1 | /* |
2 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | * All rights reserved. |
4 | * |
5 | * This source code is licensed under both the BSD-style license (found in the |
6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
7 | * in the COPYING file in the root directory of this source tree). |
8 | * You may select, at your option, one of the above-listed licenses. |
9 | */ |
10 | |
11 | #include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */ |
12 | #include "zstd_fast.h" |
13 | |
14 | static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms, |
15 | const void* const end, |
16 | ZSTD_dictTableLoadMethod_e dtlm) |
17 | { |
18 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
19 | U32* const hashTable = ms->hashTable; |
20 | U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; |
21 | U32 const mls = cParams->minMatch; |
22 | const BYTE* const base = ms->window.base; |
23 | const BYTE* ip = base + ms->nextToUpdate; |
24 | const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; |
25 | const U32 fastHashFillStep = 3; |
26 | |
27 | /* Currently, we always use ZSTD_dtlm_full for filling CDict tables. |
28 | * Feel free to remove this assert if there's a good reason! */ |
29 | assert(dtlm == ZSTD_dtlm_full); |
30 | |
31 | /* Always insert every fastHashFillStep position into the hash table. |
32 | * Insert the other positions if their hash entry is empty. |
33 | */ |
34 | for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { |
35 | U32 const curr = (U32)(ip - base); |
36 | { size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls); |
37 | ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); } |
38 | |
39 | if (dtlm == ZSTD_dtlm_fast) continue; |
40 | /* Only load extra positions for ZSTD_dtlm_full */ |
41 | { U32 p; |
42 | for (p = 1; p < fastHashFillStep; ++p) { |
43 | size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls); |
44 | if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */ |
45 | ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p); |
46 | } } } } |
47 | } |
48 | |
49 | static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms, |
50 | const void* const end, |
51 | ZSTD_dictTableLoadMethod_e dtlm) |
52 | { |
53 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
54 | U32* const hashTable = ms->hashTable; |
55 | U32 const hBits = cParams->hashLog; |
56 | U32 const mls = cParams->minMatch; |
57 | const BYTE* const base = ms->window.base; |
58 | const BYTE* ip = base + ms->nextToUpdate; |
59 | const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; |
60 | const U32 fastHashFillStep = 3; |
61 | |
62 | /* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables. |
63 | * Feel free to remove this assert if there's a good reason! */ |
64 | assert(dtlm == ZSTD_dtlm_fast); |
65 | |
66 | /* Always insert every fastHashFillStep position into the hash table. |
67 | * Insert the other positions if their hash entry is empty. |
68 | */ |
69 | for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { |
70 | U32 const curr = (U32)(ip - base); |
71 | size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls); |
72 | hashTable[hash0] = curr; |
73 | if (dtlm == ZSTD_dtlm_fast) continue; |
74 | /* Only load extra positions for ZSTD_dtlm_full */ |
75 | { U32 p; |
76 | for (p = 1; p < fastHashFillStep; ++p) { |
77 | size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls); |
78 | if (hashTable[hash] == 0) { /* not yet filled */ |
79 | hashTable[hash] = curr + p; |
80 | } } } } |
81 | } |
82 | |
83 | void ZSTD_fillHashTable(ZSTD_matchState_t* ms, |
84 | const void* const end, |
85 | ZSTD_dictTableLoadMethod_e dtlm, |
86 | ZSTD_tableFillPurpose_e tfp) |
87 | { |
88 | if (tfp == ZSTD_tfp_forCDict) { |
89 | ZSTD_fillHashTableForCDict(ms, end, dtlm); |
90 | } else { |
91 | ZSTD_fillHashTableForCCtx(ms, end, dtlm); |
92 | } |
93 | } |
94 | |
95 | |
96 | /** |
97 | * If you squint hard enough (and ignore repcodes), the search operation at any |
98 | * given position is broken into 4 stages: |
99 | * |
100 | * 1. Hash (map position to hash value via input read) |
101 | * 2. Lookup (map hash val to index via hashtable read) |
102 | * 3. Load (map index to value at that position via input read) |
103 | * 4. Compare |
104 | * |
105 | * Each of these steps involves a memory read at an address which is computed |
106 | * from the previous step. This means these steps must be sequenced and their |
107 | * latencies are cumulative. |
108 | * |
109 | * Rather than do 1->2->3->4 sequentially for a single position before moving |
110 | * onto the next, this implementation interleaves these operations across the |
111 | * next few positions: |
112 | * |
113 | * R = Repcode Read & Compare |
114 | * H = Hash |
115 | * T = Table Lookup |
116 | * M = Match Read & Compare |
117 | * |
118 | * Pos | Time --> |
119 | * ----+------------------- |
120 | * N | ... M |
121 | * N+1 | ... TM |
122 | * N+2 | R H T M |
123 | * N+3 | H TM |
124 | * N+4 | R H T M |
125 | * N+5 | H ... |
126 | * N+6 | R ... |
127 | * |
128 | * This is very much analogous to the pipelining of execution in a CPU. And just |
129 | * like a CPU, we have to dump the pipeline when we find a match (i.e., take a |
130 | * branch). |
131 | * |
132 | * When this happens, we throw away our current state, and do the following prep |
133 | * to re-enter the loop: |
134 | * |
135 | * Pos | Time --> |
136 | * ----+------------------- |
137 | * N | H T |
138 | * N+1 | H |
139 | * |
140 | * This is also the work we do at the beginning to enter the loop initially. |
141 | */ |
142 | FORCE_INLINE_TEMPLATE size_t |
143 | ZSTD_compressBlock_fast_noDict_generic( |
144 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
145 | void const* src, size_t srcSize, |
146 | U32 const mls, U32 const hasStep) |
147 | { |
148 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
149 | U32* const hashTable = ms->hashTable; |
150 | U32 const hlog = cParams->hashLog; |
151 | /* support stepSize of 0 */ |
152 | size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2; |
153 | const BYTE* const base = ms->window.base; |
154 | const BYTE* const istart = (const BYTE*)src; |
155 | const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); |
156 | const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); |
157 | const BYTE* const prefixStart = base + prefixStartIndex; |
158 | const BYTE* const iend = istart + srcSize; |
159 | const BYTE* const ilimit = iend - HASH_READ_SIZE; |
160 | |
161 | const BYTE* anchor = istart; |
162 | const BYTE* ip0 = istart; |
163 | const BYTE* ip1; |
164 | const BYTE* ip2; |
165 | const BYTE* ip3; |
166 | U32 current0; |
167 | |
168 | U32 rep_offset1 = rep[0]; |
169 | U32 rep_offset2 = rep[1]; |
170 | U32 offsetSaved1 = 0, offsetSaved2 = 0; |
171 | |
172 | size_t hash0; /* hash for ip0 */ |
173 | size_t hash1; /* hash for ip1 */ |
174 | U32 idx; /* match idx for ip0 */ |
175 | U32 mval; /* src value at match idx */ |
176 | |
177 | U32 offcode; |
178 | const BYTE* match0; |
179 | size_t mLength; |
180 | |
181 | /* ip0 and ip1 are always adjacent. The targetLength skipping and |
182 | * uncompressibility acceleration is applied to every other position, |
183 | * matching the behavior of #1562. step therefore represents the gap |
184 | * between pairs of positions, from ip0 to ip2 or ip1 to ip3. */ |
185 | size_t step; |
186 | const BYTE* nextStep; |
187 | const size_t kStepIncr = (1 << (kSearchStrength - 1)); |
188 | |
189 | DEBUGLOG(5, "ZSTD_compressBlock_fast_generic" ); |
190 | ip0 += (ip0 == prefixStart); |
191 | { U32 const curr = (U32)(ip0 - base); |
192 | U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog); |
193 | U32 const maxRep = curr - windowLow; |
194 | if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0; |
195 | if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0; |
196 | } |
197 | |
198 | /* start each op */ |
199 | _start: /* Requires: ip0 */ |
200 | |
201 | step = stepSize; |
202 | nextStep = ip0 + kStepIncr; |
203 | |
204 | /* calculate positions, ip0 - anchor == 0, so we skip step calc */ |
205 | ip1 = ip0 + 1; |
206 | ip2 = ip0 + step; |
207 | ip3 = ip2 + 1; |
208 | |
209 | if (ip3 >= ilimit) { |
210 | goto _cleanup; |
211 | } |
212 | |
213 | hash0 = ZSTD_hashPtr(ip0, hlog, mls); |
214 | hash1 = ZSTD_hashPtr(ip1, hlog, mls); |
215 | |
216 | idx = hashTable[hash0]; |
217 | |
218 | do { |
219 | /* load repcode match for ip[2]*/ |
220 | const U32 rval = MEM_read32(ip2 - rep_offset1); |
221 | |
222 | /* write back hash table entry */ |
223 | current0 = (U32)(ip0 - base); |
224 | hashTable[hash0] = current0; |
225 | |
226 | /* check repcode at ip[2] */ |
227 | if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) { |
228 | ip0 = ip2; |
229 | match0 = ip0 - rep_offset1; |
230 | mLength = ip0[-1] == match0[-1]; |
231 | ip0 -= mLength; |
232 | match0 -= mLength; |
233 | offcode = REPCODE1_TO_OFFBASE; |
234 | mLength += 4; |
235 | |
236 | /* First write next hash table entry; we've already calculated it. |
237 | * This write is known to be safe because the ip1 is before the |
238 | * repcode (ip2). */ |
239 | hashTable[hash1] = (U32)(ip1 - base); |
240 | |
241 | goto _match; |
242 | } |
243 | |
244 | /* load match for ip[0] */ |
245 | if (idx >= prefixStartIndex) { |
246 | mval = MEM_read32(base + idx); |
247 | } else { |
248 | mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */ |
249 | } |
250 | |
251 | /* check match at ip[0] */ |
252 | if (MEM_read32(ip0) == mval) { |
253 | /* found a match! */ |
254 | |
255 | /* First write next hash table entry; we've already calculated it. |
256 | * This write is known to be safe because the ip1 == ip0 + 1, so |
257 | * we know we will resume searching after ip1 */ |
258 | hashTable[hash1] = (U32)(ip1 - base); |
259 | |
260 | goto _offset; |
261 | } |
262 | |
263 | /* lookup ip[1] */ |
264 | idx = hashTable[hash1]; |
265 | |
266 | /* hash ip[2] */ |
267 | hash0 = hash1; |
268 | hash1 = ZSTD_hashPtr(ip2, hlog, mls); |
269 | |
270 | /* advance to next positions */ |
271 | ip0 = ip1; |
272 | ip1 = ip2; |
273 | ip2 = ip3; |
274 | |
275 | /* write back hash table entry */ |
276 | current0 = (U32)(ip0 - base); |
277 | hashTable[hash0] = current0; |
278 | |
279 | /* load match for ip[0] */ |
280 | if (idx >= prefixStartIndex) { |
281 | mval = MEM_read32(base + idx); |
282 | } else { |
283 | mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */ |
284 | } |
285 | |
286 | /* check match at ip[0] */ |
287 | if (MEM_read32(ip0) == mval) { |
288 | /* found a match! */ |
289 | |
290 | /* first write next hash table entry; we've already calculated it */ |
291 | if (step <= 4) { |
292 | /* We need to avoid writing an index into the hash table >= the |
293 | * position at which we will pick up our searching after we've |
294 | * taken this match. |
295 | * |
296 | * The minimum possible match has length 4, so the earliest ip0 |
297 | * can be after we take this match will be the current ip0 + 4. |
298 | * ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely |
299 | * write this position. |
300 | */ |
301 | hashTable[hash1] = (U32)(ip1 - base); |
302 | } |
303 | |
304 | goto _offset; |
305 | } |
306 | |
307 | /* lookup ip[1] */ |
308 | idx = hashTable[hash1]; |
309 | |
310 | /* hash ip[2] */ |
311 | hash0 = hash1; |
312 | hash1 = ZSTD_hashPtr(ip2, hlog, mls); |
313 | |
314 | /* advance to next positions */ |
315 | ip0 = ip1; |
316 | ip1 = ip2; |
317 | ip2 = ip0 + step; |
318 | ip3 = ip1 + step; |
319 | |
320 | /* calculate step */ |
321 | if (ip2 >= nextStep) { |
322 | step++; |
323 | PREFETCH_L1(ip1 + 64); |
324 | PREFETCH_L1(ip1 + 128); |
325 | nextStep += kStepIncr; |
326 | } |
327 | } while (ip3 < ilimit); |
328 | |
329 | _cleanup: |
330 | /* Note that there are probably still a couple positions we could search. |
331 | * However, it seems to be a meaningful performance hit to try to search |
332 | * them. So let's not. */ |
333 | |
334 | /* When the repcodes are outside of the prefix, we set them to zero before the loop. |
335 | * When the offsets are still zero, we need to restore them after the block to have a correct |
336 | * repcode history. If only one offset was invalid, it is easy. The tricky case is when both |
337 | * offsets were invalid. We need to figure out which offset to refill with. |
338 | * - If both offsets are zero they are in the same order. |
339 | * - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`. |
340 | * - If only one is zero, we need to decide which offset to restore. |
341 | * - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1. |
342 | * - It is impossible for rep_offset2 to be non-zero. |
343 | * |
344 | * So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then |
345 | * set rep[0] = rep_offset1 and rep[1] = offsetSaved1. |
346 | */ |
347 | offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2; |
348 | |
349 | /* save reps for next block */ |
350 | rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1; |
351 | rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2; |
352 | |
353 | /* Return the last literals size */ |
354 | return (size_t)(iend - anchor); |
355 | |
356 | _offset: /* Requires: ip0, idx */ |
357 | |
358 | /* Compute the offset code. */ |
359 | match0 = base + idx; |
360 | rep_offset2 = rep_offset1; |
361 | rep_offset1 = (U32)(ip0-match0); |
362 | offcode = OFFSET_TO_OFFBASE(rep_offset1); |
363 | mLength = 4; |
364 | |
365 | /* Count the backwards match length. */ |
366 | while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) { |
367 | ip0--; |
368 | match0--; |
369 | mLength++; |
370 | } |
371 | |
372 | _match: /* Requires: ip0, match0, offcode */ |
373 | |
374 | /* Count the forward length. */ |
375 | mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend); |
376 | |
377 | ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); |
378 | |
379 | ip0 += mLength; |
380 | anchor = ip0; |
381 | |
382 | /* Fill table and check for immediate repcode. */ |
383 | if (ip0 <= ilimit) { |
384 | /* Fill Table */ |
385 | assert(base+current0+2 > istart); /* check base overflow */ |
386 | hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ |
387 | hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); |
388 | |
389 | if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */ |
390 | while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) { |
391 | /* store sequence */ |
392 | size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4; |
393 | { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */ |
394 | hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); |
395 | ip0 += rLength; |
396 | ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength); |
397 | anchor = ip0; |
398 | continue; /* faster when present (confirmed on gcc-8) ... (?) */ |
399 | } } } |
400 | |
401 | goto _start; |
402 | } |
403 | |
404 | #define ZSTD_GEN_FAST_FN(dictMode, mls, step) \ |
405 | static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \ |
406 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \ |
407 | void const* src, size_t srcSize) \ |
408 | { \ |
409 | return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \ |
410 | } |
411 | |
412 | ZSTD_GEN_FAST_FN(noDict, 4, 1) |
413 | ZSTD_GEN_FAST_FN(noDict, 5, 1) |
414 | ZSTD_GEN_FAST_FN(noDict, 6, 1) |
415 | ZSTD_GEN_FAST_FN(noDict, 7, 1) |
416 | |
417 | ZSTD_GEN_FAST_FN(noDict, 4, 0) |
418 | ZSTD_GEN_FAST_FN(noDict, 5, 0) |
419 | ZSTD_GEN_FAST_FN(noDict, 6, 0) |
420 | ZSTD_GEN_FAST_FN(noDict, 7, 0) |
421 | |
422 | size_t ZSTD_compressBlock_fast( |
423 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
424 | void const* src, size_t srcSize) |
425 | { |
426 | U32 const mls = ms->cParams.minMatch; |
427 | assert(ms->dictMatchState == NULL); |
428 | if (ms->cParams.targetLength > 1) { |
429 | switch(mls) |
430 | { |
431 | default: /* includes case 3 */ |
432 | case 4 : |
433 | return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize); |
434 | case 5 : |
435 | return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize); |
436 | case 6 : |
437 | return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize); |
438 | case 7 : |
439 | return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize); |
440 | } |
441 | } else { |
442 | switch(mls) |
443 | { |
444 | default: /* includes case 3 */ |
445 | case 4 : |
446 | return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize); |
447 | case 5 : |
448 | return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize); |
449 | case 6 : |
450 | return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize); |
451 | case 7 : |
452 | return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize); |
453 | } |
454 | |
455 | } |
456 | } |
457 | |
458 | FORCE_INLINE_TEMPLATE |
459 | size_t ZSTD_compressBlock_fast_dictMatchState_generic( |
460 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
461 | void const* src, size_t srcSize, U32 const mls, U32 const hasStep) |
462 | { |
463 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
464 | U32* const hashTable = ms->hashTable; |
465 | U32 const hlog = cParams->hashLog; |
466 | /* support stepSize of 0 */ |
467 | U32 const stepSize = cParams->targetLength + !(cParams->targetLength); |
468 | const BYTE* const base = ms->window.base; |
469 | const BYTE* const istart = (const BYTE*)src; |
470 | const BYTE* ip0 = istart; |
471 | const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */ |
472 | const BYTE* anchor = istart; |
473 | const U32 prefixStartIndex = ms->window.dictLimit; |
474 | const BYTE* const prefixStart = base + prefixStartIndex; |
475 | const BYTE* const iend = istart + srcSize; |
476 | const BYTE* const ilimit = iend - HASH_READ_SIZE; |
477 | U32 offset_1=rep[0], offset_2=rep[1]; |
478 | |
479 | const ZSTD_matchState_t* const dms = ms->dictMatchState; |
480 | const ZSTD_compressionParameters* const dictCParams = &dms->cParams ; |
481 | const U32* const dictHashTable = dms->hashTable; |
482 | const U32 dictStartIndex = dms->window.dictLimit; |
483 | const BYTE* const dictBase = dms->window.base; |
484 | const BYTE* const dictStart = dictBase + dictStartIndex; |
485 | const BYTE* const dictEnd = dms->window.nextSrc; |
486 | const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase); |
487 | const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart); |
488 | const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; |
489 | |
490 | /* if a dictionary is still attached, it necessarily means that |
491 | * it is within window size. So we just check it. */ |
492 | const U32 maxDistance = 1U << cParams->windowLog; |
493 | const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); |
494 | assert(endIndex - prefixStartIndex <= maxDistance); |
495 | (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */ |
496 | |
497 | (void)hasStep; /* not currently specialized on whether it's accelerated */ |
498 | |
499 | /* ensure there will be no underflow |
500 | * when translating a dict index into a local index */ |
501 | assert(prefixStartIndex >= (U32)(dictEnd - dictBase)); |
502 | |
503 | if (ms->prefetchCDictTables) { |
504 | size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32); |
505 | PREFETCH_AREA(dictHashTable, hashTableBytes) |
506 | } |
507 | |
508 | /* init */ |
509 | DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic" ); |
510 | ip0 += (dictAndPrefixLength == 0); |
511 | /* dictMatchState repCode checks don't currently handle repCode == 0 |
512 | * disabling. */ |
513 | assert(offset_1 <= dictAndPrefixLength); |
514 | assert(offset_2 <= dictAndPrefixLength); |
515 | |
516 | /* Outer search loop */ |
517 | assert(stepSize >= 1); |
518 | while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */ |
519 | size_t mLength; |
520 | size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls); |
521 | |
522 | size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls); |
523 | U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS]; |
524 | int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0); |
525 | |
526 | U32 matchIndex = hashTable[hash0]; |
527 | U32 curr = (U32)(ip0 - base); |
528 | size_t step = stepSize; |
529 | const size_t kStepIncr = 1 << kSearchStrength; |
530 | const BYTE* nextStep = ip0 + kStepIncr; |
531 | |
532 | /* Inner search loop */ |
533 | while (1) { |
534 | const BYTE* match = base + matchIndex; |
535 | const U32 repIndex = curr + 1 - offset_1; |
536 | const BYTE* repMatch = (repIndex < prefixStartIndex) ? |
537 | dictBase + (repIndex - dictIndexDelta) : |
538 | base + repIndex; |
539 | const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls); |
540 | size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls); |
541 | hashTable[hash0] = curr; /* update hash table */ |
542 | |
543 | if (((U32) ((prefixStartIndex - 1) - repIndex) >= |
544 | 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */ |
545 | && (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) { |
546 | const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; |
547 | mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4; |
548 | ip0++; |
549 | ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); |
550 | break; |
551 | } |
552 | |
553 | if (dictTagsMatch) { |
554 | /* Found a possible dict match */ |
555 | const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS; |
556 | const BYTE* dictMatch = dictBase + dictMatchIndex; |
557 | if (dictMatchIndex > dictStartIndex && |
558 | MEM_read32(dictMatch) == MEM_read32(ip0)) { |
559 | /* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */ |
560 | if (matchIndex <= prefixStartIndex) { |
561 | U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta); |
562 | mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4; |
563 | while (((ip0 > anchor) & (dictMatch > dictStart)) |
564 | && (ip0[-1] == dictMatch[-1])) { |
565 | ip0--; |
566 | dictMatch--; |
567 | mLength++; |
568 | } /* catch up */ |
569 | offset_2 = offset_1; |
570 | offset_1 = offset; |
571 | ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); |
572 | break; |
573 | } |
574 | } |
575 | } |
576 | |
577 | if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) { |
578 | /* found a regular match */ |
579 | U32 const offset = (U32) (ip0 - match); |
580 | mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4; |
581 | while (((ip0 > anchor) & (match > prefixStart)) |
582 | && (ip0[-1] == match[-1])) { |
583 | ip0--; |
584 | match--; |
585 | mLength++; |
586 | } /* catch up */ |
587 | offset_2 = offset_1; |
588 | offset_1 = offset; |
589 | ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); |
590 | break; |
591 | } |
592 | |
593 | /* Prepare for next iteration */ |
594 | dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS]; |
595 | dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1); |
596 | matchIndex = hashTable[hash1]; |
597 | |
598 | if (ip1 >= nextStep) { |
599 | step++; |
600 | nextStep += kStepIncr; |
601 | } |
602 | ip0 = ip1; |
603 | ip1 = ip1 + step; |
604 | if (ip1 > ilimit) goto _cleanup; |
605 | |
606 | curr = (U32)(ip0 - base); |
607 | hash0 = hash1; |
608 | } /* end inner search loop */ |
609 | |
610 | /* match found */ |
611 | assert(mLength); |
612 | ip0 += mLength; |
613 | anchor = ip0; |
614 | |
615 | if (ip0 <= ilimit) { |
616 | /* Fill Table */ |
617 | assert(base+curr+2 > istart); /* check base overflow */ |
618 | hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */ |
619 | hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); |
620 | |
621 | /* check immediate repcode */ |
622 | while (ip0 <= ilimit) { |
623 | U32 const current2 = (U32)(ip0-base); |
624 | U32 const repIndex2 = current2 - offset_2; |
625 | const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? |
626 | dictBase - dictIndexDelta + repIndex2 : |
627 | base + repIndex2; |
628 | if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */) |
629 | && (MEM_read32(repMatch2) == MEM_read32(ip0))) { |
630 | const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; |
631 | size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; |
632 | U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ |
633 | ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); |
634 | hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2; |
635 | ip0 += repLength2; |
636 | anchor = ip0; |
637 | continue; |
638 | } |
639 | break; |
640 | } |
641 | } |
642 | |
643 | /* Prepare for next iteration */ |
644 | assert(ip0 == anchor); |
645 | ip1 = ip0 + stepSize; |
646 | } |
647 | |
648 | _cleanup: |
649 | /* save reps for next block */ |
650 | rep[0] = offset_1; |
651 | rep[1] = offset_2; |
652 | |
653 | /* Return the last literals size */ |
654 | return (size_t)(iend - anchor); |
655 | } |
656 | |
657 | |
658 | ZSTD_GEN_FAST_FN(dictMatchState, 4, 0) |
659 | ZSTD_GEN_FAST_FN(dictMatchState, 5, 0) |
660 | ZSTD_GEN_FAST_FN(dictMatchState, 6, 0) |
661 | ZSTD_GEN_FAST_FN(dictMatchState, 7, 0) |
662 | |
663 | size_t ZSTD_compressBlock_fast_dictMatchState( |
664 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
665 | void const* src, size_t srcSize) |
666 | { |
667 | U32 const mls = ms->cParams.minMatch; |
668 | assert(ms->dictMatchState != NULL); |
669 | switch(mls) |
670 | { |
671 | default: /* includes case 3 */ |
672 | case 4 : |
673 | return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize); |
674 | case 5 : |
675 | return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize); |
676 | case 6 : |
677 | return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize); |
678 | case 7 : |
679 | return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize); |
680 | } |
681 | } |
682 | |
683 | |
684 | static size_t ZSTD_compressBlock_fast_extDict_generic( |
685 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
686 | void const* src, size_t srcSize, U32 const mls, U32 const hasStep) |
687 | { |
688 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
689 | U32* const hashTable = ms->hashTable; |
690 | U32 const hlog = cParams->hashLog; |
691 | /* support stepSize of 0 */ |
692 | size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; |
693 | const BYTE* const base = ms->window.base; |
694 | const BYTE* const dictBase = ms->window.dictBase; |
695 | const BYTE* const istart = (const BYTE*)src; |
696 | const BYTE* anchor = istart; |
697 | const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); |
698 | const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog); |
699 | const U32 dictStartIndex = lowLimit; |
700 | const BYTE* const dictStart = dictBase + dictStartIndex; |
701 | const U32 dictLimit = ms->window.dictLimit; |
702 | const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit; |
703 | const BYTE* const prefixStart = base + prefixStartIndex; |
704 | const BYTE* const dictEnd = dictBase + prefixStartIndex; |
705 | const BYTE* const iend = istart + srcSize; |
706 | const BYTE* const ilimit = iend - 8; |
707 | U32 offset_1=rep[0], offset_2=rep[1]; |
708 | U32 offsetSaved1 = 0, offsetSaved2 = 0; |
709 | |
710 | const BYTE* ip0 = istart; |
711 | const BYTE* ip1; |
712 | const BYTE* ip2; |
713 | const BYTE* ip3; |
714 | U32 current0; |
715 | |
716 | |
717 | size_t hash0; /* hash for ip0 */ |
718 | size_t hash1; /* hash for ip1 */ |
719 | U32 idx; /* match idx for ip0 */ |
720 | const BYTE* idxBase; /* base pointer for idx */ |
721 | |
722 | U32 offcode; |
723 | const BYTE* match0; |
724 | size_t mLength; |
725 | const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */ |
726 | |
727 | size_t step; |
728 | const BYTE* nextStep; |
729 | const size_t kStepIncr = (1 << (kSearchStrength - 1)); |
730 | |
731 | (void)hasStep; /* not currently specialized on whether it's accelerated */ |
732 | |
733 | DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)" , offset_1); |
734 | |
735 | /* switch to "regular" variant if extDict is invalidated due to maxDistance */ |
736 | if (prefixStartIndex == dictStartIndex) |
737 | return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize); |
738 | |
739 | { U32 const curr = (U32)(ip0 - base); |
740 | U32 const maxRep = curr - dictStartIndex; |
741 | if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0; |
742 | if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0; |
743 | } |
744 | |
745 | /* start each op */ |
746 | _start: /* Requires: ip0 */ |
747 | |
748 | step = stepSize; |
749 | nextStep = ip0 + kStepIncr; |
750 | |
751 | /* calculate positions, ip0 - anchor == 0, so we skip step calc */ |
752 | ip1 = ip0 + 1; |
753 | ip2 = ip0 + step; |
754 | ip3 = ip2 + 1; |
755 | |
756 | if (ip3 >= ilimit) { |
757 | goto _cleanup; |
758 | } |
759 | |
760 | hash0 = ZSTD_hashPtr(ip0, hlog, mls); |
761 | hash1 = ZSTD_hashPtr(ip1, hlog, mls); |
762 | |
763 | idx = hashTable[hash0]; |
764 | idxBase = idx < prefixStartIndex ? dictBase : base; |
765 | |
766 | do { |
767 | { /* load repcode match for ip[2] */ |
768 | U32 const current2 = (U32)(ip2 - base); |
769 | U32 const repIndex = current2 - offset_1; |
770 | const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; |
771 | U32 rval; |
772 | if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */ |
773 | & (offset_1 > 0) ) { |
774 | rval = MEM_read32(repBase + repIndex); |
775 | } else { |
776 | rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */ |
777 | } |
778 | |
779 | /* write back hash table entry */ |
780 | current0 = (U32)(ip0 - base); |
781 | hashTable[hash0] = current0; |
782 | |
783 | /* check repcode at ip[2] */ |
784 | if (MEM_read32(ip2) == rval) { |
785 | ip0 = ip2; |
786 | match0 = repBase + repIndex; |
787 | matchEnd = repIndex < prefixStartIndex ? dictEnd : iend; |
788 | assert((match0 != prefixStart) & (match0 != dictStart)); |
789 | mLength = ip0[-1] == match0[-1]; |
790 | ip0 -= mLength; |
791 | match0 -= mLength; |
792 | offcode = REPCODE1_TO_OFFBASE; |
793 | mLength += 4; |
794 | goto _match; |
795 | } } |
796 | |
797 | { /* load match for ip[0] */ |
798 | U32 const mval = idx >= dictStartIndex ? |
799 | MEM_read32(idxBase + idx) : |
800 | MEM_read32(ip0) ^ 1; /* guaranteed not to match */ |
801 | |
802 | /* check match at ip[0] */ |
803 | if (MEM_read32(ip0) == mval) { |
804 | /* found a match! */ |
805 | goto _offset; |
806 | } } |
807 | |
808 | /* lookup ip[1] */ |
809 | idx = hashTable[hash1]; |
810 | idxBase = idx < prefixStartIndex ? dictBase : base; |
811 | |
812 | /* hash ip[2] */ |
813 | hash0 = hash1; |
814 | hash1 = ZSTD_hashPtr(ip2, hlog, mls); |
815 | |
816 | /* advance to next positions */ |
817 | ip0 = ip1; |
818 | ip1 = ip2; |
819 | ip2 = ip3; |
820 | |
821 | /* write back hash table entry */ |
822 | current0 = (U32)(ip0 - base); |
823 | hashTable[hash0] = current0; |
824 | |
825 | { /* load match for ip[0] */ |
826 | U32 const mval = idx >= dictStartIndex ? |
827 | MEM_read32(idxBase + idx) : |
828 | MEM_read32(ip0) ^ 1; /* guaranteed not to match */ |
829 | |
830 | /* check match at ip[0] */ |
831 | if (MEM_read32(ip0) == mval) { |
832 | /* found a match! */ |
833 | goto _offset; |
834 | } } |
835 | |
836 | /* lookup ip[1] */ |
837 | idx = hashTable[hash1]; |
838 | idxBase = idx < prefixStartIndex ? dictBase : base; |
839 | |
840 | /* hash ip[2] */ |
841 | hash0 = hash1; |
842 | hash1 = ZSTD_hashPtr(ip2, hlog, mls); |
843 | |
844 | /* advance to next positions */ |
845 | ip0 = ip1; |
846 | ip1 = ip2; |
847 | ip2 = ip0 + step; |
848 | ip3 = ip1 + step; |
849 | |
850 | /* calculate step */ |
851 | if (ip2 >= nextStep) { |
852 | step++; |
853 | PREFETCH_L1(ip1 + 64); |
854 | PREFETCH_L1(ip1 + 128); |
855 | nextStep += kStepIncr; |
856 | } |
857 | } while (ip3 < ilimit); |
858 | |
859 | _cleanup: |
860 | /* Note that there are probably still a couple positions we could search. |
861 | * However, it seems to be a meaningful performance hit to try to search |
862 | * them. So let's not. */ |
863 | |
864 | /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), |
865 | * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ |
866 | offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; |
867 | |
868 | /* save reps for next block */ |
869 | rep[0] = offset_1 ? offset_1 : offsetSaved1; |
870 | rep[1] = offset_2 ? offset_2 : offsetSaved2; |
871 | |
872 | /* Return the last literals size */ |
873 | return (size_t)(iend - anchor); |
874 | |
875 | _offset: /* Requires: ip0, idx, idxBase */ |
876 | |
877 | /* Compute the offset code. */ |
878 | { U32 const offset = current0 - idx; |
879 | const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart; |
880 | matchEnd = idx < prefixStartIndex ? dictEnd : iend; |
881 | match0 = idxBase + idx; |
882 | offset_2 = offset_1; |
883 | offset_1 = offset; |
884 | offcode = OFFSET_TO_OFFBASE(offset); |
885 | mLength = 4; |
886 | |
887 | /* Count the backwards match length. */ |
888 | while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) { |
889 | ip0--; |
890 | match0--; |
891 | mLength++; |
892 | } } |
893 | |
894 | _match: /* Requires: ip0, match0, offcode, matchEnd */ |
895 | |
896 | /* Count the forward length. */ |
897 | assert(matchEnd != 0); |
898 | mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart); |
899 | |
900 | ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); |
901 | |
902 | ip0 += mLength; |
903 | anchor = ip0; |
904 | |
905 | /* write next hash table entry */ |
906 | if (ip1 < ip0) { |
907 | hashTable[hash1] = (U32)(ip1 - base); |
908 | } |
909 | |
910 | /* Fill table and check for immediate repcode. */ |
911 | if (ip0 <= ilimit) { |
912 | /* Fill Table */ |
913 | assert(base+current0+2 > istart); /* check base overflow */ |
914 | hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ |
915 | hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); |
916 | |
917 | while (ip0 <= ilimit) { |
918 | U32 const repIndex2 = (U32)(ip0-base) - offset_2; |
919 | const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; |
920 | if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0)) /* intentional underflow */ |
921 | && (MEM_read32(repMatch2) == MEM_read32(ip0)) ) { |
922 | const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; |
923 | size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; |
924 | { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */ |
925 | ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); |
926 | hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); |
927 | ip0 += repLength2; |
928 | anchor = ip0; |
929 | continue; |
930 | } |
931 | break; |
932 | } } |
933 | |
934 | goto _start; |
935 | } |
936 | |
937 | ZSTD_GEN_FAST_FN(extDict, 4, 0) |
938 | ZSTD_GEN_FAST_FN(extDict, 5, 0) |
939 | ZSTD_GEN_FAST_FN(extDict, 6, 0) |
940 | ZSTD_GEN_FAST_FN(extDict, 7, 0) |
941 | |
942 | size_t ZSTD_compressBlock_fast_extDict( |
943 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
944 | void const* src, size_t srcSize) |
945 | { |
946 | U32 const mls = ms->cParams.minMatch; |
947 | assert(ms->dictMatchState == NULL); |
948 | switch(mls) |
949 | { |
950 | default: /* includes case 3 */ |
951 | case 4 : |
952 | return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize); |
953 | case 5 : |
954 | return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize); |
955 | case 6 : |
956 | return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize); |
957 | case 7 : |
958 | return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize); |
959 | } |
960 | } |
961 | |