PROCESS4; |
2025 | XXH_FALLTHROUGH; |
2026 | case 3: XXH_PROCESS1; |
2027 | XXH_FALLTHROUGH; |
2028 | case 2: XXH_PROCESS1; |
2029 | XXH_FALLTHROUGH; |
2030 | case 1: XXH_PROCESS1; |
2031 | XXH_FALLTHROUGH; |
2032 | case 0: return XXH32_avalanche(h32); |
2033 | } |
2034 | XXH_ASSERT(0); |
2035 | return h32; /* reaching this point is deemed impossible */ |
2036 | } |
2037 | } |
2038 | |
2039 | #ifdef XXH_OLD_NAMES |
2040 | # define PROCESS1 XXH_PROCESS1 |
2041 | # define PROCESS4 XXH_PROCESS4 |
2042 | #else |
2043 | # undef XXH_PROCESS1 |
2044 | # undef XXH_PROCESS4 |
2045 | #endif |
2046 | |
2047 | /*! |
2048 | * @internal |
2049 | * @brief The implementation for @ref XXH32(). |
2050 | * |
2051 | * @param input , len , seed Directly passed from @ref XXH32(). |
2052 | * @param align Whether @p input is aligned. |
2053 | * @return The calculated hash. |
2054 | */ |
2055 | XXH_FORCE_INLINE xxh_u32 |
2056 | XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
2057 | { |
2058 | xxh_u32 h32; |
2059 | |
2060 | if (input==NULL) XXH_ASSERT(len == 0); |
2061 | |
2062 | if (len>=16) { |
2063 | const xxh_u8* const bEnd = input + len; |
2064 | const xxh_u8* const limit = bEnd - 15; |
2065 | xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
2066 | xxh_u32 v2 = seed + XXH_PRIME32_2; |
2067 | xxh_u32 v3 = seed + 0; |
2068 | xxh_u32 v4 = seed - XXH_PRIME32_1; |
2069 | |
2070 | do { |
2071 | v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
2072 | v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
2073 | v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
2074 | v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
2075 | } while (input < limit); |
2076 | |
2077 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
2078 | + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
2079 | } else { |
2080 | h32 = seed + XXH_PRIME32_5; |
2081 | } |
2082 | |
2083 | h32 += (xxh_u32)len; |
2084 | |
2085 | return XXH32_finalize(h32, input, len&15, align); |
2086 | } |
2087 | |
2088 | /*! @ingroup xxh32_family */ |
2089 | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
2090 | { |
2091 | #if 0 |
2092 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
2093 | XXH32_state_t state; |
2094 | XXH32_reset(&state, seed); |
2095 | XXH32_update(&state, (const xxh_u8*)input, len); |
2096 | return XXH32_digest(&state); |
2097 | #else |
2098 | if (XXH_FORCE_ALIGN_CHECK) { |
2099 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
2100 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
2101 | } } |
2102 | |
2103 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
2104 | #endif |
2105 | } |
2106 | |
2107 | |
2108 | |
2109 | /******* Hash streaming *******/ |
2110 | /*! |
2111 | * @ingroup xxh32_family |
2112 | */ |
2113 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
2114 | { |
2115 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
2116 | } |
2117 | /*! @ingroup xxh32_family */ |
2118 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
2119 | { |
2120 | XXH_free(statePtr); |
2121 | return XXH_OK; |
2122 | } |
2123 | |
2124 | /*! @ingroup xxh32_family */ |
2125 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
2126 | { |
2127 | XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
2128 | } |
2129 | |
2130 | /*! @ingroup xxh32_family */ |
2131 | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
2132 | { |
2133 | XXH_ASSERT(statePtr != NULL); |
2134 | memset(statePtr, 0, sizeof(*statePtr)); |
2135 | statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
2136 | statePtr->v[1] = seed + XXH_PRIME32_2; |
2137 | statePtr->v[2] = seed + 0; |
2138 | statePtr->v[3] = seed - XXH_PRIME32_1; |
2139 | return XXH_OK; |
2140 | } |
2141 | |
2142 | |
2143 | /*! @ingroup xxh32_family */ |
2144 | XXH_PUBLIC_API XXH_errorcode |
2145 | XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
2146 | { |
2147 | if (input==NULL) { |
2148 | XXH_ASSERT(len == 0); |
2149 | return XXH_OK; |
2150 | } |
2151 | |
2152 | { const xxh_u8* p = (const xxh_u8*)input; |
2153 | const xxh_u8* const bEnd = p + len; |
2154 | |
2155 | state->total_len_32 += (XXH32_hash_t)len; |
2156 | state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
2157 | |
2158 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
2159 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
2160 | state->memsize += (XXH32_hash_t)len; |
2161 | return XXH_OK; |
2162 | } |
2163 | |
2164 | if (state->memsize) { /* some data left from previous update */ |
2165 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
2166 | { const xxh_u32* p32 = state->mem32; |
2167 | state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; |
2168 | state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; |
2169 | state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; |
2170 | state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); |
2171 | } |
2172 | p += 16-state->memsize; |
2173 | state->memsize = 0; |
2174 | } |
2175 | |
2176 | if (p <= bEnd-16) { |
2177 | const xxh_u8* const limit = bEnd - 16; |
2178 | |
2179 | do { |
2180 | state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; |
2181 | state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; |
2182 | state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; |
2183 | state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; |
2184 | } while (p<=limit); |
2185 | |
2186 | } |
2187 | |
2188 | if (p < bEnd) { |
2189 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
2190 | state->memsize = (unsigned)(bEnd-p); |
2191 | } |
2192 | } |
2193 | |
2194 | return XXH_OK; |
2195 | } |
2196 | |
2197 | |
2198 | /*! @ingroup xxh32_family */ |
2199 | XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) |
2200 | { |
2201 | xxh_u32 h32; |
2202 | |
2203 | if (state->large_len) { |
2204 | h32 = XXH_rotl32(state->v[0], 1) |
2205 | + XXH_rotl32(state->v[1], 7) |
2206 | + XXH_rotl32(state->v[2], 12) |
2207 | + XXH_rotl32(state->v[3], 18); |
2208 | } else { |
2209 | h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; |
2210 | } |
2211 | |
2212 | h32 += state->total_len_32; |
2213 | |
2214 | return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
2215 | } |
2216 | |
2217 | |
2218 | /******* Canonical representation *******/ |
2219 | |
2220 | /*! |
2221 | * @ingroup xxh32_family |
2222 | * The default return values from XXH functions are unsigned 32 and 64 bit |
2223 | * integers. |
2224 | * |
2225 | * The canonical representation uses big endian convention, the same convention |
2226 | * as human-readable numbers (large digits first). |
2227 | * |
2228 | * This way, hash values can be written into a file or buffer, remaining |
2229 | * comparable across different systems. |
2230 | * |
2231 | * The following functions allow transformation of hash values to and from their |
2232 | * canonical format. |
2233 | */ |
2234 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
2235 | { |
2236 | /* XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); */ |
2237 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
2238 | XXH_memcpy(dst, &hash, sizeof(*dst)); |
2239 | } |
2240 | /*! @ingroup xxh32_family */ |
2241 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
2242 | { |
2243 | return XXH_readBE32(src); |
2244 | } |
2245 | |
2246 | |
2247 | #ifndef XXH_NO_LONG_LONG |
2248 | |
2249 | /* ******************************************************************* |
2250 | * 64-bit hash functions |
2251 | *********************************************************************/ |
2252 | /*! |
2253 | * @} |
2254 | * @ingroup impl |
2255 | * @{ |
2256 | */ |
2257 | /******* Memory access *******/ |
2258 | |
2259 | typedef XXH64_hash_t xxh_u64; |
2260 | |
2261 | #ifdef XXH_OLD_NAMES |
2262 | # define U64 xxh_u64 |
2263 | #endif |
2264 | |
2265 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
2266 | /* |
2267 | * Manual byteshift. Best for old compilers which don't inline memcpy. |
2268 | * We actually directly use XXH_readLE64 and XXH_readBE64. |
2269 | */ |
2270 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
2271 | |
2272 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
2273 | static xxh_u64 XXH_read64(const void* memPtr) |
2274 | { |
2275 | return *(const xxh_u64*) memPtr; |
2276 | } |
2277 | |
2278 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
2279 | |
2280 | /* |
2281 | * __pack instructions are safer, but compiler specific, hence potentially |
2282 | * problematic for some compilers. |
2283 | * |
2284 | * Currently only defined for GCC and ICC. |
2285 | */ |
2286 | #ifdef XXH_OLD_NAMES |
2287 | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
2288 | #endif |
2289 | static xxh_u64 XXH_read64(const void* ptr) |
2290 | { |
2291 | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; |
2292 | return ((const xxh_unalign64*)ptr)->u64; |
2293 | } |
2294 | |
2295 | #else |
2296 | |
2297 | /* |
2298 | * Portable and safe solution. Generally efficient. |
2299 | * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
2300 | */ |
2301 | static xxh_u64 XXH_read64(const void* memPtr) |
2302 | { |
2303 | xxh_u64 val; |
2304 | XXH_memcpy(&val, memPtr, sizeof(val)); |
2305 | return val; |
2306 | } |
2307 | |
2308 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
2309 | |
2310 | #if defined(_MSC_VER) /* Visual Studio */ |
2311 | # define XXH_swap64 _byteswap_uint64 |
2312 | #elif XXH_GCC_VERSION >= 403 |
2313 | # define XXH_swap64 __builtin_bswap64 |
2314 | #else |
2315 | static xxh_u64 XXH_swap64(xxh_u64 x) |
2316 | { |
2317 | return ((x << 56) & 0xff00000000000000ULL) | |
2318 | ((x << 40) & 0x00ff000000000000ULL) | |
2319 | ((x << 24) & 0x0000ff0000000000ULL) | |
2320 | ((x << 8) & 0x000000ff00000000ULL) | |
2321 | ((x >> 8) & 0x00000000ff000000ULL) | |
2322 | ((x >> 24) & 0x0000000000ff0000ULL) | |
2323 | ((x >> 40) & 0x000000000000ff00ULL) | |
2324 | ((x >> 56) & 0x00000000000000ffULL); |
2325 | } |
2326 | #endif |
2327 | |
2328 | |
2329 | /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
2330 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
2331 | |
2332 | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
2333 | { |
2334 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
2335 | return bytePtr[0] |
2336 | | ((xxh_u64)bytePtr[1] << 8) |
2337 | | ((xxh_u64)bytePtr[2] << 16) |
2338 | | ((xxh_u64)bytePtr[3] << 24) |
2339 | | ((xxh_u64)bytePtr[4] << 32) |
2340 | | ((xxh_u64)bytePtr[5] << 40) |
2341 | | ((xxh_u64)bytePtr[6] << 48) |
2342 | | ((xxh_u64)bytePtr[7] << 56); |
2343 | } |
2344 | |
2345 | XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
2346 | { |
2347 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
2348 | return bytePtr[7] |
2349 | | ((xxh_u64)bytePtr[6] << 8) |
2350 | | ((xxh_u64)bytePtr[5] << 16) |
2351 | | ((xxh_u64)bytePtr[4] << 24) |
2352 | | ((xxh_u64)bytePtr[3] << 32) |
2353 | | ((xxh_u64)bytePtr[2] << 40) |
2354 | | ((xxh_u64)bytePtr[1] << 48) |
2355 | | ((xxh_u64)bytePtr[0] << 56); |
2356 | } |
2357 | |
2358 | #else |
2359 | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
2360 | { |
2361 | return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
2362 | } |
2363 | |
2364 | static xxh_u64 XXH_readBE64(const void* ptr) |
2365 | { |
2366 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
2367 | } |
2368 | #endif |
2369 | |
2370 | XXH_FORCE_INLINE xxh_u64 |
2371 | XXH_readLE64_align(const void* ptr, XXH_alignment align) |
2372 | { |
2373 | if (align==XXH_unaligned) |
2374 | return XXH_readLE64(ptr); |
2375 | else |
2376 | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
2377 | } |
2378 | |
2379 | |
2380 | /******* xxh64 *******/ |
2381 | /*! |
2382 | * @} |
2383 | * @defgroup xxh64_impl XXH64 implementation |
2384 | * @ingroup impl |
2385 | * @{ |
2386 | */ |
2387 | /* #define rather that static const, to be used as initializers */ |
2388 | #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
2389 | #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
2390 | #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
2391 | #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
2392 | #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
2393 | |
2394 | #ifdef XXH_OLD_NAMES |
2395 | # define PRIME64_1 XXH_PRIME64_1 |
2396 | # define PRIME64_2 XXH_PRIME64_2 |
2397 | # define PRIME64_3 XXH_PRIME64_3 |
2398 | # define PRIME64_4 XXH_PRIME64_4 |
2399 | # define PRIME64_5 XXH_PRIME64_5 |
2400 | #endif |
2401 | |
2402 | static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
2403 | { |
2404 | acc += input * XXH_PRIME64_2; |
2405 | acc = XXH_rotl64(acc, 31); |
2406 | acc *= XXH_PRIME64_1; |
2407 | return acc; |
2408 | } |
2409 | |
2410 | static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
2411 | { |
2412 | val = XXH64_round(0, val); |
2413 | acc ^= val; |
2414 | acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
2415 | return acc; |
2416 | } |
2417 | |
2418 | static xxh_u64 XXH64_avalanche(xxh_u64 h64) |
2419 | { |
2420 | h64 ^= h64 >> 33; |
2421 | h64 *= XXH_PRIME64_2; |
2422 | h64 ^= h64 >> 29; |
2423 | h64 *= XXH_PRIME64_3; |
2424 | h64 ^= h64 >> 32; |
2425 | return h64; |
2426 | } |
2427 | |
2428 | |
2429 | #define XXH_get64bits(p) XXH_readLE64_align(p, align) |
2430 | |
2431 | static xxh_u64 |
2432 | XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) |
2433 | { |
2434 | if (ptr==NULL) XXH_ASSERT(len == 0); |
2435 | len &= 31; |
2436 | while (len >= 8) { |
2437 | xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); |
2438 | ptr += 8; |
2439 | h64 ^= k1; |
2440 | h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; |
2441 | len -= 8; |
2442 | } |
2443 | if (len >= 4) { |
2444 | h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; |
2445 | ptr += 4; |
2446 | h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; |
2447 | len -= 4; |
2448 | } |
2449 | while (len > 0) { |
2450 | h64 ^= (*ptr++) * XXH_PRIME64_5; |
2451 | h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; |
2452 | --len; |
2453 | } |
2454 | return XXH64_avalanche(h64); |
2455 | } |
2456 | |
2457 | #ifdef XXH_OLD_NAMES |
2458 | # define PROCESS1_64 XXH_PROCESS1_64 |
2459 | # define PROCESS4_64 XXH_PROCESS4_64 |
2460 | # define PROCESS8_64 XXH_PROCESS8_64 |
2461 | #else |
2462 | # undef XXH_PROCESS1_64 |
2463 | # undef XXH_PROCESS4_64 |
2464 | # undef XXH_PROCESS8_64 |
2465 | #endif |
2466 | |
2467 | XXH_FORCE_INLINE xxh_u64 |
2468 | XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
2469 | { |
2470 | xxh_u64 h64; |
2471 | if (input==NULL) XXH_ASSERT(len == 0); |
2472 | |
2473 | if (len>=32) { |
2474 | const xxh_u8* const bEnd = input + len; |
2475 | const xxh_u8* const limit = bEnd - 31; |
2476 | xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
2477 | xxh_u64 v2 = seed + XXH_PRIME64_2; |
2478 | xxh_u64 v3 = seed + 0; |
2479 | xxh_u64 v4 = seed - XXH_PRIME64_1; |
2480 | |
2481 | do { |
2482 | v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
2483 | v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
2484 | v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
2485 | v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
2486 | } while (input<limit); |
2487 | |
2488 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
2489 | h64 = XXH64_mergeRound(h64, v1); |
2490 | h64 = XXH64_mergeRound(h64, v2); |
2491 | h64 = XXH64_mergeRound(h64, v3); |
2492 | h64 = XXH64_mergeRound(h64, v4); |
2493 | |
2494 | } else { |
2495 | h64 = seed + XXH_PRIME64_5; |
2496 | } |
2497 | |
2498 | h64 += (xxh_u64) len; |
2499 | |
2500 | return XXH64_finalize(h64, input, len, align); |
2501 | } |
2502 | |
2503 | |
2504 | /*! @ingroup xxh64_family */ |
2505 | XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) |
2506 | { |
2507 | #if 0 |
2508 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
2509 | XXH64_state_t state; |
2510 | XXH64_reset(&state, seed); |
2511 | XXH64_update(&state, (const xxh_u8*)input, len); |
2512 | return XXH64_digest(&state); |
2513 | #else |
2514 | if (XXH_FORCE_ALIGN_CHECK) { |
2515 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
2516 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
2517 | } } |
2518 | |
2519 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
2520 | |
2521 | #endif |
2522 | } |
2523 | |
2524 | /******* Hash Streaming *******/ |
2525 | |
2526 | /*! @ingroup xxh64_family*/ |
2527 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
2528 | { |
2529 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
2530 | } |
2531 | /*! @ingroup xxh64_family */ |
2532 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
2533 | { |
2534 | XXH_free(statePtr); |
2535 | return XXH_OK; |
2536 | } |
2537 | |
2538 | /*! @ingroup xxh64_family */ |
2539 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
2540 | { |
2541 | XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
2542 | } |
2543 | |
2544 | /*! @ingroup xxh64_family */ |
2545 | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) |
2546 | { |
2547 | XXH_ASSERT(statePtr != NULL); |
2548 | memset(statePtr, 0, sizeof(*statePtr)); |
2549 | statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
2550 | statePtr->v[1] = seed + XXH_PRIME64_2; |
2551 | statePtr->v[2] = seed + 0; |
2552 | statePtr->v[3] = seed - XXH_PRIME64_1; |
2553 | return XXH_OK; |
2554 | } |
2555 | |
2556 | /*! @ingroup xxh64_family */ |
2557 | XXH_PUBLIC_API XXH_errorcode |
2558 | XXH64_update (XXH64_state_t* state, const void* input, size_t len) |
2559 | { |
2560 | if (input==NULL) { |
2561 | XXH_ASSERT(len == 0); |
2562 | return XXH_OK; |
2563 | } |
2564 | |
2565 | { const xxh_u8* p = (const xxh_u8*)input; |
2566 | const xxh_u8* const bEnd = p + len; |
2567 | |
2568 | state->total_len += len; |
2569 | |
2570 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
2571 | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
2572 | state->memsize += (xxh_u32)len; |
2573 | return XXH_OK; |
2574 | } |
2575 | |
2576 | if (state->memsize) { /* tmp buffer is full */ |
2577 | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
2578 | state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); |
2579 | state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); |
2580 | state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); |
2581 | state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); |
2582 | p += 32 - state->memsize; |
2583 | state->memsize = 0; |
2584 | } |
2585 | |
2586 | if (p+32 <= bEnd) { |
2587 | const xxh_u8* const limit = bEnd - 32; |
2588 | |
2589 | do { |
2590 | state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; |
2591 | state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; |
2592 | state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; |
2593 | state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; |
2594 | } while (p<=limit); |
2595 | |
2596 | } |
2597 | |
2598 | if (p < bEnd) { |
2599 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
2600 | state->memsize = (unsigned)(bEnd-p); |
2601 | } |
2602 | } |
2603 | |
2604 | return XXH_OK; |
2605 | } |
2606 | |
2607 | |
2608 | /*! @ingroup xxh64_family */ |
2609 | XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state) |
2610 | { |
2611 | xxh_u64 h64; |
2612 | |
2613 | if (state->total_len >= 32) { |
2614 | h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); |
2615 | h64 = XXH64_mergeRound(h64, state->v[0]); |
2616 | h64 = XXH64_mergeRound(h64, state->v[1]); |
2617 | h64 = XXH64_mergeRound(h64, state->v[2]); |
2618 | h64 = XXH64_mergeRound(h64, state->v[3]); |
2619 | } else { |
2620 | h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; |
2621 | } |
2622 | |
2623 | h64 += (xxh_u64) state->total_len; |
2624 | |
2625 | return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
2626 | } |
2627 | |
2628 | |
2629 | /******* Canonical representation *******/ |
2630 | |
2631 | /*! @ingroup xxh64_family */ |
2632 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
2633 | { |
2634 | /* XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); */ |
2635 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
2636 | XXH_memcpy(dst, &hash, sizeof(*dst)); |
2637 | } |
2638 | |
2639 | /*! @ingroup xxh64_family */ |
2640 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
2641 | { |
2642 | return XXH_readBE64(src); |
2643 | } |
2644 | |
2645 | #ifndef XXH_NO_XXH3 |
2646 | |
2647 | /* ********************************************************************* |
2648 | * XXH3 |
2649 | * New generation hash designed for speed on small keys and vectorization |
2650 | ************************************************************************ */ |
2651 | /*! |
2652 | * @} |
2653 | * @defgroup xxh3_impl XXH3 implementation |
2654 | * @ingroup impl |
2655 | * @{ |
2656 | */ |
2657 | |
2658 | /* === Compiler specifics === */ |
2659 | |
2660 | #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ |
2661 | # define XXH_RESTRICT /* disable */ |
2662 | #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
2663 | # define XXH_RESTRICT restrict |
2664 | #else |
2665 | /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ |
2666 | # define XXH_RESTRICT /* disable */ |
2667 | #endif |
2668 | |
2669 | #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
2670 | || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
2671 | || defined(__clang__) |
2672 | # define XXH_likely(x) __builtin_expect(x, 1) |
2673 | # define XXH_unlikely(x) __builtin_expect(x, 0) |
2674 | #else |
2675 | # define XXH_likely(x) (x) |
2676 | # define XXH_unlikely(x) (x) |
2677 | #endif |
2678 | |
2679 | #if defined(__GNUC__) || defined(__clang__) |
2680 | # if defined(__ARM_NEON__) || defined(__ARM_NEON) \ |
2681 | || defined(__aarch64__) || defined(_M_ARM) \ |
2682 | || defined(_M_ARM64) || defined(_M_ARM64EC) |
2683 | # define inline __inline__ /* circumvent a clang bug */ |
2684 | # include <arm_neon.h> |
2685 | # undef inline |
2686 | # elif defined(__AVX2__) |
2687 | # include <immintrin.h> |
2688 | # elif defined(__SSE2__) |
2689 | # include <emmintrin.h> |
2690 | # endif |
2691 | #endif |
2692 | |
2693 | #if defined(_MSC_VER) |
2694 | # include <intrin.h> |
2695 | #endif |
2696 | |
2697 | /* |
2698 | * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
2699 | * remaining a true 64-bit/128-bit hash function. |
2700 | * |
2701 | * This is done by prioritizing a subset of 64-bit operations that can be |
2702 | * emulated without too many steps on the average 32-bit machine. |
2703 | * |
2704 | * For example, these two lines seem similar, and run equally fast on 64-bit: |
2705 | * |
2706 | * xxh_u64 x; |
2707 | * x ^= (x >> 47); // good |
2708 | * x ^= (x >> 13); // bad |
2709 | * |
2710 | * However, to a 32-bit machine, there is a major difference. |
2711 | * |
2712 | * x ^= (x >> 47) looks like this: |
2713 | * |
2714 | * x.lo ^= (x.hi >> (47 - 32)); |
2715 | * |
2716 | * while x ^= (x >> 13) looks like this: |
2717 | * |
2718 | * // note: funnel shifts are not usually cheap. |
2719 | * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
2720 | * x.hi ^= (x.hi >> 13); |
2721 | * |
2722 | * The first one is significantly faster than the second, simply because the |
2723 | * shift is larger than 32. This means: |
2724 | * - All the bits we need are in the upper 32 bits, so we can ignore the lower |
2725 | * 32 bits in the shift. |
2726 | * - The shift result will always fit in the lower 32 bits, and therefore, |
2727 | * we can ignore the upper 32 bits in the xor. |
2728 | * |
2729 | * Thanks to this optimization, XXH3 only requires these features to be efficient: |
2730 | * |
2731 | * - Usable unaligned access |
2732 | * - A 32-bit or 64-bit ALU |
2733 | * - If 32-bit, a decent ADC instruction |
2734 | * - A 32 or 64-bit multiply with a 64-bit result |
2735 | * - For the 128-bit variant, a decent byteswap helps short inputs. |
2736 | * |
2737 | * The first two are already required by XXH32, and almost all 32-bit and 64-bit |
2738 | * platforms which can run XXH32 can run XXH3 efficiently. |
2739 | * |
2740 | * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
2741 | * notable exception. |
2742 | * |
2743 | * First of all, Thumb-1 lacks support for the UMULL instruction which |
2744 | * performs the important long multiply. This means numerous __aeabi_lmul |
2745 | * calls. |
2746 | * |
2747 | * Second of all, the 8 functional registers are just not enough. |
2748 | * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
2749 | * Lo registers, and this shuffling results in thousands more MOVs than A32. |
2750 | * |
2751 | * A32 and T32 don't have this limitation. They can access all 14 registers, |
2752 | * do a 32->64 multiply with UMULL, and the flexible operand allowing free |
2753 | * shifts is helpful, too. |
2754 | * |
2755 | * Therefore, we do a quick sanity check. |
2756 | * |
2757 | * If compiling Thumb-1 for a target which supports ARM instructions, we will |
2758 | * emit a warning, as it is not a "sane" platform to compile for. |
2759 | * |
2760 | * Usually, if this happens, it is because of an accident and you probably need |
2761 | * to specify -march, as you likely meant to compile for a newer architecture. |
2762 | * |
2763 | * Credit: large sections of the vectorial and asm source code paths |
2764 | * have been contributed by @easyaspi314 |
2765 | */ |
2766 | #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
2767 | # warning "XXH3 is highly inefficient without ARM or Thumb-2." |
2768 | #endif |
2769 | |
2770 | /* ========================================== |
2771 | * Vectorization detection |
2772 | * ========================================== */ |
2773 | |
2774 | #ifdef XXH_DOXYGEN |
2775 | /*! |
2776 | * @ingroup tuning |
2777 | * @brief Overrides the vectorization implementation chosen for XXH3. |
2778 | * |
2779 | * Can be defined to 0 to disable SIMD or any of the values mentioned in |
2780 | * @ref XXH_VECTOR_TYPE. |
2781 | * |
2782 | * If this is not defined, it uses predefined macros to determine the best |
2783 | * implementation. |
2784 | */ |
2785 | # define XXH_VECTOR XXH_SCALAR |
2786 | /*! |
2787 | * @ingroup tuning |
2788 | * @brief Possible values for @ref XXH_VECTOR. |
2789 | * |
2790 | * Note that these are actually implemented as macros. |
2791 | * |
2792 | * If this is not defined, it is detected automatically. |
2793 | * @ref XXH_X86DISPATCH overrides this. |
2794 | */ |
2795 | enum XXH_VECTOR_TYPE /* fake enum */ { |
2796 | XXH_SCALAR = 0, /*!< Portable scalar version */ |
2797 | XXH_SSE2 = 1, /*!< |
2798 | * SSE2 for Pentium 4, Opteron, all x86_64. |
2799 | * |
2800 | * @note SSE2 is also guaranteed on Windows 10, macOS, and |
2801 | * Android x86. |
2802 | */ |
2803 | XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ |
2804 | XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ |
2805 | XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */ |
2806 | XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ |
2807 | }; |
2808 | /*! |
2809 | * @ingroup tuning |
2810 | * @brief Selects the minimum alignment for XXH3's accumulators. |
2811 | * |
2812 | * When using SIMD, this should match the alignment required for said vector |
2813 | * type, so, for example, 32 for AVX2. |
2814 | * |
2815 | * Default: Auto detected. |
2816 | */ |
2817 | # define XXH_ACC_ALIGN 8 |
2818 | #endif |
2819 | |
2820 | /* Actual definition */ |
2821 | #ifndef XXH_DOXYGEN |
2822 | # define XXH_SCALAR 0 |
2823 | # define XXH_SSE2 1 |
2824 | # define XXH_AVX2 2 |
2825 | # define XXH_AVX512 3 |
2826 | # define XXH_NEON 4 |
2827 | # define XXH_VSX 5 |
2828 | #endif |
2829 | |
2830 | #ifndef XXH_VECTOR /* can be defined on command line */ |
2831 | # if ( \ |
2832 | defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ |
2833 | || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ |
2834 | ) && ( \ |
2835 | defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ |
2836 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
2837 | ) |
2838 | # define XXH_VECTOR XXH_NEON |
2839 | # elif defined(__AVX512F__) |
2840 | # define XXH_VECTOR XXH_AVX512 |
2841 | # elif defined(__AVX2__) |
2842 | # define XXH_VECTOR XXH_AVX2 |
2843 | # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
2844 | # define XXH_VECTOR XXH_SSE2 |
2845 | # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
2846 | || (defined(__s390x__) && defined(__VEC__)) \ |
2847 | && defined(__GNUC__) /* TODO: IBM XL */ |
2848 | # define XXH_VECTOR XXH_VSX |
2849 | # else |
2850 | # define XXH_VECTOR XXH_SCALAR |
2851 | # endif |
2852 | #endif |
2853 | |
2854 | /* |
2855 | * Controls the alignment of the accumulator, |
2856 | * for compatibility with aligned vector loads, which are usually faster. |
2857 | */ |
2858 | #ifndef XXH_ACC_ALIGN |
2859 | # if defined(XXH_X86DISPATCH) |
2860 | # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
2861 | # elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
2862 | # define XXH_ACC_ALIGN 8 |
2863 | # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
2864 | # define XXH_ACC_ALIGN 16 |
2865 | # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
2866 | # define XXH_ACC_ALIGN 32 |
2867 | # elif XXH_VECTOR == XXH_NEON /* neon */ |
2868 | # define XXH_ACC_ALIGN 16 |
2869 | # elif XXH_VECTOR == XXH_VSX /* vsx */ |
2870 | # define XXH_ACC_ALIGN 16 |
2871 | # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
2872 | # define XXH_ACC_ALIGN 64 |
2873 | # endif |
2874 | #endif |
2875 | |
2876 | #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
2877 | || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
2878 | # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
2879 | #else |
2880 | # define XXH_SEC_ALIGN 8 |
2881 | #endif |
2882 | |
2883 | /* |
2884 | * UGLY HACK: |
2885 | * GCC usually generates the best code with -O3 for xxHash. |
2886 | * |
2887 | * However, when targeting AVX2, it is overzealous in its unrolling resulting |
2888 | * in code roughly 3/4 the speed of Clang. |
2889 | * |
2890 | * There are other issues, such as GCC splitting _mm256_loadu_si256 into |
2891 | * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
2892 | * only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
2893 | * |
2894 | * That is why when compiling the AVX2 version, it is recommended to use either |
2895 | * -O2 -mavx2 -march=haswell |
2896 | * or |
2897 | * -O2 -mavx2 -mno-avx256-split-unaligned-load |
2898 | * for decent performance, or to use Clang instead. |
2899 | * |
2900 | * Fortunately, we can control the first one with a pragma that forces GCC into |
2901 | * -O2, but the other one we can't control without "failed to inline always |
2902 | * inline function due to target mismatch" warnings. |
2903 | */ |
2904 | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
2905 | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
2906 | && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
2907 | # pragma GCC push_options |
2908 | # pragma GCC optimize("-O2") |
2909 | #endif |
2910 | |
2911 | |
2912 | #if XXH_VECTOR == XXH_NEON |
2913 | /* |
2914 | * NEON's setup for vmlal_u32 is a little more complicated than it is on |
2915 | * SSE2, AVX2, and VSX. |
2916 | * |
2917 | * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. |
2918 | * |
2919 | * To do the same operation, the 128-bit 'Q' register needs to be split into |
2920 | * two 64-bit 'D' registers, performing this operation:: |
2921 | * |
2922 | * [ a | b ] |
2923 | * | '---------. .--------' | |
2924 | * | x | |
2925 | * | .---------' '--------. | |
2926 | * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] |
2927 | * |
2928 | * Due to significant changes in aarch64, the fastest method for aarch64 is |
2929 | * completely different than the fastest method for ARMv7-A. |
2930 | * |
2931 | * ARMv7-A treats D registers as unions overlaying Q registers, so modifying |
2932 | * D11 will modify the high half of Q5. This is similar to how modifying AH |
2933 | * will only affect bits 8-15 of AX on x86. |
2934 | * |
2935 | * VZIP takes two registers, and puts even lanes in one register and odd lanes |
2936 | * in the other. |
2937 | * |
2938 | * On ARMv7-A, this strangely modifies both parameters in place instead of |
2939 | * taking the usual 3-operand form. |
2940 | * |
2941 | * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the |
2942 | * lower and upper halves of the Q register to end up with the high and low |
2943 | * halves where we want - all in one instruction. |
2944 | * |
2945 | * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } |
2946 | * |
2947 | * Unfortunately we need inline assembly for this: Instructions modifying two |
2948 | * registers at once is not possible in GCC or Clang's IR, and they have to |
2949 | * create a copy. |
2950 | * |
2951 | * aarch64 requires a different approach. |
2952 | * |
2953 | * In order to make it easier to write a decent compiler for aarch64, many |
2954 | * quirks were removed, such as conditional execution. |
2955 | * |
2956 | * NEON was also affected by this. |
2957 | * |
2958 | * aarch64 cannot access the high bits of a Q-form register, and writes to a |
2959 | * D-form register zero the high bits, similar to how writes to W-form scalar |
2960 | * registers (or DWORD registers on x86_64) work. |
2961 | * |
2962 | * The formerly free vget_high intrinsics now require a vext (with a few |
2963 | * exceptions) |
2964 | * |
2965 | * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent |
2966 | * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one |
2967 | * operand. |
2968 | * |
2969 | * The equivalent of the VZIP.32 on the lower and upper halves would be this |
2970 | * mess: |
2971 | * |
2972 | * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } |
2973 | * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } |
2974 | * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } |
2975 | * |
2976 | * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): |
2977 | * |
2978 | * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); |
2979 | * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); |
2980 | * |
2981 | * This is available on ARMv7-A, but is less efficient than a single VZIP.32. |
2982 | */ |
2983 | |
2984 | /*! |
2985 | * Function-like macro: |
2986 | * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) |
2987 | * { |
2988 | * outLo = (uint32x2_t)(in & 0xFFFFFFFF); |
2989 | * outHi = (uint32x2_t)(in >> 32); |
2990 | * in = UNDEFINED; |
2991 | * } |
2992 | */ |
2993 | # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ |
2994 | && (defined(__GNUC__) || defined(__clang__)) \ |
2995 | && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM)) |
2996 | # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
2997 | do { \ |
2998 | /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ |
2999 | /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ |
3000 | /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ |
3001 | __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ |
3002 | (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ |
3003 | (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ |
3004 | } while (0) |
3005 | # else |
3006 | # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
3007 | do { \ |
3008 | (outLo) = vmovn_u64 (in); \ |
3009 | (outHi) = vshrn_n_u64 ((in), 32); \ |
3010 | } while (0) |
3011 | # endif |
3012 | |
3013 | /*! |
3014 | * @ingroup tuning |
3015 | * @brief Controls the NEON to scalar ratio for XXH3 |
3016 | * |
3017 | * On AArch64 when not optimizing for size, XXH3 will run 6 lanes using NEON and |
3018 | * 2 lanes on scalar by default. |
3019 | * |
3020 | * This can be set to 2, 4, 6, or 8. ARMv7 will default to all 8 NEON lanes, as the |
3021 | * emulated 64-bit arithmetic is too slow. |
3022 | * |
3023 | * Modern ARM CPUs are _very_ sensitive to how their pipelines are used. |
3024 | * |
3025 | * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but it can't |
3026 | * have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions, |
3027 | * you are only using 2/3 of the CPU bandwidth. |
3028 | * |
3029 | * This is even more noticeable on the more advanced cores like the A76 which |
3030 | * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. |
3031 | * |
3032 | * Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the |
3033 | * remaining lanes will use scalar instructions. This improves the bandwidth |
3034 | * and also gives the integer pipelines something to do besides twiddling loop |
3035 | * counters and pointers. |
3036 | * |
3037 | * This change benefits CPUs with large micro-op buffers without negatively affecting |
3038 | * other CPUs: |
3039 | * |
3040 | * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | |
3041 | * |:----------------------|:--------------------|----------:|-----------:|------:| |
3042 | * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | |
3043 | * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | |
3044 | * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | |
3045 | * |
3046 | * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. |
3047 | * |
3048 | * @see XXH3_accumulate_512_neon() |
3049 | */ |
3050 | # ifndef XXH3_NEON_LANES |
3051 | # if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ |
3052 | && !defined(__OPTIMIZE_SIZE__) |
3053 | # define XXH3_NEON_LANES 6 |
3054 | # else |
3055 | # define XXH3_NEON_LANES XXH_ACC_NB |
3056 | # endif |
3057 | # endif |
3058 | #endif /* XXH_VECTOR == XXH_NEON */ |
3059 | |
3060 | /* |
3061 | * VSX and Z Vector helpers. |
3062 | * |
3063 | * This is very messy, and any pull requests to clean this up are welcome. |
3064 | * |
3065 | * There are a lot of problems with supporting VSX and s390x, due to |
3066 | * inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
3067 | */ |
3068 | #if XXH_VECTOR == XXH_VSX |
3069 | # if defined(__s390x__) |
3070 | # include <s390intrin.h> |
3071 | # else |
3072 | /* gcc's altivec.h can have the unwanted consequence to unconditionally |
3073 | * #define bool, vector, and pixel keywords, |
3074 | * with bad consequences for programs already using these keywords for other purposes. |
3075 | * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. |
3076 | * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, |
3077 | * but it seems that, in some cases, it isn't. |
3078 | * Force the build macro to be defined, so that keywords are not altered. |
3079 | */ |
3080 | # if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) |
3081 | # define __APPLE_ALTIVEC__ |
3082 | # endif |
3083 | # include <altivec.h> |
3084 | # endif |
3085 | |
3086 | typedef __vector unsigned long long xxh_u64x2; |
3087 | typedef __vector unsigned char xxh_u8x16; |
3088 | typedef __vector unsigned xxh_u32x4; |
3089 | |
3090 | # ifndef XXH_VSX_BE |
3091 | # if defined(__BIG_ENDIAN__) \ |
3092 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
3093 | # define XXH_VSX_BE 1 |
3094 | # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
3095 | # warning "-maltivec=be is not recommended. Please use native endianness." |
3096 | # define XXH_VSX_BE 1 |
3097 | # else |
3098 | # define XXH_VSX_BE 0 |
3099 | # endif |
3100 | # endif /* !defined(XXH_VSX_BE) */ |
3101 | |
3102 | # if XXH_VSX_BE |
3103 | # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
3104 | # define XXH_vec_revb vec_revb |
3105 | # else |
3106 | /*! |
3107 | * A polyfill for POWER9's vec_revb(). |
3108 | */ |
3109 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
3110 | { |
3111 | xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
3112 | 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
3113 | return vec_perm(val, val, vByteSwap); |
3114 | } |
3115 | # endif |
3116 | # endif /* XXH_VSX_BE */ |
3117 | |
3118 | /*! |
3119 | * Performs an unaligned vector load and byte swaps it on big endian. |
3120 | */ |
3121 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
3122 | { |
3123 | xxh_u64x2 ret; |
3124 | XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
3125 | # if XXH_VSX_BE |
3126 | ret = XXH_vec_revb(ret); |
3127 | # endif |
3128 | return ret; |
3129 | } |
3130 | |
3131 | /* |
3132 | * vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
3133 | * |
3134 | * These intrinsics weren't added until GCC 8, despite existing for a while, |
3135 | * and they are endian dependent. Also, their meaning swap depending on version. |
3136 | * */ |
3137 | # if defined(__s390x__) |
3138 | /* s390x is always big endian, no issue on this platform */ |
3139 | # define XXH_vec_mulo vec_mulo |
3140 | # define XXH_vec_mule vec_mule |
3141 | # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) |
3142 | /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
3143 | # define XXH_vec_mulo __builtin_altivec_vmulouw |
3144 | # define XXH_vec_mule __builtin_altivec_vmuleuw |
3145 | # else |
3146 | /* gcc needs inline assembly */ |
3147 | /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
3148 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
3149 | { |
3150 | xxh_u64x2 result; |
3151 | __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
3152 | return result; |
3153 | } |
3154 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
3155 | { |
3156 | xxh_u64x2 result; |
3157 | __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
3158 | return result; |
3159 | } |
3160 | # endif /* XXH_vec_mulo, XXH_vec_mule */ |
3161 | #endif /* XXH_VECTOR == XXH_VSX */ |
3162 | |
3163 | |
3164 | /* prefetch |
3165 | * can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
3166 | #if defined(XXH_NO_PREFETCH) |
3167 | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
3168 | #else |
3169 | # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ |
3170 | # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
3171 | # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
3172 | # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
3173 | # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
3174 | # else |
3175 | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
3176 | # endif |
3177 | #endif /* XXH_NO_PREFETCH */ |
3178 | |
3179 | |
3180 | /* ========================================== |
3181 | * XXH3 default settings |
3182 | * ========================================== */ |
3183 | |
3184 | #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
3185 | |
3186 | #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
3187 | # error "default keyset is not large enough" |
3188 | #endif |
3189 | |
3190 | /*! Pseudorandom secret taken directly from FARSH. */ |
3191 | XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
3192 | 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
3193 | 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
3194 | 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
3195 | 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
3196 | 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
3197 | 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
3198 | 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
3199 | 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
3200 | 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
3201 | 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
3202 | 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
3203 | 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
3204 | }; |
3205 | |
3206 | |
3207 | #ifdef XXH_OLD_NAMES |
3208 | # define kSecret XXH3_kSecret |
3209 | #endif |
3210 | |
3211 | #ifdef XXH_DOXYGEN |
3212 | /*! |
3213 | * @brief Calculates a 32-bit to 64-bit long multiply. |
3214 | * |
3215 | * Implemented as a macro. |
3216 | * |
3217 | * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't |
3218 | * need to (but it shouldn't need to anyways, it is about 7 instructions to do |
3219 | * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we |
3220 | * use that instead of the normal method. |
3221 | * |
3222 | * If you are compiling for platforms like Thumb-1 and don't have a better option, |
3223 | * you may also want to write your own long multiply routine here. |
3224 | * |
3225 | * @param x, y Numbers to be multiplied |
3226 | * @return 64-bit product of the low 32 bits of @p x and @p y. |
3227 | */ |
3228 | XXH_FORCE_INLINE xxh_u64 |
3229 | XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
3230 | { |
3231 | return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
3232 | } |
3233 | #elif defined(_MSC_VER) && defined(_M_IX86) |
3234 | # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
3235 | #else |
3236 | /* |
3237 | * Downcast + upcast is usually better than masking on older compilers like |
3238 | * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
3239 | * |
3240 | * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
3241 | * and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
3242 | */ |
3243 | # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
3244 | #endif |
3245 | |
3246 | /*! |
3247 | * @brief Calculates a 64->128-bit long multiply. |
3248 | * |
3249 | * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar |
3250 | * version. |
3251 | * |
3252 | * @param lhs , rhs The 64-bit integers to be multiplied |
3253 | * @return The 128-bit result represented in an @ref XXH128_hash_t. |
3254 | */ |
3255 | static XXH128_hash_t |
3256 | XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
3257 | { |
3258 | /* |
3259 | * GCC/Clang __uint128_t method. |
3260 | * |
3261 | * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
3262 | * This is usually the best way as it usually uses a native long 64-bit |
3263 | * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
3264 | * |
3265 | * Usually. |
3266 | * |
3267 | * Despite being a 32-bit platform, Clang (and emscripten) define this type |
3268 | * despite not having the arithmetic for it. This results in a laggy |
3269 | * compiler builtin call which calculates a full 128-bit multiply. |
3270 | * In that case it is best to use the portable one. |
3271 | * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
3272 | */ |
3273 | #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \ |
3274 | && defined(__SIZEOF_INT128__) \ |
3275 | || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
3276 | |
3277 | __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
3278 | XXH128_hash_t r128; |
3279 | r128.low64 = (xxh_u64)(product); |
3280 | r128.high64 = (xxh_u64)(product >> 64); |
3281 | return r128; |
3282 | |
3283 | /* |
3284 | * MSVC for x64's _umul128 method. |
3285 | * |
3286 | * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
3287 | * |
3288 | * This compiles to single operand MUL on x64. |
3289 | */ |
3290 | #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) |
3291 | |
3292 | #ifndef _MSC_VER |
3293 | # pragma intrinsic(_umul128) |
3294 | #endif |
3295 | xxh_u64 product_high; |
3296 | xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
3297 | XXH128_hash_t r128; |
3298 | r128.low64 = product_low; |
3299 | r128.high64 = product_high; |
3300 | return r128; |
3301 | |
3302 | /* |
3303 | * MSVC for ARM64's __umulh method. |
3304 | * |
3305 | * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. |
3306 | */ |
3307 | #elif defined(_M_ARM64) || defined(_M_ARM64EC) |
3308 | |
3309 | #ifndef _MSC_VER |
3310 | # pragma intrinsic(__umulh) |
3311 | #endif |
3312 | XXH128_hash_t r128; |
3313 | r128.low64 = lhs * rhs; |
3314 | r128.high64 = __umulh(lhs, rhs); |
3315 | return r128; |
3316 | |
3317 | #else |
3318 | /* |
3319 | * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
3320 | * |
3321 | * This is a fast and simple grade school multiply, which is shown below |
3322 | * with base 10 arithmetic instead of base 0x100000000. |
3323 | * |
3324 | * 9 3 // D2 lhs = 93 |
3325 | * x 7 5 // D2 rhs = 75 |
3326 | * ---------- |
3327 | * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
3328 | * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
3329 | * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
3330 | * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
3331 | * --------- |
3332 | * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
3333 | * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
3334 | * --------- |
3335 | * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
3336 | * |
3337 | * The reasons for adding the products like this are: |
3338 | * 1. It avoids manual carry tracking. Just like how |
3339 | * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
3340 | * This avoids a lot of complexity. |
3341 | * |
3342 | * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
3343 | * instruction available in ARM's Digital Signal Processing extension |
3344 | * in 32-bit ARMv6 and later, which is shown below: |
3345 | * |
3346 | * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
3347 | * { |
3348 | * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
3349 | * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
3350 | * *RdHi = (xxh_u32)(product >> 32); |
3351 | * } |
3352 | * |
3353 | * This instruction was designed for efficient long multiplication, and |
3354 | * allows this to be calculated in only 4 instructions at speeds |
3355 | * comparable to some 64-bit ALUs. |
3356 | * |
3357 | * 3. It isn't terrible on other platforms. Usually this will be a couple |
3358 | * of 32-bit ADD/ADCs. |
3359 | */ |
3360 | |
3361 | /* First calculate all of the cross products. */ |
3362 | xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
3363 | xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
3364 | xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
3365 | xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
3366 | |
3367 | /* Now add the products together. These will never overflow. */ |
3368 | xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
3369 | xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
3370 | xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
3371 | |
3372 | XXH128_hash_t r128; |
3373 | r128.low64 = lower; |
3374 | r128.high64 = upper; |
3375 | return r128; |
3376 | #endif |
3377 | } |
3378 | |
3379 | /*! |
3380 | * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. |
3381 | * |
3382 | * The reason for the separate function is to prevent passing too many structs |
3383 | * around by value. This will hopefully inline the multiply, but we don't force it. |
3384 | * |
3385 | * @param lhs , rhs The 64-bit integers to multiply |
3386 | * @return The low 64 bits of the product XOR'd by the high 64 bits. |
3387 | * @see XXH_mult64to128() |
3388 | */ |
3389 | static xxh_u64 |
3390 | XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
3391 | { |
3392 | XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
3393 | return product.low64 ^ product.high64; |
3394 | } |
3395 | |
3396 | /*! Seems to produce slightly better code on GCC for some reason. */ |
3397 | XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
3398 | { |
3399 | XXH_ASSERT(0 <= shift && shift < 64); |
3400 | return v64 ^ (v64 >> shift); |
3401 | } |
3402 | |
3403 | /* |
3404 | * This is a fast avalanche stage, |
3405 | * suitable when input bits are already partially mixed |
3406 | */ |
3407 | static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
3408 | { |
3409 | h64 = XXH_xorshift64(h64, 37); |
3410 | h64 *= 0x165667919E3779F9ULL; |
3411 | h64 = XXH_xorshift64(h64, 32); |
3412 | return h64; |
3413 | } |
3414 | |
3415 | /* |
3416 | * This is a stronger avalanche, |
3417 | * inspired by Pelle Evensen's rrmxmx |
3418 | * preferable when input has not been previously mixed |
3419 | */ |
3420 | static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
3421 | { |
3422 | /* this mix is inspired by Pelle Evensen's rrmxmx */ |
3423 | h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
3424 | h64 *= 0x9FB21C651E98DF25ULL; |
3425 | h64 ^= (h64 >> 35) + len ; |
3426 | h64 *= 0x9FB21C651E98DF25ULL; |
3427 | return XXH_xorshift64(h64, 28); |
3428 | } |
3429 | |
3430 | |
3431 | /* ========================================== |
3432 | * Short keys |
3433 | * ========================================== |
3434 | * One of the shortcomings of XXH32 and XXH64 was that their performance was |
3435 | * sub-optimal on short lengths. It used an iterative algorithm which strongly |
3436 | * favored lengths that were a multiple of 4 or 8. |
3437 | * |
3438 | * Instead of iterating over individual inputs, we use a set of single shot |
3439 | * functions which piece together a range of lengths and operate in constant time. |
3440 | * |
3441 | * Additionally, the number of multiplies has been significantly reduced. This |
3442 | * reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
3443 | * |
3444 | * Depending on the platform, this may or may not be faster than XXH32, but it |
3445 | * is almost guaranteed to be faster than XXH64. |
3446 | */ |
3447 | |
3448 | /* |
3449 | * At very short lengths, there isn't enough input to fully hide secrets, or use |
3450 | * the entire secret. |
3451 | * |
3452 | * There is also only a limited amount of mixing we can do before significantly |
3453 | * impacting performance. |
3454 | * |
3455 | * Therefore, we use different sections of the secret and always mix two secret |
3456 | * samples with an XOR. This should have no effect on performance on the |
3457 | * seedless or withSeed variants because everything _should_ be constant folded |
3458 | * by modern compilers. |
3459 | * |
3460 | * The XOR mixing hides individual parts of the secret and increases entropy. |
3461 | * |
3462 | * This adds an extra layer of strength for custom secrets. |
3463 | */ |
3464 | XXH_FORCE_INLINE XXH64_hash_t |
3465 | XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3466 | { |
3467 | XXH_ASSERT(input != NULL); |
3468 | XXH_ASSERT(1 <= len && len <= 3); |
3469 | XXH_ASSERT(secret != NULL); |
3470 | /* |
3471 | * len = 1: combined = { input[0], 0x01, input[0], input[0] } |
3472 | * len = 2: combined = { input[1], 0x02, input[0], input[1] } |
3473 | * len = 3: combined = { input[2], 0x03, input[0], input[1] } |
3474 | */ |
3475 | { xxh_u8 const c1 = input[0]; |
3476 | xxh_u8 const c2 = input[len >> 1]; |
3477 | xxh_u8 const c3 = input[len - 1]; |
3478 | xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
3479 | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
3480 | xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
3481 | xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
3482 | return XXH64_avalanche(keyed); |
3483 | } |
3484 | } |
3485 | |
3486 | XXH_FORCE_INLINE XXH64_hash_t |
3487 | XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3488 | { |
3489 | XXH_ASSERT(input != NULL); |
3490 | XXH_ASSERT(secret != NULL); |
3491 | XXH_ASSERT(4 <= len && len <= 8); |
3492 | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
3493 | { xxh_u32 const input1 = XXH_readLE32(input); |
3494 | xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
3495 | xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
3496 | xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
3497 | xxh_u64 const keyed = input64 ^ bitflip; |
3498 | return XXH3_rrmxmx(keyed, len); |
3499 | } |
3500 | } |
3501 | |
3502 | XXH_FORCE_INLINE XXH64_hash_t |
3503 | XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3504 | { |
3505 | XXH_ASSERT(input != NULL); |
3506 | XXH_ASSERT(secret != NULL); |
3507 | XXH_ASSERT(9 <= len && len <= 16); |
3508 | { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
3509 | xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
3510 | xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
3511 | xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
3512 | xxh_u64 const acc = len |
3513 | + XXH_swap64(input_lo) + input_hi |
3514 | + XXH3_mul128_fold64(input_lo, input_hi); |
3515 | return XXH3_avalanche(acc); |
3516 | } |
3517 | } |
3518 | |
3519 | XXH_FORCE_INLINE XXH64_hash_t |
3520 | XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3521 | { |
3522 | XXH_ASSERT(len <= 16); |
3523 | { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
3524 | if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
3525 | if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
3526 | return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
3527 | } |
3528 | } |
3529 | |
3530 | /* |
3531 | * DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
3532 | * multiplication by zero, affecting hashes of lengths 17 to 240. |
3533 | * |
3534 | * However, they are very unlikely. |
3535 | * |
3536 | * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
3537 | * unseeded non-cryptographic hashes, it does not attempt to defend itself |
3538 | * against specially crafted inputs, only random inputs. |
3539 | * |
3540 | * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
3541 | * cancelling out the secret is taken an arbitrary number of times (addressed |
3542 | * in XXH3_accumulate_512), this collision is very unlikely with random inputs |
3543 | * and/or proper seeding: |
3544 | * |
3545 | * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
3546 | * function that is only called up to 16 times per hash with up to 240 bytes of |
3547 | * input. |
3548 | * |
3549 | * This is not too bad for a non-cryptographic hash function, especially with |
3550 | * only 64 bit outputs. |
3551 | * |
3552 | * The 128-bit variant (which trades some speed for strength) is NOT affected |
3553 | * by this, although it is always a good idea to use a proper seed if you care |
3554 | * about strength. |
3555 | */ |
3556 | XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
3557 | const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
3558 | { |
3559 | #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
3560 | && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
3561 | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
3562 | /* |
3563 | * UGLY HACK: |
3564 | * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
3565 | * slower code. |
3566 | * |
3567 | * By forcing seed64 into a register, we disrupt the cost model and |
3568 | * cause it to scalarize. See `XXH32_round()` |
3569 | * |
3570 | * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
3571 | * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
3572 | * GCC 9.2, despite both emitting scalar code. |
3573 | * |
3574 | * GCC generates much better scalar code than Clang for the rest of XXH3, |
3575 | * which is why finding a more optimal codepath is an interest. |
3576 | */ |
3577 | XXH_COMPILER_GUARD(seed64); |
3578 | #endif |
3579 | { xxh_u64 const input_lo = XXH_readLE64(input); |
3580 | xxh_u64 const input_hi = XXH_readLE64(input+8); |
3581 | return XXH3_mul128_fold64( |
3582 | input_lo ^ (XXH_readLE64(secret) + seed64), |
3583 | input_hi ^ (XXH_readLE64(secret+8) - seed64) |
3584 | ); |
3585 | } |
3586 | } |
3587 | |
3588 | /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
3589 | XXH_FORCE_INLINE XXH64_hash_t |
3590 | XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
3591 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
3592 | XXH64_hash_t seed) |
3593 | { |
3594 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
3595 | XXH_ASSERT(16 < len && len <= 128); |
3596 | |
3597 | { xxh_u64 acc = len * XXH_PRIME64_1; |
3598 | if (len > 32) { |
3599 | if (len > 64) { |
3600 | if (len > 96) { |
3601 | acc += XXH3_mix16B(input+48, secret+96, seed); |
3602 | acc += XXH3_mix16B(input+len-64, secret+112, seed); |
3603 | } |
3604 | acc += XXH3_mix16B(input+32, secret+64, seed); |
3605 | acc += XXH3_mix16B(input+len-48, secret+80, seed); |
3606 | } |
3607 | acc += XXH3_mix16B(input+16, secret+32, seed); |
3608 | acc += XXH3_mix16B(input+len-32, secret+48, seed); |
3609 | } |
3610 | acc += XXH3_mix16B(input+0, secret+0, seed); |
3611 | acc += XXH3_mix16B(input+len-16, secret+16, seed); |
3612 | |
3613 | return XXH3_avalanche(acc); |
3614 | } |
3615 | } |
3616 | |
3617 | #define XXH3_MIDSIZE_MAX 240 |
3618 | |
3619 | XXH_NO_INLINE XXH64_hash_t |
3620 | XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
3621 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
3622 | XXH64_hash_t seed) |
3623 | { |
3624 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
3625 | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
3626 | |
3627 | #define XXH3_MIDSIZE_STARTOFFSET 3 |
3628 | #define XXH3_MIDSIZE_LASTOFFSET 17 |
3629 | |
3630 | { xxh_u64 acc = len * XXH_PRIME64_1; |
3631 | int const nbRounds = (int)len / 16; |
3632 | int i; |
3633 | for (i=0; i<8; i++) { |
3634 | acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
3635 | } |
3636 | acc = XXH3_avalanche(acc); |
3637 | XXH_ASSERT(nbRounds >= 8); |
3638 | #if defined(__clang__) /* Clang */ \ |
3639 | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
3640 | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
3641 | /* |
3642 | * UGLY HACK: |
3643 | * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
3644 | * In everywhere else, it uses scalar code. |
3645 | * |
3646 | * For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
3647 | * would still be slower than UMAAL (see XXH_mult64to128). |
3648 | * |
3649 | * Unfortunately, Clang doesn't handle the long multiplies properly and |
3650 | * converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
3651 | * scalarized into an ugly mess of VMOV.32 instructions. |
3652 | * |
3653 | * This mess is difficult to avoid without turning autovectorization |
3654 | * off completely, but they are usually relatively minor and/or not |
3655 | * worth it to fix. |
3656 | * |
3657 | * This loop is the easiest to fix, as unlike XXH32, this pragma |
3658 | * _actually works_ because it is a loop vectorization instead of an |
3659 | * SLP vectorization. |
3660 | */ |
3661 | #pragma clang loop vectorize(disable) |
3662 | #endif |
3663 | for (i=8 ; i < nbRounds; i++) { |
3664 | acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
3665 | } |
3666 | /* last bytes */ |
3667 | acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
3668 | return XXH3_avalanche(acc); |
3669 | } |
3670 | } |
3671 | |
3672 | |
3673 | /* ======= Long Keys ======= */ |
3674 | |
3675 | #define XXH_STRIPE_LEN 64 |
3676 | #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
3677 | #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
3678 | |
3679 | #ifdef XXH_OLD_NAMES |
3680 | # define STRIPE_LEN XXH_STRIPE_LEN |
3681 | # define ACC_NB XXH_ACC_NB |
3682 | #endif |
3683 | |
3684 | XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
3685 | { |
3686 | if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
3687 | XXH_memcpy(dst, &v64, sizeof(v64)); |
3688 | } |
3689 | |
3690 | /* Several intrinsic functions below are supposed to accept __int64 as argument, |
3691 | * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
3692 | * However, several environments do not define __int64 type, |
3693 | * requiring a workaround. |
3694 | */ |
3695 | #if !defined (__VMS) \ |
3696 | && (defined (__cplusplus) \ |
3697 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
3698 | typedef int64_t xxh_i64; |
3699 | #else |
3700 | /* the following type must have a width of 64-bit */ |
3701 | typedef long long xxh_i64; |
3702 | #endif |
3703 | |
3704 | |
3705 | /* |
3706 | * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
3707 | * |
3708 | * It is a hardened version of UMAC, based off of FARSH's implementation. |
3709 | * |
3710 | * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
3711 | * implementations, and it is ridiculously fast. |
3712 | * |
3713 | * We harden it by mixing the original input to the accumulators as well as the product. |
3714 | * |
3715 | * This means that in the (relatively likely) case of a multiply by zero, the |
3716 | * original input is preserved. |
3717 | * |
3718 | * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
3719 | * cross-pollination, as otherwise the upper and lower halves would be |
3720 | * essentially independent. |
3721 | * |
3722 | * This doesn't matter on 64-bit hashes since they all get merged together in |
3723 | * the end, so we skip the extra step. |
3724 | * |
3725 | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
3726 | */ |
3727 | |
3728 | #if (XXH_VECTOR == XXH_AVX512) \ |
3729 | || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) |
3730 | |
3731 | #ifndef XXH_TARGET_AVX512 |
3732 | # define XXH_TARGET_AVX512 /* disable attribute target */ |
3733 | #endif |
3734 | |
3735 | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
3736 | XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
3737 | const void* XXH_RESTRICT input, |
3738 | const void* XXH_RESTRICT secret) |
3739 | { |
3740 | __m512i* const xacc = (__m512i *) acc; |
3741 | XXH_ASSERT((((size_t)acc) & 63) == 0); |
3742 | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
3743 | |
3744 | { |
3745 | /* data_vec = input[0]; */ |
3746 | __m512i const data_vec = _mm512_loadu_si512 (input); |
3747 | /* key_vec = secret[0]; */ |
3748 | __m512i const key_vec = _mm512_loadu_si512 (secret); |
3749 | /* data_key = data_vec ^ key_vec; */ |
3750 | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
3751 | /* data_key_lo = data_key >> 32; */ |
3752 | __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
3753 | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
3754 | __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
3755 | /* xacc[0] += swap(data_vec); */ |
3756 | __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); |
3757 | __m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
3758 | /* xacc[0] += product; */ |
3759 | *xacc = _mm512_add_epi64(product, sum); |
3760 | } |
3761 | } |
3762 | |
3763 | /* |
3764 | * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
3765 | * |
3766 | * Multiplication isn't perfect, as explained by Google in HighwayHash: |
3767 | * |
3768 | * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
3769 | * // varying degrees. In descending order of goodness, bytes |
3770 | * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
3771 | * // As expected, the upper and lower bytes are much worse. |
3772 | * |
3773 | * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
3774 | * |
3775 | * Since our algorithm uses a pseudorandom secret to add some variance into the |
3776 | * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
3777 | * |
3778 | * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
3779 | * extraction. |
3780 | * |
3781 | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
3782 | */ |
3783 | |
3784 | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
3785 | XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
3786 | { |
3787 | XXH_ASSERT((((size_t)acc) & 63) == 0); |
3788 | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
3789 | { __m512i* const xacc = (__m512i*) acc; |
3790 | const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
3791 | |
3792 | /* xacc[0] ^= (xacc[0] >> 47) */ |
3793 | __m512i const acc_vec = *xacc; |
3794 | __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
3795 | __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); |
3796 | /* xacc[0] ^= secret; */ |
3797 | __m512i const key_vec = _mm512_loadu_si512 (secret); |
3798 | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
3799 | |
3800 | /* xacc[0] *= XXH_PRIME32_1; */ |
3801 | __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
3802 | __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
3803 | __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
3804 | *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
3805 | } |
3806 | } |
3807 | |
3808 | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
3809 | XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
3810 | { |
3811 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
3812 | XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
3813 | XXH_ASSERT(((size_t)customSecret & 63) == 0); |
3814 | (void)(&XXH_writeLE64); |
3815 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
3816 | __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64)); |
3817 | |
3818 | const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); |
3819 | __m512i* const dest = ( __m512i*) customSecret; |
3820 | int i; |
3821 | XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ |
3822 | XXH_ASSERT(((size_t)dest & 63) == 0); |
3823 | for (i=0; i < nbRounds; ++i) { |
3824 | /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', |
3825 | * this will warn "discards 'const' qualifier". */ |
3826 | union { |
3827 | const __m512i* cp; |
3828 | void* p; |
3829 | } remote_const_void; |
3830 | remote_const_void.cp = src + i; |
3831 | dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); |
3832 | } } |
3833 | } |
3834 | |
3835 | #endif |
3836 | |
3837 | #if (XXH_VECTOR == XXH_AVX2) \ |
3838 | || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) |
3839 | |
3840 | #ifndef XXH_TARGET_AVX2 |
3841 | # define XXH_TARGET_AVX2 /* disable attribute target */ |
3842 | #endif |
3843 | |
3844 | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
3845 | XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
3846 | const void* XXH_RESTRICT input, |
3847 | const void* XXH_RESTRICT secret) |
3848 | { |
3849 | XXH_ASSERT((((size_t)acc) & 31) == 0); |
3850 | { __m256i* const xacc = (__m256i *) acc; |
3851 | /* Unaligned. This is mainly for pointer arithmetic, and because |
3852 | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
3853 | const __m256i* const xinput = (const __m256i *) input; |
3854 | /* Unaligned. This is mainly for pointer arithmetic, and because |
3855 | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
3856 | const __m256i* const xsecret = (const __m256i *) secret; |
3857 | |
3858 | size_t i; |
3859 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
3860 | /* data_vec = xinput[i]; */ |
3861 | __m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
3862 | /* key_vec = xsecret[i]; */ |
3863 | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
3864 | /* data_key = data_vec ^ key_vec; */ |
3865 | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
3866 | /* data_key_lo = data_key >> 32; */ |
3867 | __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
3868 | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
3869 | __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
3870 | /* xacc[i] += swap(data_vec); */ |
3871 | __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
3872 | __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
3873 | /* xacc[i] += product; */ |
3874 | xacc[i] = _mm256_add_epi64(product, sum); |
3875 | } } |
3876 | } |
3877 | |
3878 | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
3879 | XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
3880 | { |
3881 | XXH_ASSERT((((size_t)acc) & 31) == 0); |
3882 | { __m256i* const xacc = (__m256i*) acc; |
3883 | /* Unaligned. This is mainly for pointer arithmetic, and because |
3884 | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
3885 | const __m256i* const xsecret = (const __m256i *) secret; |
3886 | const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
3887 | |
3888 | size_t i; |
3889 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
3890 | /* xacc[i] ^= (xacc[i] >> 47) */ |
3891 | __m256i const acc_vec = xacc[i]; |
3892 | __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
3893 | __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
3894 | /* xacc[i] ^= xsecret; */ |
3895 | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
3896 | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
3897 | |
3898 | /* xacc[i] *= XXH_PRIME32_1; */ |
3899 | __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
3900 | __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
3901 | __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
3902 | xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
3903 | } |
3904 | } |
3905 | } |
3906 | |
3907 | XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
3908 | { |
3909 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
3910 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
3911 | XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
3912 | (void)(&XXH_writeLE64); |
3913 | XXH_PREFETCH(customSecret); |
3914 | { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); |
3915 | |
3916 | const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); |
3917 | __m256i* dest = ( __m256i*) customSecret; |
3918 | |
3919 | # if defined(__GNUC__) || defined(__clang__) |
3920 | /* |
3921 | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
3922 | * - do not extract the secret from sse registers in the internal loop |
3923 | * - use less common registers, and avoid pushing these reg into stack |
3924 | */ |
3925 | XXH_COMPILER_GUARD(dest); |
3926 | # endif |
3927 | XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ |
3928 | XXH_ASSERT(((size_t)dest & 31) == 0); |
3929 | |
3930 | /* GCC -O2 need unroll loop manually */ |
3931 | dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); |
3932 | dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); |
3933 | dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); |
3934 | dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); |
3935 | dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); |
3936 | dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); |
3937 | } |
3938 | } |
3939 | |
3940 | #endif |
3941 | |
3942 | /* x86dispatch always generates SSE2 */ |
3943 | #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
3944 | |
3945 | #ifndef XXH_TARGET_SSE2 |
3946 | # define XXH_TARGET_SSE2 /* disable attribute target */ |
3947 | #endif |
3948 | |
3949 | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
3950 | XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
3951 | const void* XXH_RESTRICT input, |
3952 | const void* XXH_RESTRICT secret) |
3953 | { |
3954 | /* SSE2 is just a half-scale version of the AVX2 version. */ |
3955 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
3956 | { __m128i* const xacc = (__m128i *) acc; |
3957 | /* Unaligned. This is mainly for pointer arithmetic, and because |
3958 | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
3959 | const __m128i* const xinput = (const __m128i *) input; |
3960 | /* Unaligned. This is mainly for pointer arithmetic, and because |
3961 | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
3962 | const __m128i* const xsecret = (const __m128i *) secret; |
3963 | |
3964 | size_t i; |
3965 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
3966 | /* data_vec = xinput[i]; */ |
3967 | __m128i const data_vec = _mm_loadu_si128 (xinput+i); |
3968 | /* key_vec = xsecret[i]; */ |
3969 | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
3970 | /* data_key = data_vec ^ key_vec; */ |
3971 | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
3972 | /* data_key_lo = data_key >> 32; */ |
3973 | __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
3974 | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
3975 | __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
3976 | /* xacc[i] += swap(data_vec); */ |
3977 | __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
3978 | __m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
3979 | /* xacc[i] += product; */ |
3980 | xacc[i] = _mm_add_epi64(product, sum); |
3981 | } } |
3982 | } |
3983 | |
3984 | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
3985 | XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
3986 | { |
3987 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
3988 | { __m128i* const xacc = (__m128i*) acc; |
3989 | /* Unaligned. This is mainly for pointer arithmetic, and because |
3990 | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
3991 | const __m128i* const xsecret = (const __m128i *) secret; |
3992 | const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
3993 | |
3994 | size_t i; |
3995 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
3996 | /* xacc[i] ^= (xacc[i] >> 47) */ |
3997 | __m128i const acc_vec = xacc[i]; |
3998 | __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
3999 | __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
4000 | /* xacc[i] ^= xsecret[i]; */ |
4001 | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
4002 | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
4003 | |
4004 | /* xacc[i] *= XXH_PRIME32_1; */ |
4005 | __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
4006 | __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
4007 | __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
4008 | xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
4009 | } |
4010 | } |
4011 | } |
4012 | |
4013 | XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
4014 | { |
4015 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
4016 | (void)(&XXH_writeLE64); |
4017 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
4018 | |
4019 | # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
4020 | /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ |
4021 | XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; |
4022 | __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
4023 | # else |
4024 | __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); |
4025 | # endif |
4026 | int i; |
4027 | |
4028 | const void* const src16 = XXH3_kSecret; |
4029 | __m128i* dst16 = (__m128i*) customSecret; |
4030 | # if defined(__GNUC__) || defined(__clang__) |
4031 | /* |
4032 | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
4033 | * - do not extract the secret from sse registers in the internal loop |
4034 | * - use less common registers, and avoid pushing these reg into stack |
4035 | */ |
4036 | XXH_COMPILER_GUARD(dst16); |
4037 | # endif |
4038 | XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ |
4039 | XXH_ASSERT(((size_t)dst16 & 15) == 0); |
4040 | |
4041 | for (i=0; i < nbRounds; ++i) { |
4042 | dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); |
4043 | } } |
4044 | } |
4045 | |
4046 | #endif |
4047 | |
4048 | #if (XXH_VECTOR == XXH_NEON) |
4049 | |
4050 | /* forward declarations for the scalar routines */ |
4051 | XXH_FORCE_INLINE void |
4052 | XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, |
4053 | void const* XXH_RESTRICT secret, size_t lane); |
4054 | |
4055 | XXH_FORCE_INLINE void |
4056 | XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, |
4057 | void const* XXH_RESTRICT secret, size_t lane); |
4058 | |
4059 | /*! |
4060 | * @internal |
4061 | * @brief The bulk processing loop for NEON. |
4062 | * |
4063 | * The NEON code path is actually partially scalar when running on AArch64. This |
4064 | * is to optimize the pipelining and can have up to 15% speedup depending on the |
4065 | * CPU, and it also mitigates some GCC codegen issues. |
4066 | * |
4067 | * @see XXH3_NEON_LANES for configuring this and details about this optimization. |
4068 | */ |
4069 | XXH_FORCE_INLINE void |
4070 | XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
4071 | const void* XXH_RESTRICT input, |
4072 | const void* XXH_RESTRICT secret) |
4073 | { |
4074 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4075 | XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); |
4076 | { |
4077 | uint64x2_t* const xacc = (uint64x2_t *) acc; |
4078 | /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
4079 | uint8_t const* const xinput = (const uint8_t *) input; |
4080 | uint8_t const* const xsecret = (const uint8_t *) secret; |
4081 | |
4082 | size_t i; |
4083 | /* NEON for the first few lanes (these loops are normally interleaved) */ |
4084 | for (i=0; i < XXH3_NEON_LANES / 2; i++) { |
4085 | /* data_vec = xinput[i]; */ |
4086 | uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); |
4087 | /* key_vec = xsecret[i]; */ |
4088 | uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
4089 | uint64x2_t data_key; |
4090 | uint32x2_t data_key_lo, data_key_hi; |
4091 | /* xacc[i] += swap(data_vec); */ |
4092 | uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); |
4093 | uint64x2_t const swapped = vextq_u64(data64, data64, 1); |
4094 | xacc[i] = vaddq_u64 (xacc[i], swapped); |
4095 | /* data_key = data_vec ^ key_vec; */ |
4096 | data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); |
4097 | /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); |
4098 | * data_key_hi = (uint32x2_t) (data_key >> 32); |
4099 | * data_key = UNDEFINED; */ |
4100 | XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
4101 | /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ |
4102 | xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); |
4103 | |
4104 | } |
4105 | /* Scalar for the remainder. This may be a zero iteration loop. */ |
4106 | for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { |
4107 | XXH3_scalarRound(acc, input, secret, i); |
4108 | } |
4109 | } |
4110 | } |
4111 | |
4112 | XXH_FORCE_INLINE void |
4113 | XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4114 | { |
4115 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4116 | |
4117 | { uint64x2_t* xacc = (uint64x2_t*) acc; |
4118 | uint8_t const* xsecret = (uint8_t const*) secret; |
4119 | uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); |
4120 | |
4121 | size_t i; |
4122 | /* NEON for the first few lanes (these loops are normally interleaved) */ |
4123 | for (i=0; i < XXH3_NEON_LANES / 2; i++) { |
4124 | /* xacc[i] ^= (xacc[i] >> 47); */ |
4125 | uint64x2_t acc_vec = xacc[i]; |
4126 | uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); |
4127 | uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); |
4128 | |
4129 | /* xacc[i] ^= xsecret[i]; */ |
4130 | uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16)); |
4131 | uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec)); |
4132 | |
4133 | /* xacc[i] *= XXH_PRIME32_1 */ |
4134 | uint32x2_t data_key_lo, data_key_hi; |
4135 | /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); |
4136 | * data_key_hi = (uint32x2_t) (xacc[i] >> 32); |
4137 | * xacc[i] = UNDEFINED; */ |
4138 | XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
4139 | { /* |
4140 | * prod_hi = (data_key >> 32) * XXH_PRIME32_1; |
4141 | * |
4142 | * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will |
4143 | * incorrectly "optimize" this: |
4144 | * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); |
4145 | * shifted = vshll_n_u32(tmp, 32); |
4146 | * to this: |
4147 | * tmp = "vmulq_u64"(a, b); // no such thing! |
4148 | * shifted = vshlq_n_u64(tmp, 32); |
4149 | * |
4150 | * However, unlike SSE, Clang lacks a 64-bit multiply routine |
4151 | * for NEON, and it scalarizes two 64-bit multiplies instead. |
4152 | * |
4153 | * vmull_u32 has the same timing as vmul_u32, and it avoids |
4154 | * this bug completely. |
4155 | * See https://bugs.llvm.org/show_bug.cgi?id=39967 |
4156 | */ |
4157 | uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); |
4158 | /* xacc[i] = prod_hi << 32; */ |
4159 | xacc[i] = vshlq_n_u64(prod_hi, 32); |
4160 | /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ |
4161 | xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); |
4162 | } |
4163 | } |
4164 | /* Scalar for the remainder. This may be a zero iteration loop. */ |
4165 | for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { |
4166 | XXH3_scalarScrambleRound(acc, secret, i); |
4167 | } |
4168 | } |
4169 | } |
4170 | |
4171 | #endif |
4172 | |
4173 | #if (XXH_VECTOR == XXH_VSX) |
4174 | |
4175 | XXH_FORCE_INLINE void |
4176 | XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
4177 | const void* XXH_RESTRICT input, |
4178 | const void* XXH_RESTRICT secret) |
4179 | { |
4180 | /* presumed aligned */ |
4181 | unsigned int* const xacc = (unsigned int*) acc; |
4182 | xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ |
4183 | xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ |
4184 | xxh_u64x2 const v32 = { 32, 32 }; |
4185 | size_t i; |
4186 | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
4187 | /* data_vec = xinput[i]; */ |
4188 | xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); |
4189 | /* key_vec = xsecret[i]; */ |
4190 | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
4191 | xxh_u64x2 const data_key = data_vec ^ key_vec; |
4192 | /* shuffled = (data_key << 32) | (data_key >> 32); */ |
4193 | xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
4194 | /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
4195 | xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
4196 | /* acc_vec = xacc[i]; */ |
4197 | xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i); |
4198 | acc_vec += product; |
4199 | |
4200 | /* swap high and low halves */ |
4201 | #ifdef __s390x__ |
4202 | acc_vec += vec_permi(data_vec, data_vec, 2); |
4203 | #else |
4204 | acc_vec += vec_xxpermdi(data_vec, data_vec, 2); |
4205 | #endif |
4206 | /* xacc[i] = acc_vec; */ |
4207 | vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i); |
4208 | } |
4209 | } |
4210 | |
4211 | XXH_FORCE_INLINE void |
4212 | XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4213 | { |
4214 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4215 | |
4216 | { xxh_u64x2* const xacc = (xxh_u64x2*) acc; |
4217 | const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; |
4218 | /* constants */ |
4219 | xxh_u64x2 const v32 = { 32, 32 }; |
4220 | xxh_u64x2 const v47 = { 47, 47 }; |
4221 | xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
4222 | size_t i; |
4223 | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
4224 | /* xacc[i] ^= (xacc[i] >> 47); */ |
4225 | xxh_u64x2 const acc_vec = xacc[i]; |
4226 | xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
4227 | |
4228 | /* xacc[i] ^= xsecret[i]; */ |
4229 | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
4230 | xxh_u64x2 const data_key = data_vec ^ key_vec; |
4231 | |
4232 | /* xacc[i] *= XXH_PRIME32_1 */ |
4233 | /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
4234 | xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
4235 | /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
4236 | xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
4237 | xacc[i] = prod_odd + (prod_even << v32); |
4238 | } } |
4239 | } |
4240 | |
4241 | #endif |
4242 | |
4243 | /* scalar variants - universal */ |
4244 | |
4245 | /*! |
4246 | * @internal |
4247 | * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). |
4248 | * |
4249 | * This is extracted to its own function because the NEON path uses a combination |
4250 | * of NEON and scalar. |
4251 | */ |
4252 | XXH_FORCE_INLINE void |
4253 | XXH3_scalarRound(void* XXH_RESTRICT acc, |
4254 | void const* XXH_RESTRICT input, |
4255 | void const* XXH_RESTRICT secret, |
4256 | size_t lane) |
4257 | { |
4258 | xxh_u64* xacc = (xxh_u64*) acc; |
4259 | xxh_u8 const* xinput = (xxh_u8 const*) input; |
4260 | xxh_u8 const* xsecret = (xxh_u8 const*) secret; |
4261 | XXH_ASSERT(lane < XXH_ACC_NB); |
4262 | XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
4263 | { |
4264 | xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); |
4265 | xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); |
4266 | xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ |
4267 | xacc[lane] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); |
4268 | } |
4269 | } |
4270 | |
4271 | /*! |
4272 | * @internal |
4273 | * @brief Processes a 64 byte block of data using the scalar path. |
4274 | */ |
4275 | XXH_FORCE_INLINE void |
4276 | XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
4277 | const void* XXH_RESTRICT input, |
4278 | const void* XXH_RESTRICT secret) |
4279 | { |
4280 | size_t i; |
4281 | for (i=0; i < XXH_ACC_NB; i++) { |
4282 | XXH3_scalarRound(acc, input, secret, i); |
4283 | } |
4284 | } |
4285 | |
4286 | /*! |
4287 | * @internal |
4288 | * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar(). |
4289 | * |
4290 | * This is extracted to its own function because the NEON path uses a combination |
4291 | * of NEON and scalar. |
4292 | */ |
4293 | XXH_FORCE_INLINE void |
4294 | XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, |
4295 | void const* XXH_RESTRICT secret, |
4296 | size_t lane) |
4297 | { |
4298 | xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
4299 | const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
4300 | XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
4301 | XXH_ASSERT(lane < XXH_ACC_NB); |
4302 | { |
4303 | xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8); |
4304 | xxh_u64 acc64 = xacc[lane]; |
4305 | acc64 = XXH_xorshift64(acc64, 47); |
4306 | acc64 ^= key64; |
4307 | acc64 *= XXH_PRIME32_1; |
4308 | xacc[lane] = acc64; |
4309 | } |
4310 | } |
4311 | |
4312 | /*! |
4313 | * @internal |
4314 | * @brief Scrambles the accumulators after a large chunk has been read |
4315 | */ |
4316 | XXH_FORCE_INLINE void |
4317 | XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4318 | { |
4319 | size_t i; |
4320 | for (i=0; i < XXH_ACC_NB; i++) { |
4321 | XXH3_scalarScrambleRound(acc, secret, i); |
4322 | } |
4323 | } |
4324 | |
4325 | XXH_FORCE_INLINE void |
4326 | XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
4327 | { |
4328 | /* |
4329 | * We need a separate pointer for the hack below, |
4330 | * which requires a non-const pointer. |
4331 | * Any decent compiler will optimize this out otherwise. |
4332 | */ |
4333 | const xxh_u8* kSecretPtr = XXH3_kSecret; |
4334 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
4335 | |
4336 | #if defined(__clang__) && defined(__aarch64__) |
4337 | /* |
4338 | * UGLY HACK: |
4339 | * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are |
4340 | * placed sequentially, in order, at the top of the unrolled loop. |
4341 | * |
4342 | * While MOVK is great for generating constants (2 cycles for a 64-bit |
4343 | * constant compared to 4 cycles for LDR), it fights for bandwidth with |
4344 | * the arithmetic instructions. |
4345 | * |
4346 | * I L S |
4347 | * MOVK |
4348 | * MOVK |
4349 | * MOVK |
4350 | * MOVK |
4351 | * ADD |
4352 | * SUB STR |
4353 | * STR |
4354 | * By forcing loads from memory (as the asm line causes Clang to assume |
4355 | * that XXH3_kSecretPtr has been changed), the pipelines are used more |
4356 | * efficiently: |
4357 | * I L S |
4358 | * LDR |
4359 | * ADD LDR |
4360 | * SUB STR |
4361 | * STR |
4362 | * |
4363 | * See XXH3_NEON_LANES for details on the pipsline. |
4364 | * |
4365 | * XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
4366 | * without hack: 2654.4 MB/s |
4367 | * with hack: 3202.9 MB/s |
4368 | */ |
4369 | XXH_COMPILER_GUARD(kSecretPtr); |
4370 | #endif |
4371 | /* |
4372 | * Note: in debug mode, this overrides the asm optimization |
4373 | * and Clang will emit MOVK chains again. |
4374 | */ |
4375 | XXH_ASSERT(kSecretPtr == XXH3_kSecret); |
4376 | |
4377 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
4378 | int i; |
4379 | for (i=0; i < nbRounds; i++) { |
4380 | /* |
4381 | * The asm hack causes Clang to assume that kSecretPtr aliases with |
4382 | * customSecret, and on aarch64, this prevented LDP from merging two |
4383 | * loads together for free. Putting the loads together before the stores |
4384 | * properly generates LDP. |
4385 | */ |
4386 | xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
4387 | xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
4388 | XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
4389 | XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
4390 | } } |
4391 | } |
4392 | |
4393 | |
4394 | typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); |
4395 | typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
4396 | typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
4397 | |
4398 | |
4399 | #if (XXH_VECTOR == XXH_AVX512) |
4400 | |
4401 | #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
4402 | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
4403 | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
4404 | |
4405 | #elif (XXH_VECTOR == XXH_AVX2) |
4406 | |
4407 | #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
4408 | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
4409 | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
4410 | |
4411 | #elif (XXH_VECTOR == XXH_SSE2) |
4412 | |
4413 | #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
4414 | #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
4415 | #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
4416 | |
4417 | #elif (XXH_VECTOR == XXH_NEON) |
4418 | |
4419 | #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
4420 | #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
4421 | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
4422 | |
4423 | #elif (XXH_VECTOR == XXH_VSX) |
4424 | |
4425 | #define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
4426 | #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
4427 | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
4428 | |
4429 | #else /* scalar */ |
4430 | |
4431 | #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
4432 | #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
4433 | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
4434 | |
4435 | #endif |
4436 | |
4437 | |
4438 | |
4439 | #ifndef XXH_PREFETCH_DIST |
4440 | # ifdef __clang__ |
4441 | # define XXH_PREFETCH_DIST 320 |
4442 | # else |
4443 | # if (XXH_VECTOR == XXH_AVX512) |
4444 | # define XXH_PREFETCH_DIST 512 |
4445 | # else |
4446 | # define XXH_PREFETCH_DIST 384 |
4447 | # endif |
4448 | # endif /* __clang__ */ |
4449 | #endif /* XXH_PREFETCH_DIST */ |
4450 | |
4451 | /* |
4452 | * XXH3_accumulate() |
4453 | * Loops over XXH3_accumulate_512(). |
4454 | * Assumption: nbStripes will not overflow the secret size |
4455 | */ |
4456 | XXH_FORCE_INLINE void |
4457 | XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, |
4458 | const xxh_u8* XXH_RESTRICT input, |
4459 | const xxh_u8* XXH_RESTRICT secret, |
4460 | size_t nbStripes, |
4461 | XXH3_f_accumulate_512 f_acc512) |
4462 | { |
4463 | size_t n; |
4464 | for (n = 0; n < nbStripes; n++ ) { |
4465 | const xxh_u8* const in = input + n*XXH_STRIPE_LEN; |
4466 | XXH_PREFETCH(in + XXH_PREFETCH_DIST); |
4467 | f_acc512(acc, |
4468 | in, |
4469 | secret + n*XXH_SECRET_CONSUME_RATE); |
4470 | } |
4471 | } |
4472 | |
4473 | XXH_FORCE_INLINE void |
4474 | XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
4475 | const xxh_u8* XXH_RESTRICT input, size_t len, |
4476 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
4477 | XXH3_f_accumulate_512 f_acc512, |
4478 | XXH3_f_scrambleAcc f_scramble) |
4479 | { |
4480 | size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
4481 | size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
4482 | size_t const nb_blocks = (len - 1) / block_len; |
4483 | |
4484 | size_t n; |
4485 | |
4486 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
4487 | |
4488 | for (n = 0; n < nb_blocks; n++) { |
4489 | XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); |
4490 | f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
4491 | } |
4492 | |
4493 | /* last partial block */ |
4494 | XXH_ASSERT(len > XXH_STRIPE_LEN); |
4495 | { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
4496 | XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
4497 | XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); |
4498 | |
4499 | /* last stripe */ |
4500 | { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
4501 | #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
4502 | f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
4503 | } } |
4504 | } |
4505 | |
4506 | XXH_FORCE_INLINE xxh_u64 |
4507 | XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
4508 | { |
4509 | return XXH3_mul128_fold64( |
4510 | acc[0] ^ XXH_readLE64(secret), |
4511 | acc[1] ^ XXH_readLE64(secret+8) ); |
4512 | } |
4513 | |
4514 | static XXH64_hash_t |
4515 | XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
4516 | { |
4517 | xxh_u64 result64 = start; |
4518 | size_t i = 0; |
4519 | |
4520 | for (i = 0; i < 4; i++) { |
4521 | result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
4522 | #if defined(__clang__) /* Clang */ \ |
4523 | && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
4524 | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
4525 | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
4526 | /* |
4527 | * UGLY HACK: |
4528 | * Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
4529 | * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
4530 | * XXH3_64bits, len == 256, Snapdragon 835: |
4531 | * without hack: 2063.7 MB/s |
4532 | * with hack: 2560.7 MB/s |
4533 | */ |
4534 | XXH_COMPILER_GUARD(result64); |
4535 | #endif |
4536 | } |
4537 | |
4538 | return XXH3_avalanche(result64); |
4539 | } |
4540 | |
4541 | #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
4542 | XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
4543 | |
4544 | XXH_FORCE_INLINE XXH64_hash_t |
4545 | XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, |
4546 | const void* XXH_RESTRICT secret, size_t secretSize, |
4547 | XXH3_f_accumulate_512 f_acc512, |
4548 | XXH3_f_scrambleAcc f_scramble) |
4549 | { |
4550 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
4551 | |
4552 | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); |
4553 | |
4554 | /* converge into final hash */ |
4555 | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
4556 | /* do not align on 8, so that the secret is different from the accumulator */ |
4557 | #define XXH_SECRET_MERGEACCS_START 11 |
4558 | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
4559 | return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
4560 | } |
4561 | |
4562 | /* |
4563 | * It's important for performance to transmit secret's size (when it's static) |
4564 | * so that the compiler can properly optimize the vectorized loop. |
4565 | * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. |
4566 | */ |
4567 | XXH_FORCE_INLINE XXH64_hash_t |
4568 | XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, |
4569 | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
4570 | { |
4571 | (void)seed64; |
4572 | return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); |
4573 | } |
4574 | |
4575 | /* |
4576 | * It's preferable for performance that XXH3_hashLong is not inlined, |
4577 | * as it results in a smaller function for small data, easier to the instruction cache. |
4578 | * Note that inside this no_inline function, we do inline the internal loop, |
4579 | * and provide a statically defined secret size to allow optimization of vector loop. |
4580 | */ |
4581 | XXH_NO_INLINE XXH64_hash_t |
4582 | XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, |
4583 | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
4584 | { |
4585 | (void)seed64; (void)secret; (void)secretLen; |
4586 | return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); |
4587 | } |
4588 | |
4589 | /* |
4590 | * XXH3_hashLong_64b_withSeed(): |
4591 | * Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
4592 | * and then use this key for long mode hashing. |
4593 | * |
4594 | * This operation is decently fast but nonetheless costs a little bit of time. |
4595 | * Try to avoid it whenever possible (typically when seed==0). |
4596 | * |
4597 | * It's important for performance that XXH3_hashLong is not inlined. Not sure |
4598 | * why (uop cache maybe?), but the difference is large and easily measurable. |
4599 | */ |
4600 | XXH_FORCE_INLINE XXH64_hash_t |
4601 | XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, |
4602 | XXH64_hash_t seed, |
4603 | XXH3_f_accumulate_512 f_acc512, |
4604 | XXH3_f_scrambleAcc f_scramble, |
4605 | XXH3_f_initCustomSecret f_initSec) |
4606 | { |
4607 | if (seed == 0) |
4608 | return XXH3_hashLong_64b_internal(input, len, |
4609 | XXH3_kSecret, sizeof(XXH3_kSecret), |
4610 | f_acc512, f_scramble); |
4611 | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
4612 | f_initSec(secret, seed); |
4613 | return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
4614 | f_acc512, f_scramble); |
4615 | } |
4616 | } |
4617 | |
4618 | /* |
4619 | * It's important for performance that XXH3_hashLong is not inlined. |
4620 | */ |
4621 | XXH_NO_INLINE XXH64_hash_t |
4622 | XXH3_hashLong_64b_withSeed(const void* input, size_t len, |
4623 | XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) |
4624 | { |
4625 | (void)secret; (void)secretLen; |
4626 | return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
4627 | XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
4628 | } |
4629 | |
4630 | |
4631 | typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, |
4632 | XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
4633 | |
4634 | XXH_FORCE_INLINE XXH64_hash_t |
4635 | XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
4636 | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
4637 | XXH3_hashLong64_f f_hashLong) |
4638 | { |
4639 | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
4640 | /* |
4641 | * If an action is to be taken if `secretLen` condition is not respected, |
4642 | * it should be done here. |
4643 | * For now, it's a contract pre-condition. |
4644 | * Adding a check and a branch here would cost performance at every hash. |
4645 | * Also, note that function signature doesn't offer room to return an error. |
4646 | */ |
4647 | if (len <= 16) |
4648 | return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
4649 | if (len <= 128) |
4650 | return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
4651 | if (len <= XXH3_MIDSIZE_MAX) |
4652 | return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
4653 | return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); |
4654 | } |
4655 | |
4656 | |
4657 | /* === Public entry point === */ |
4658 | |
4659 | /*! @ingroup xxh3_family */ |
4660 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) |
4661 | { |
4662 | return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
4663 | } |
4664 | |
4665 | /*! @ingroup xxh3_family */ |
4666 | XXH_PUBLIC_API XXH64_hash_t |
4667 | XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
4668 | { |
4669 | return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
4670 | } |
4671 | |
4672 | /*! @ingroup xxh3_family */ |
4673 | XXH_PUBLIC_API XXH64_hash_t |
4674 | XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
4675 | { |
4676 | return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
4677 | } |
4678 | |
4679 | XXH_PUBLIC_API XXH64_hash_t |
4680 | XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) |
4681 | { |
4682 | if (len <= XXH3_MIDSIZE_MAX) |
4683 | return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
4684 | return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize); |
4685 | } |
4686 | |
4687 | |
4688 | /* === XXH3 streaming === */ |
4689 | |
4690 | /* |
4691 | * Malloc's a pointer that is always aligned to align. |
4692 | * |
4693 | * This must be freed with `XXH_alignedFree()`. |
4694 | * |
4695 | * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
4696 | * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
4697 | * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
4698 | * |
4699 | * This underalignment previously caused a rather obvious crash which went |
4700 | * completely unnoticed due to XXH3_createState() not actually being tested. |
4701 | * Credit to RedSpah for noticing this bug. |
4702 | * |
4703 | * The alignment is done manually: Functions like posix_memalign or _mm_malloc |
4704 | * are avoided: To maintain portability, we would have to write a fallback |
4705 | * like this anyways, and besides, testing for the existence of library |
4706 | * functions without relying on external build tools is impossible. |
4707 | * |
4708 | * The method is simple: Overallocate, manually align, and store the offset |
4709 | * to the original behind the returned pointer. |
4710 | * |
4711 | * Align must be a power of 2 and 8 <= align <= 128. |
4712 | */ |
4713 | static void* XXH_alignedMalloc(size_t s, size_t align) |
4714 | { |
4715 | XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
4716 | XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
4717 | XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
4718 | { /* Overallocate to make room for manual realignment and an offset byte */ |
4719 | xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
4720 | if (base != NULL) { |
4721 | /* |
4722 | * Get the offset needed to align this pointer. |
4723 | * |
4724 | * Even if the returned pointer is aligned, there will always be |
4725 | * at least one byte to store the offset to the original pointer. |
4726 | */ |
4727 | size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
4728 | /* Add the offset for the now-aligned pointer */ |
4729 | xxh_u8* ptr = base + offset; |
4730 | |
4731 | XXH_ASSERT((size_t)ptr % align == 0); |
4732 | |
4733 | /* Store the offset immediately before the returned pointer. */ |
4734 | ptr[-1] = (xxh_u8)offset; |
4735 | return ptr; |
4736 | } |
4737 | return NULL; |
4738 | } |
4739 | } |
4740 | /* |
4741 | * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
4742 | * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
4743 | */ |
4744 | static void XXH_alignedFree(void* p) |
4745 | { |
4746 | if (p != NULL) { |
4747 | xxh_u8* ptr = (xxh_u8*)p; |
4748 | /* Get the offset byte we added in XXH_malloc. */ |
4749 | xxh_u8 offset = ptr[-1]; |
4750 | /* Free the original malloc'd pointer */ |
4751 | xxh_u8* base = ptr - offset; |
4752 | XXH_free(base); |
4753 | } |
4754 | } |
4755 | /*! @ingroup xxh3_family */ |
4756 | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
4757 | { |
4758 | XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
4759 | if (state==NULL) return NULL; |
4760 | XXH3_INITSTATE(state); |
4761 | return state; |
4762 | } |
4763 | |
4764 | /*! @ingroup xxh3_family */ |
4765 | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
4766 | { |
4767 | XXH_alignedFree(statePtr); |
4768 | return XXH_OK; |
4769 | } |
4770 | |
4771 | /*! @ingroup xxh3_family */ |
4772 | XXH_PUBLIC_API void |
4773 | XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) |
4774 | { |
4775 | XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); |
4776 | } |
4777 | |
4778 | static void |
4779 | XXH3_reset_internal(XXH3_state_t* statePtr, |
4780 | XXH64_hash_t seed, |
4781 | const void* secret, size_t secretSize) |
4782 | { |
4783 | size_t const initStart = offsetof(XXH3_state_t, bufferedSize); |
4784 | size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; |
4785 | XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); |
4786 | XXH_ASSERT(statePtr != NULL); |
4787 | /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ |
4788 | memset((char*)statePtr + initStart, 0, initLength); |
4789 | statePtr->acc[0] = XXH_PRIME32_3; |
4790 | statePtr->acc[1] = XXH_PRIME64_1; |
4791 | statePtr->acc[2] = XXH_PRIME64_2; |
4792 | statePtr->acc[3] = XXH_PRIME64_3; |
4793 | statePtr->acc[4] = XXH_PRIME64_4; |
4794 | statePtr->acc[5] = XXH_PRIME32_2; |
4795 | statePtr->acc[6] = XXH_PRIME64_5; |
4796 | statePtr->acc[7] = XXH_PRIME32_1; |
4797 | statePtr->seed = seed; |
4798 | statePtr->useSeed = (seed != 0); |
4799 | statePtr->extSecret = (const unsigned char*)secret; |
4800 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
4801 | statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
4802 | statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
4803 | } |
4804 | |
4805 | /*! @ingroup xxh3_family */ |
4806 | XXH_PUBLIC_API XXH_errorcode |
4807 | XXH3_64bits_reset(XXH3_state_t* statePtr) |
4808 | { |
4809 | if (statePtr == NULL) return XXH_ERROR; |
4810 | XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
4811 | return XXH_OK; |
4812 | } |
4813 | |
4814 | /*! @ingroup xxh3_family */ |
4815 | XXH_PUBLIC_API XXH_errorcode |
4816 | XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
4817 | { |
4818 | if (statePtr == NULL) return XXH_ERROR; |
4819 | XXH3_reset_internal(statePtr, 0, secret, secretSize); |
4820 | if (secret == NULL) return XXH_ERROR; |
4821 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
4822 | return XXH_OK; |
4823 | } |
4824 | |
4825 | /*! @ingroup xxh3_family */ |
4826 | XXH_PUBLIC_API XXH_errorcode |
4827 | XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
4828 | { |
4829 | if (statePtr == NULL) return XXH_ERROR; |
4830 | if (seed==0) return XXH3_64bits_reset(statePtr); |
4831 | if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) |
4832 | XXH3_initCustomSecret(statePtr->customSecret, seed); |
4833 | XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
4834 | return XXH_OK; |
4835 | } |
4836 | |
4837 | /*! @ingroup xxh3_family */ |
4838 | XXH_PUBLIC_API XXH_errorcode |
4839 | XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64) |
4840 | { |
4841 | if (statePtr == NULL) return XXH_ERROR; |
4842 | if (secret == NULL) return XXH_ERROR; |
4843 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
4844 | XXH3_reset_internal(statePtr, seed64, secret, secretSize); |
4845 | statePtr->useSeed = 1; /* always, even if seed64==0 */ |
4846 | return XXH_OK; |
4847 | } |
4848 | |
4849 | /* Note : when XXH3_consumeStripes() is invoked, |
4850 | * there must be a guarantee that at least one more byte must be consumed from input |
4851 | * so that the function can blindly consume all stripes using the "normal" secret segment */ |
4852 | XXH_FORCE_INLINE void |
4853 | XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
4854 | size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
4855 | const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
4856 | const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
4857 | XXH3_f_accumulate_512 f_acc512, |
4858 | XXH3_f_scrambleAcc f_scramble) |
4859 | { |
4860 | XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ |
4861 | XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); |
4862 | if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { |
4863 | /* need a scrambling operation */ |
4864 | size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; |
4865 | size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; |
4866 | XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); |
4867 | f_scramble(acc, secret + secretLimit); |
4868 | XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); |
4869 | *nbStripesSoFarPtr = nbStripesAfterBlock; |
4870 | } else { |
4871 | XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); |
4872 | *nbStripesSoFarPtr += nbStripes; |
4873 | } |
4874 | } |
4875 | |
4876 | #ifndef XXH3_STREAM_USE_STACK |
4877 | # ifndef __clang__ /* clang doesn't need additional stack space */ |
4878 | # define XXH3_STREAM_USE_STACK 1 |
4879 | # endif |
4880 | #endif |
4881 | /* |
4882 | * Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
4883 | */ |
4884 | XXH_FORCE_INLINE XXH_errorcode |
4885 | XXH3_update(XXH3_state_t* XXH_RESTRICT const state, |
4886 | const xxh_u8* XXH_RESTRICT input, size_t len, |
4887 | XXH3_f_accumulate_512 f_acc512, |
4888 | XXH3_f_scrambleAcc f_scramble) |
4889 | { |
4890 | if (input==NULL) { |
4891 | XXH_ASSERT(len == 0); |
4892 | return XXH_OK; |
4893 | } |
4894 | |
4895 | XXH_ASSERT(state != NULL); |
4896 | { const xxh_u8* const bEnd = input + len; |
4897 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
4898 | #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
4899 | /* For some reason, gcc and MSVC seem to suffer greatly |
4900 | * when operating accumulators directly into state. |
4901 | * Operating into stack space seems to enable proper optimization. |
4902 | * clang, on the other hand, doesn't seem to need this trick */ |
4903 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc)); |
4904 | #else |
4905 | xxh_u64* XXH_RESTRICT const acc = state->acc; |
4906 | #endif |
4907 | state->totalLen += len; |
4908 | XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); |
4909 | |
4910 | /* small input : just fill in tmp buffer */ |
4911 | if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { |
4912 | XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
4913 | state->bufferedSize += (XXH32_hash_t)len; |
4914 | return XXH_OK; |
4915 | } |
4916 | |
4917 | /* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
4918 | #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
4919 | XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
4920 | |
4921 | /* |
4922 | * Internal buffer is partially filled (always, except at beginning) |
4923 | * Complete it, then consume it. |
4924 | */ |
4925 | if (state->bufferedSize) { |
4926 | size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
4927 | XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
4928 | input += loadSize; |
4929 | XXH3_consumeStripes(acc, |
4930 | &state->nbStripesSoFar, state->nbStripesPerBlock, |
4931 | state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
4932 | secret, state->secretLimit, |
4933 | f_acc512, f_scramble); |
4934 | state->bufferedSize = 0; |
4935 | } |
4936 | XXH_ASSERT(input < bEnd); |
4937 | |
4938 | /* large input to consume : ingest per full block */ |
4939 | if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) { |
4940 | size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; |
4941 | XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar); |
4942 | /* join to current block's end */ |
4943 | { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar; |
4944 | XXH_ASSERT(nbStripesToEnd <= nbStripes); |
4945 | XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512); |
4946 | f_scramble(acc, secret + state->secretLimit); |
4947 | state->nbStripesSoFar = 0; |
4948 | input += nbStripesToEnd * XXH_STRIPE_LEN; |
4949 | nbStripes -= nbStripesToEnd; |
4950 | } |
4951 | /* consume per entire blocks */ |
4952 | while(nbStripes >= state->nbStripesPerBlock) { |
4953 | XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512); |
4954 | f_scramble(acc, secret + state->secretLimit); |
4955 | input += state->nbStripesPerBlock * XXH_STRIPE_LEN; |
4956 | nbStripes -= state->nbStripesPerBlock; |
4957 | } |
4958 | /* consume last partial block */ |
4959 | XXH3_accumulate(acc, input, secret, nbStripes, f_acc512); |
4960 | input += nbStripes * XXH_STRIPE_LEN; |
4961 | XXH_ASSERT(input < bEnd); /* at least some bytes left */ |
4962 | state->nbStripesSoFar = nbStripes; |
4963 | /* buffer predecessor of last partial stripe */ |
4964 | XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
4965 | XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN); |
4966 | } else { |
4967 | /* content to consume <= block size */ |
4968 | /* Consume input by a multiple of internal buffer size */ |
4969 | if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { |
4970 | const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; |
4971 | do { |
4972 | XXH3_consumeStripes(acc, |
4973 | &state->nbStripesSoFar, state->nbStripesPerBlock, |
4974 | input, XXH3_INTERNALBUFFER_STRIPES, |
4975 | secret, state->secretLimit, |
4976 | f_acc512, f_scramble); |
4977 | input += XXH3_INTERNALBUFFER_SIZE; |
4978 | } while (input<limit); |
4979 | /* buffer predecessor of last partial stripe */ |
4980 | XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
4981 | } |
4982 | } |
4983 | |
4984 | /* Some remaining input (always) : buffer it */ |
4985 | XXH_ASSERT(input < bEnd); |
4986 | XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); |
4987 | XXH_ASSERT(state->bufferedSize == 0); |
4988 | XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
4989 | state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
4990 | #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
4991 | /* save stack accumulators into state */ |
4992 | memcpy(state->acc, acc, sizeof(acc)); |
4993 | #endif |
4994 | } |
4995 | |
4996 | return XXH_OK; |
4997 | } |
4998 | |
4999 | /*! @ingroup xxh3_family */ |
5000 | XXH_PUBLIC_API XXH_errorcode |
5001 | XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) |
5002 | { |
5003 | return XXH3_update(state, (const xxh_u8*)input, len, |
5004 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5005 | } |
5006 | |
5007 | |
5008 | XXH_FORCE_INLINE void |
5009 | XXH3_digest_long (XXH64_hash_t* acc, |
5010 | const XXH3_state_t* state, |
5011 | const unsigned char* secret) |
5012 | { |
5013 | /* |
5014 | * Digest on a local copy. This way, the state remains unaltered, and it can |
5015 | * continue ingesting more input afterwards. |
5016 | */ |
5017 | XXH_memcpy(acc, state->acc, sizeof(state->acc)); |
5018 | if (state->bufferedSize >= XXH_STRIPE_LEN) { |
5019 | size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
5020 | size_t nbStripesSoFar = state->nbStripesSoFar; |
5021 | XXH3_consumeStripes(acc, |
5022 | &nbStripesSoFar, state->nbStripesPerBlock, |
5023 | state->buffer, nbStripes, |
5024 | secret, state->secretLimit, |
5025 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5026 | /* last stripe */ |
5027 | XXH3_accumulate_512(acc, |
5028 | state->buffer + state->bufferedSize - XXH_STRIPE_LEN, |
5029 | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
5030 | } else { /* bufferedSize < XXH_STRIPE_LEN */ |
5031 | xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
5032 | size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
5033 | XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
5034 | XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
5035 | XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
5036 | XXH3_accumulate_512(acc, |
5037 | lastStripe, |
5038 | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
5039 | } |
5040 | } |
5041 | |
5042 | /*! @ingroup xxh3_family */ |
5043 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) |
5044 | { |
5045 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
5046 | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
5047 | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
5048 | XXH3_digest_long(acc, state, secret); |
5049 | return XXH3_mergeAccs(acc, |
5050 | secret + XXH_SECRET_MERGEACCS_START, |
5051 | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
5052 | } |
5053 | /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
5054 | if (state->useSeed) |
5055 | return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
5056 | return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
5057 | secret, state->secretLimit + XXH_STRIPE_LEN); |
5058 | } |
5059 | |
5060 | |
5061 | |
5062 | /* ========================================== |
5063 | * XXH3 128 bits (a.k.a XXH128) |
5064 | * ========================================== |
5065 | * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
5066 | * even without counting the significantly larger output size. |
5067 | * |
5068 | * For example, extra steps are taken to avoid the seed-dependent collisions |
5069 | * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
5070 | * |
5071 | * This strength naturally comes at the cost of some speed, especially on short |
5072 | * lengths. Note that longer hashes are about as fast as the 64-bit version |
5073 | * due to it using only a slight modification of the 64-bit loop. |
5074 | * |
5075 | * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
5076 | * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
5077 | */ |
5078 | |
5079 | XXH_FORCE_INLINE XXH128_hash_t |
5080 | XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5081 | { |
5082 | /* A doubled version of 1to3_64b with different constants. */ |
5083 | XXH_ASSERT(input != NULL); |
5084 | XXH_ASSERT(1 <= len && len <= 3); |
5085 | XXH_ASSERT(secret != NULL); |
5086 | /* |
5087 | * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
5088 | * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
5089 | * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
5090 | */ |
5091 | { xxh_u8 const c1 = input[0]; |
5092 | xxh_u8 const c2 = input[len >> 1]; |
5093 | xxh_u8 const c3 = input[len - 1]; |
5094 | xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
5095 | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
5096 | xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
5097 | xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
5098 | xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
5099 | xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
5100 | xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
5101 | XXH128_hash_t h128; |
5102 | h128.low64 = XXH64_avalanche(keyed_lo); |
5103 | h128.high64 = XXH64_avalanche(keyed_hi); |
5104 | return h128; |
5105 | } |
5106 | } |
5107 | |
5108 | XXH_FORCE_INLINE XXH128_hash_t |
5109 | XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5110 | { |
5111 | XXH_ASSERT(input != NULL); |
5112 | XXH_ASSERT(secret != NULL); |
5113 | XXH_ASSERT(4 <= len && len <= 8); |
5114 | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
5115 | { xxh_u32 const input_lo = XXH_readLE32(input); |
5116 | xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
5117 | xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
5118 | xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
5119 | xxh_u64 const keyed = input_64 ^ bitflip; |
5120 | |
5121 | /* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
5122 | XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
5123 | |
5124 | m128.high64 += (m128.low64 << 1); |
5125 | m128.low64 ^= (m128.high64 >> 3); |
5126 | |
5127 | m128.low64 = XXH_xorshift64(m128.low64, 35); |
5128 | m128.low64 *= 0x9FB21C651E98DF25ULL; |
5129 | m128.low64 = XXH_xorshift64(m128.low64, 28); |
5130 | m128.high64 = XXH3_avalanche(m128.high64); |
5131 | return m128; |
5132 | } |
5133 | } |
5134 | |
5135 | XXH_FORCE_INLINE XXH128_hash_t |
5136 | XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5137 | { |
5138 | XXH_ASSERT(input != NULL); |
5139 | XXH_ASSERT(secret != NULL); |
5140 | XXH_ASSERT(9 <= len && len <= 16); |
5141 | { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
5142 | xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
5143 | xxh_u64 const input_lo = XXH_readLE64(input); |
5144 | xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
5145 | XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
5146 | /* |
5147 | * Put len in the middle of m128 to ensure that the length gets mixed to |
5148 | * both the low and high bits in the 128x64 multiply below. |
5149 | */ |
5150 | m128.low64 += (xxh_u64)(len - 1) << 54; |
5151 | input_hi ^= bitfliph; |
5152 | /* |
5153 | * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
5154 | * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
5155 | * the high 64 bits of m128. |
5156 | * |
5157 | * The best approach to this operation is different on 32-bit and 64-bit. |
5158 | */ |
5159 | if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
5160 | /* |
5161 | * 32-bit optimized version, which is more readable. |
5162 | * |
5163 | * On 32-bit, it removes an ADC and delays a dependency between the two |
5164 | * halves of m128.high64, but it generates an extra mask on 64-bit. |
5165 | */ |
5166 | m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
5167 | } else { |
5168 | /* |
5169 | * 64-bit optimized (albeit more confusing) version. |
5170 | * |
5171 | * Uses some properties of addition and multiplication to remove the mask: |
5172 | * |
5173 | * Let: |
5174 | * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
5175 | * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
5176 | * c = XXH_PRIME32_2 |
5177 | * |
5178 | * a + (b * c) |
5179 | * Inverse Property: x + y - x == y |
5180 | * a + (b * (1 + c - 1)) |
5181 | * Distributive Property: x * (y + z) == (x * y) + (x * z) |
5182 | * a + (b * 1) + (b * (c - 1)) |
5183 | * Identity Property: x * 1 == x |
5184 | * a + b + (b * (c - 1)) |
5185 | * |
5186 | * Substitute a, b, and c: |
5187 | * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
5188 | * |
5189 | * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
5190 | * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
5191 | */ |
5192 | m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
5193 | } |
5194 | /* m128 ^= XXH_swap64(m128 >> 64); */ |
5195 | m128.low64 ^= XXH_swap64(m128.high64); |
5196 | |
5197 | { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
5198 | XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
5199 | h128.high64 += m128.high64 * XXH_PRIME64_2; |
5200 | |
5201 | h128.low64 = XXH3_avalanche(h128.low64); |
5202 | h128.high64 = XXH3_avalanche(h128.high64); |
5203 | return h128; |
5204 | } } |
5205 | } |
5206 | |
5207 | /* |
5208 | * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
5209 | */ |
5210 | XXH_FORCE_INLINE XXH128_hash_t |
5211 | XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5212 | { |
5213 | XXH_ASSERT(len <= 16); |
5214 | { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
5215 | if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
5216 | if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
5217 | { XXH128_hash_t h128; |
5218 | xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
5219 | xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
5220 | h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
5221 | h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
5222 | return h128; |
5223 | } } |
5224 | } |
5225 | |
5226 | /* |
5227 | * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
5228 | */ |
5229 | XXH_FORCE_INLINE XXH128_hash_t |
5230 | XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
5231 | const xxh_u8* secret, XXH64_hash_t seed) |
5232 | { |
5233 | acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
5234 | acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
5235 | acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
5236 | acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
5237 | return acc; |
5238 | } |
5239 | |
5240 | |
5241 | XXH_FORCE_INLINE XXH128_hash_t |
5242 | XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
5243 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5244 | XXH64_hash_t seed) |
5245 | { |
5246 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
5247 | XXH_ASSERT(16 < len && len <= 128); |
5248 | |
5249 | { XXH128_hash_t acc; |
5250 | acc.low64 = len * XXH_PRIME64_1; |
5251 | acc.high64 = 0; |
5252 | if (len > 32) { |
5253 | if (len > 64) { |
5254 | if (len > 96) { |
5255 | acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
5256 | } |
5257 | acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
5258 | } |
5259 | acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
5260 | } |
5261 | acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
5262 | { XXH128_hash_t h128; |
5263 | h128.low64 = acc.low64 + acc.high64; |
5264 | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
5265 | + (acc.high64 * XXH_PRIME64_4) |
5266 | + ((len - seed) * XXH_PRIME64_2); |
5267 | h128.low64 = XXH3_avalanche(h128.low64); |
5268 | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
5269 | return h128; |
5270 | } |
5271 | } |
5272 | } |
5273 | |
5274 | XXH_NO_INLINE XXH128_hash_t |
5275 | XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
5276 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5277 | XXH64_hash_t seed) |
5278 | { |
5279 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
5280 | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
5281 | |
5282 | { XXH128_hash_t acc; |
5283 | int const nbRounds = (int)len / 32; |
5284 | int i; |
5285 | acc.low64 = len * XXH_PRIME64_1; |
5286 | acc.high64 = 0; |
5287 | for (i=0; i<4; i++) { |
5288 | acc = XXH128_mix32B(acc, |
5289 | input + (32 * i), |
5290 | input + (32 * i) + 16, |
5291 | secret + (32 * i), |
5292 | seed); |
5293 | } |
5294 | acc.low64 = XXH3_avalanche(acc.low64); |
5295 | acc.high64 = XXH3_avalanche(acc.high64); |
5296 | XXH_ASSERT(nbRounds >= 4); |
5297 | for (i=4 ; i < nbRounds; i++) { |
5298 | acc = XXH128_mix32B(acc, |
5299 | input + (32 * i), |
5300 | input + (32 * i) + 16, |
5301 | secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), |
5302 | seed); |
5303 | } |
5304 | /* last bytes */ |
5305 | acc = XXH128_mix32B(acc, |
5306 | input + len - 16, |
5307 | input + len - 32, |
5308 | secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
5309 | 0ULL - seed); |
5310 | |
5311 | { XXH128_hash_t h128; |
5312 | h128.low64 = acc.low64 + acc.high64; |
5313 | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
5314 | + (acc.high64 * XXH_PRIME64_4) |
5315 | + ((len - seed) * XXH_PRIME64_2); |
5316 | h128.low64 = XXH3_avalanche(h128.low64); |
5317 | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
5318 | return h128; |
5319 | } |
5320 | } |
5321 | } |
5322 | |
5323 | XXH_FORCE_INLINE XXH128_hash_t |
5324 | XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, |
5325 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5326 | XXH3_f_accumulate_512 f_acc512, |
5327 | XXH3_f_scrambleAcc f_scramble) |
5328 | { |
5329 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
5330 | |
5331 | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); |
5332 | |
5333 | /* converge into final hash */ |
5334 | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
5335 | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
5336 | { XXH128_hash_t h128; |
5337 | h128.low64 = XXH3_mergeAccs(acc, |
5338 | secret + XXH_SECRET_MERGEACCS_START, |
5339 | (xxh_u64)len * XXH_PRIME64_1); |
5340 | h128.high64 = XXH3_mergeAccs(acc, |
5341 | secret + secretSize |
5342 | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
5343 | ~((xxh_u64)len * XXH_PRIME64_2)); |
5344 | return h128; |
5345 | } |
5346 | } |
5347 | |
5348 | /* |
5349 | * It's important for performance that XXH3_hashLong is not inlined. |
5350 | */ |
5351 | XXH_NO_INLINE XXH128_hash_t |
5352 | XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, |
5353 | XXH64_hash_t seed64, |
5354 | const void* XXH_RESTRICT secret, size_t secretLen) |
5355 | { |
5356 | (void)seed64; (void)secret; (void)secretLen; |
5357 | return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
5358 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5359 | } |
5360 | |
5361 | /* |
5362 | * It's important for performance to pass @secretLen (when it's static) |
5363 | * to the compiler, so that it can properly optimize the vectorized loop. |
5364 | */ |
5365 | XXH_FORCE_INLINE XXH128_hash_t |
5366 | XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, |
5367 | XXH64_hash_t seed64, |
5368 | const void* XXH_RESTRICT secret, size_t secretLen) |
5369 | { |
5370 | (void)seed64; |
5371 | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, |
5372 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5373 | } |
5374 | |
5375 | XXH_FORCE_INLINE XXH128_hash_t |
5376 | XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, |
5377 | XXH64_hash_t seed64, |
5378 | XXH3_f_accumulate_512 f_acc512, |
5379 | XXH3_f_scrambleAcc f_scramble, |
5380 | XXH3_f_initCustomSecret f_initSec) |
5381 | { |
5382 | if (seed64 == 0) |
5383 | return XXH3_hashLong_128b_internal(input, len, |
5384 | XXH3_kSecret, sizeof(XXH3_kSecret), |
5385 | f_acc512, f_scramble); |
5386 | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
5387 | f_initSec(secret, seed64); |
5388 | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), |
5389 | f_acc512, f_scramble); |
5390 | } |
5391 | } |
5392 | |
5393 | /* |
5394 | * It's important for performance that XXH3_hashLong is not inlined. |
5395 | */ |
5396 | XXH_NO_INLINE XXH128_hash_t |
5397 | XXH3_hashLong_128b_withSeed(const void* input, size_t len, |
5398 | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) |
5399 | { |
5400 | (void)secret; (void)secretLen; |
5401 | return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
5402 | XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
5403 | } |
5404 | |
5405 | typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, |
5406 | XXH64_hash_t, const void* XXH_RESTRICT, size_t); |
5407 | |
5408 | XXH_FORCE_INLINE XXH128_hash_t |
5409 | XXH3_128bits_internal(const void* input, size_t len, |
5410 | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
5411 | XXH3_hashLong128_f f_hl128) |
5412 | { |
5413 | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
5414 | /* |
5415 | * If an action is to be taken if `secret` conditions are not respected, |
5416 | * it should be done here. |
5417 | * For now, it's a contract pre-condition. |
5418 | * Adding a check and a branch here would cost performance at every hash. |
5419 | */ |
5420 | if (len <= 16) |
5421 | return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
5422 | if (len <= 128) |
5423 | return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
5424 | if (len <= XXH3_MIDSIZE_MAX) |
5425 | return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
5426 | return f_hl128(input, len, seed64, secret, secretLen); |
5427 | } |
5428 | |
5429 | |
5430 | /* === Public XXH128 API === */ |
5431 | |
5432 | /*! @ingroup xxh3_family */ |
5433 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) |
5434 | { |
5435 | return XXH3_128bits_internal(input, len, 0, |
5436 | XXH3_kSecret, sizeof(XXH3_kSecret), |
5437 | XXH3_hashLong_128b_default); |
5438 | } |
5439 | |
5440 | /*! @ingroup xxh3_family */ |
5441 | XXH_PUBLIC_API XXH128_hash_t |
5442 | XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
5443 | { |
5444 | return XXH3_128bits_internal(input, len, 0, |
5445 | (const xxh_u8*)secret, secretSize, |
5446 | XXH3_hashLong_128b_withSecret); |
5447 | } |
5448 | |
5449 | /*! @ingroup xxh3_family */ |
5450 | XXH_PUBLIC_API XXH128_hash_t |
5451 | XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
5452 | { |
5453 | return XXH3_128bits_internal(input, len, seed, |
5454 | XXH3_kSecret, sizeof(XXH3_kSecret), |
5455 | XXH3_hashLong_128b_withSeed); |
5456 | } |
5457 | |
5458 | /*! @ingroup xxh3_family */ |
5459 | XXH_PUBLIC_API XXH128_hash_t |
5460 | XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) |
5461 | { |
5462 | if (len <= XXH3_MIDSIZE_MAX) |
5463 | return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
5464 | return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); |
5465 | } |
5466 | |
5467 | /*! @ingroup xxh3_family */ |
5468 | XXH_PUBLIC_API XXH128_hash_t |
5469 | XXH128(const void* input, size_t len, XXH64_hash_t seed) |
5470 | { |
5471 | return XXH3_128bits_withSeed(input, len, seed); |
5472 | } |
5473 | |
5474 | |
5475 | /* === XXH3 128-bit streaming === */ |
5476 | |
5477 | /* |
5478 | * All initialization and update functions are identical to 64-bit streaming variant. |
5479 | * The only difference is the finalization routine. |
5480 | */ |
5481 | |
5482 | /*! @ingroup xxh3_family */ |
5483 | XXH_PUBLIC_API XXH_errorcode |
5484 | XXH3_128bits_reset(XXH3_state_t* statePtr) |
5485 | { |
5486 | return XXH3_64bits_reset(statePtr); |
5487 | } |
5488 | |
5489 | /*! @ingroup xxh3_family */ |
5490 | XXH_PUBLIC_API XXH_errorcode |
5491 | XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
5492 | { |
5493 | return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); |
5494 | } |
5495 | |
5496 | /*! @ingroup xxh3_family */ |
5497 | XXH_PUBLIC_API XXH_errorcode |
5498 | XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
5499 | { |
5500 | return XXH3_64bits_reset_withSeed(statePtr, seed); |
5501 | } |
5502 | |
5503 | /*! @ingroup xxh3_family */ |
5504 | XXH_PUBLIC_API XXH_errorcode |
5505 | XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed) |
5506 | { |
5507 | return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); |
5508 | } |
5509 | |
5510 | /*! @ingroup xxh3_family */ |
5511 | XXH_PUBLIC_API XXH_errorcode |
5512 | XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) |
5513 | { |
5514 | return XXH3_update(state, (const xxh_u8*)input, len, |
5515 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5516 | } |
5517 | |
5518 | /*! @ingroup xxh3_family */ |
5519 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) |
5520 | { |
5521 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
5522 | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
5523 | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
5524 | XXH3_digest_long(acc, state, secret); |
5525 | XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
5526 | { XXH128_hash_t h128; |
5527 | h128.low64 = XXH3_mergeAccs(acc, |
5528 | secret + XXH_SECRET_MERGEACCS_START, |
5529 | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
5530 | h128.high64 = XXH3_mergeAccs(acc, |
5531 | secret + state->secretLimit + XXH_STRIPE_LEN |
5532 | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
5533 | ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
5534 | return h128; |
5535 | } |
5536 | } |
5537 | /* len <= XXH3_MIDSIZE_MAX : short code */ |
5538 | if (state->seed) |
5539 | return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
5540 | return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
5541 | secret, state->secretLimit + XXH_STRIPE_LEN); |
5542 | } |
5543 | |
5544 | /* 128-bit utility functions */ |
5545 | |
5546 | #include <string.h> /* memcmp, memcpy */ |
5547 | |
5548 | /* return : 1 is equal, 0 if different */ |
5549 | /*! @ingroup xxh3_family */ |
5550 | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
5551 | { |
5552 | /* note : XXH128_hash_t is compact, it has no padding byte */ |
5553 | return !(memcmp(&h1, &h2, sizeof(h1))); |
5554 | } |
5555 | |
5556 | /* This prototype is compatible with stdlib's qsort(). |
5557 | * return : >0 if *h128_1 > *h128_2 |
5558 | * <0 if *h128_1 < *h128_2 |
5559 | * =0 if *h128_1 == *h128_2 */ |
5560 | /*! @ingroup xxh3_family */ |
5561 | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) |
5562 | { |
5563 | XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
5564 | XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
5565 | int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
5566 | /* note : bets that, in most cases, hash values are different */ |
5567 | if (hcmp) return hcmp; |
5568 | return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
5569 | } |
5570 | |
5571 | |
5572 | /*====== Canonical representation ======*/ |
5573 | /*! @ingroup xxh3_family */ |
5574 | XXH_PUBLIC_API void |
5575 | XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) |
5576 | { |
5577 | XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
5578 | if (XXH_CPU_LITTLE_ENDIAN) { |
5579 | hash.high64 = XXH_swap64(hash.high64); |
5580 | hash.low64 = XXH_swap64(hash.low64); |
5581 | } |
5582 | XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); |
5583 | XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
5584 | } |
5585 | |
5586 | /*! @ingroup xxh3_family */ |
5587 | XXH_PUBLIC_API XXH128_hash_t |
5588 | XXH128_hashFromCanonical(const XXH128_canonical_t* src) |
5589 | { |
5590 | XXH128_hash_t h; |
5591 | h.high64 = XXH_readBE64(src); |
5592 | h.low64 = XXH_readBE64(src->digest + 8); |
5593 | return h; |
5594 | } |
5595 | |
5596 | |
5597 | |
5598 | /* ========================================== |
5599 | * Secret generators |
5600 | * ========================================== |
5601 | */ |
5602 | #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
5603 | |
5604 | XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) |
5605 | { |
5606 | XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); |
5607 | XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); |
5608 | } |
5609 | |
5610 | /*! @ingroup xxh3_family */ |
5611 | XXH_PUBLIC_API XXH_errorcode |
5612 | XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize) |
5613 | { |
5614 | #if (XXH_DEBUGLEVEL >= 1) |
5615 | XXH_ASSERT(secretBuffer != NULL); |
5616 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
5617 | #else |
5618 | /* production mode, assert() are disabled */ |
5619 | if (secretBuffer == NULL) return XXH_ERROR; |
5620 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
5621 | #endif |
5622 | |
5623 | if (customSeedSize == 0) { |
5624 | customSeed = XXH3_kSecret; |
5625 | customSeedSize = XXH_SECRET_DEFAULT_SIZE; |
5626 | } |
5627 | #if (XXH_DEBUGLEVEL >= 1) |
5628 | XXH_ASSERT(customSeed != NULL); |
5629 | #else |
5630 | if (customSeed == NULL) return XXH_ERROR; |
5631 | #endif |
5632 | |
5633 | /* Fill secretBuffer with a copy of customSeed - repeat as needed */ |
5634 | { size_t pos = 0; |
5635 | while (pos < secretSize) { |
5636 | size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); |
5637 | memcpy((char*)secretBuffer + pos, customSeed, toCopy); |
5638 | pos += toCopy; |
5639 | } } |
5640 | |
5641 | { size_t const nbSeg16 = secretSize / 16; |
5642 | size_t n; |
5643 | XXH128_canonical_t scrambler; |
5644 | XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
5645 | for (n=0; n<nbSeg16; n++) { |
5646 | XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n); |
5647 | XXH3_combine16((char*)secretBuffer + n*16, h128); |
5648 | } |
5649 | /* last segment */ |
5650 | XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler)); |
5651 | } |
5652 | return XXH_OK; |
5653 | } |
5654 | |
5655 | /*! @ingroup xxh3_family */ |
5656 | XXH_PUBLIC_API void |
5657 | XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed) |
5658 | { |
5659 | XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
5660 | XXH3_initCustomSecret(secret, seed); |
5661 | XXH_ASSERT(secretBuffer != NULL); |
5662 | memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE); |
5663 | } |
5664 | |
5665 | |
5666 | |
5667 | /* Pop our optimization override from above */ |
5668 | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
5669 | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
5670 | && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
5671 | # pragma GCC pop_options |
5672 | #endif |
5673 | |
5674 | #endif /* XXH_NO_LONG_LONG */ |
5675 | |
5676 | #endif /* XXH_NO_XXH3 */ |
5677 | |
5678 | /*! |
5679 | * @} |
5680 | */ |
5681 | #endif /* XXH_IMPLEMENTATION */ |
5682 | |
5683 | |
5684 | #if defined (__cplusplus) |
5685 | } |
5686 | #endif |
5687 | |