1 | /* |
2 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | * All rights reserved. |
4 | * |
5 | * This source code is licensed under both the BSD-style license (found in the |
6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
7 | * in the COPYING file in the root directory of this source tree). |
8 | * You may select, at your option, one of the above-listed licenses. |
9 | */ |
10 | |
11 | #include "zstd_compress_internal.h" |
12 | #include "zstd_lazy.h" |
13 | #include "../common/bits.h" /* ZSTD_countTrailingZeros64 */ |
14 | |
15 | #define kLazySkippingStep 8 |
16 | |
17 | |
18 | /*-************************************* |
19 | * Binary Tree search |
20 | ***************************************/ |
21 | |
22 | static void |
23 | ZSTD_updateDUBT(ZSTD_matchState_t* ms, |
24 | const BYTE* ip, const BYTE* iend, |
25 | U32 mls) |
26 | { |
27 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
28 | U32* const hashTable = ms->hashTable; |
29 | U32 const hashLog = cParams->hashLog; |
30 | |
31 | U32* const bt = ms->chainTable; |
32 | U32 const btLog = cParams->chainLog - 1; |
33 | U32 const btMask = (1 << btLog) - 1; |
34 | |
35 | const BYTE* const base = ms->window.base; |
36 | U32 const target = (U32)(ip - base); |
37 | U32 idx = ms->nextToUpdate; |
38 | |
39 | if (idx != target) |
40 | DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)" , |
41 | idx, target, ms->window.dictLimit); |
42 | assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */ |
43 | (void)iend; |
44 | |
45 | assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */ |
46 | for ( ; idx < target ; idx++) { |
47 | size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */ |
48 | U32 const matchIndex = hashTable[h]; |
49 | |
50 | U32* const nextCandidatePtr = bt + 2*(idx&btMask); |
51 | U32* const sortMarkPtr = nextCandidatePtr + 1; |
52 | |
53 | DEBUGLOG(8, "ZSTD_updateDUBT: insert %u" , idx); |
54 | hashTable[h] = idx; /* Update Hash Table */ |
55 | *nextCandidatePtr = matchIndex; /* update BT like a chain */ |
56 | *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK; |
57 | } |
58 | ms->nextToUpdate = target; |
59 | } |
60 | |
61 | |
62 | /** ZSTD_insertDUBT1() : |
63 | * sort one already inserted but unsorted position |
64 | * assumption : curr >= btlow == (curr - btmask) |
65 | * doesn't fail */ |
66 | static void |
67 | ZSTD_insertDUBT1(const ZSTD_matchState_t* ms, |
68 | U32 curr, const BYTE* inputEnd, |
69 | U32 nbCompares, U32 btLow, |
70 | const ZSTD_dictMode_e dictMode) |
71 | { |
72 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
73 | U32* const bt = ms->chainTable; |
74 | U32 const btLog = cParams->chainLog - 1; |
75 | U32 const btMask = (1 << btLog) - 1; |
76 | size_t commonLengthSmaller=0, commonLengthLarger=0; |
77 | const BYTE* const base = ms->window.base; |
78 | const BYTE* const dictBase = ms->window.dictBase; |
79 | const U32 dictLimit = ms->window.dictLimit; |
80 | const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr; |
81 | const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit; |
82 | const BYTE* const dictEnd = dictBase + dictLimit; |
83 | const BYTE* const prefixStart = base + dictLimit; |
84 | const BYTE* match; |
85 | U32* smallerPtr = bt + 2*(curr&btMask); |
86 | U32* largerPtr = smallerPtr + 1; |
87 | U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */ |
88 | U32 dummy32; /* to be nullified at the end */ |
89 | U32 const windowValid = ms->window.lowLimit; |
90 | U32 const maxDistance = 1U << cParams->windowLog; |
91 | U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid; |
92 | |
93 | |
94 | DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)" , |
95 | curr, dictLimit, windowLow); |
96 | assert(curr >= btLow); |
97 | assert(ip < iend); /* condition for ZSTD_count */ |
98 | |
99 | for (; nbCompares && (matchIndex > windowLow); --nbCompares) { |
100 | U32* const nextPtr = bt + 2*(matchIndex & btMask); |
101 | size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ |
102 | assert(matchIndex < curr); |
103 | /* note : all candidates are now supposed sorted, |
104 | * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK |
105 | * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */ |
106 | |
107 | if ( (dictMode != ZSTD_extDict) |
108 | || (matchIndex+matchLength >= dictLimit) /* both in current segment*/ |
109 | || (curr < dictLimit) /* both in extDict */) { |
110 | const BYTE* const mBase = ( (dictMode != ZSTD_extDict) |
111 | || (matchIndex+matchLength >= dictLimit)) ? |
112 | base : dictBase; |
113 | assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */ |
114 | || (curr < dictLimit) ); |
115 | match = mBase + matchIndex; |
116 | matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); |
117 | } else { |
118 | match = dictBase + matchIndex; |
119 | matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); |
120 | if (matchIndex+matchLength >= dictLimit) |
121 | match = base + matchIndex; /* preparation for next read of match[matchLength] */ |
122 | } |
123 | |
124 | DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes " , |
125 | curr, matchIndex, (U32)matchLength); |
126 | |
127 | if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ |
128 | break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ |
129 | } |
130 | |
131 | if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ |
132 | /* match is smaller than current */ |
133 | *smallerPtr = matchIndex; /* update smaller idx */ |
134 | commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ |
135 | if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ |
136 | DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u" , |
137 | matchIndex, btLow, nextPtr[1]); |
138 | smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ |
139 | matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ |
140 | } else { |
141 | /* match is larger than current */ |
142 | *largerPtr = matchIndex; |
143 | commonLengthLarger = matchLength; |
144 | if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ |
145 | DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u" , |
146 | matchIndex, btLow, nextPtr[0]); |
147 | largerPtr = nextPtr; |
148 | matchIndex = nextPtr[0]; |
149 | } } |
150 | |
151 | *smallerPtr = *largerPtr = 0; |
152 | } |
153 | |
154 | |
155 | static size_t |
156 | ZSTD_DUBT_findBetterDictMatch ( |
157 | const ZSTD_matchState_t* ms, |
158 | const BYTE* const ip, const BYTE* const iend, |
159 | size_t* offsetPtr, |
160 | size_t bestLength, |
161 | U32 nbCompares, |
162 | U32 const mls, |
163 | const ZSTD_dictMode_e dictMode) |
164 | { |
165 | const ZSTD_matchState_t * const dms = ms->dictMatchState; |
166 | const ZSTD_compressionParameters* const dmsCParams = &dms->cParams; |
167 | const U32 * const dictHashTable = dms->hashTable; |
168 | U32 const hashLog = dmsCParams->hashLog; |
169 | size_t const h = ZSTD_hashPtr(ip, hashLog, mls); |
170 | U32 dictMatchIndex = dictHashTable[h]; |
171 | |
172 | const BYTE* const base = ms->window.base; |
173 | const BYTE* const prefixStart = base + ms->window.dictLimit; |
174 | U32 const curr = (U32)(ip-base); |
175 | const BYTE* const dictBase = dms->window.base; |
176 | const BYTE* const dictEnd = dms->window.nextSrc; |
177 | U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base); |
178 | U32 const dictLowLimit = dms->window.lowLimit; |
179 | U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit; |
180 | |
181 | U32* const dictBt = dms->chainTable; |
182 | U32 const btLog = dmsCParams->chainLog - 1; |
183 | U32 const btMask = (1 << btLog) - 1; |
184 | U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask; |
185 | |
186 | size_t commonLengthSmaller=0, commonLengthLarger=0; |
187 | |
188 | (void)dictMode; |
189 | assert(dictMode == ZSTD_dictMatchState); |
190 | |
191 | for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) { |
192 | U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask); |
193 | size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ |
194 | const BYTE* match = dictBase + dictMatchIndex; |
195 | matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); |
196 | if (dictMatchIndex+matchLength >= dictHighLimit) |
197 | match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */ |
198 | |
199 | if (matchLength > bestLength) { |
200 | U32 matchIndex = dictMatchIndex + dictIndexDelta; |
201 | if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) { |
202 | DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)" , |
203 | curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex); |
204 | bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); |
205 | } |
206 | if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */ |
207 | break; /* drop, to guarantee consistency (miss a little bit of compression) */ |
208 | } |
209 | } |
210 | |
211 | if (match[matchLength] < ip[matchLength]) { |
212 | if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ |
213 | commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ |
214 | dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ |
215 | } else { |
216 | /* match is larger than current */ |
217 | if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ |
218 | commonLengthLarger = matchLength; |
219 | dictMatchIndex = nextPtr[0]; |
220 | } |
221 | } |
222 | |
223 | if (bestLength >= MINMATCH) { |
224 | U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex; |
225 | DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)" , |
226 | curr, (U32)bestLength, (U32)*offsetPtr, mIndex); |
227 | } |
228 | return bestLength; |
229 | |
230 | } |
231 | |
232 | |
233 | static size_t |
234 | ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms, |
235 | const BYTE* const ip, const BYTE* const iend, |
236 | size_t* offBasePtr, |
237 | U32 const mls, |
238 | const ZSTD_dictMode_e dictMode) |
239 | { |
240 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
241 | U32* const hashTable = ms->hashTable; |
242 | U32 const hashLog = cParams->hashLog; |
243 | size_t const h = ZSTD_hashPtr(ip, hashLog, mls); |
244 | U32 matchIndex = hashTable[h]; |
245 | |
246 | const BYTE* const base = ms->window.base; |
247 | U32 const curr = (U32)(ip-base); |
248 | U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog); |
249 | |
250 | U32* const bt = ms->chainTable; |
251 | U32 const btLog = cParams->chainLog - 1; |
252 | U32 const btMask = (1 << btLog) - 1; |
253 | U32 const btLow = (btMask >= curr) ? 0 : curr - btMask; |
254 | U32 const unsortLimit = MAX(btLow, windowLow); |
255 | |
256 | U32* nextCandidate = bt + 2*(matchIndex&btMask); |
257 | U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1; |
258 | U32 nbCompares = 1U << cParams->searchLog; |
259 | U32 nbCandidates = nbCompares; |
260 | U32 previousCandidate = 0; |
261 | |
262 | DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) " , curr); |
263 | assert(ip <= iend-8); /* required for h calculation */ |
264 | assert(dictMode != ZSTD_dedicatedDictSearch); |
265 | |
266 | /* reach end of unsorted candidates list */ |
267 | while ( (matchIndex > unsortLimit) |
268 | && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK) |
269 | && (nbCandidates > 1) ) { |
270 | DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted" , |
271 | matchIndex); |
272 | *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */ |
273 | previousCandidate = matchIndex; |
274 | matchIndex = *nextCandidate; |
275 | nextCandidate = bt + 2*(matchIndex&btMask); |
276 | unsortedMark = bt + 2*(matchIndex&btMask) + 1; |
277 | nbCandidates --; |
278 | } |
279 | |
280 | /* nullify last candidate if it's still unsorted |
281 | * simplification, detrimental to compression ratio, beneficial for speed */ |
282 | if ( (matchIndex > unsortLimit) |
283 | && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) { |
284 | DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u" , |
285 | matchIndex); |
286 | *nextCandidate = *unsortedMark = 0; |
287 | } |
288 | |
289 | /* batch sort stacked candidates */ |
290 | matchIndex = previousCandidate; |
291 | while (matchIndex) { /* will end on matchIndex == 0 */ |
292 | U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1; |
293 | U32 const nextCandidateIdx = *nextCandidateIdxPtr; |
294 | ZSTD_insertDUBT1(ms, matchIndex, iend, |
295 | nbCandidates, unsortLimit, dictMode); |
296 | matchIndex = nextCandidateIdx; |
297 | nbCandidates++; |
298 | } |
299 | |
300 | /* find longest match */ |
301 | { size_t commonLengthSmaller = 0, commonLengthLarger = 0; |
302 | const BYTE* const dictBase = ms->window.dictBase; |
303 | const U32 dictLimit = ms->window.dictLimit; |
304 | const BYTE* const dictEnd = dictBase + dictLimit; |
305 | const BYTE* const prefixStart = base + dictLimit; |
306 | U32* smallerPtr = bt + 2*(curr&btMask); |
307 | U32* largerPtr = bt + 2*(curr&btMask) + 1; |
308 | U32 matchEndIdx = curr + 8 + 1; |
309 | U32 dummy32; /* to be nullified at the end */ |
310 | size_t bestLength = 0; |
311 | |
312 | matchIndex = hashTable[h]; |
313 | hashTable[h] = curr; /* Update Hash Table */ |
314 | |
315 | for (; nbCompares && (matchIndex > windowLow); --nbCompares) { |
316 | U32* const nextPtr = bt + 2*(matchIndex & btMask); |
317 | size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ |
318 | const BYTE* match; |
319 | |
320 | if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) { |
321 | match = base + matchIndex; |
322 | matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); |
323 | } else { |
324 | match = dictBase + matchIndex; |
325 | matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); |
326 | if (matchIndex+matchLength >= dictLimit) |
327 | match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ |
328 | } |
329 | |
330 | if (matchLength > bestLength) { |
331 | if (matchLength > matchEndIdx - matchIndex) |
332 | matchEndIdx = matchIndex + (U32)matchLength; |
333 | if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) ) |
334 | bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex); |
335 | if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ |
336 | if (dictMode == ZSTD_dictMatchState) { |
337 | nbCompares = 0; /* in addition to avoiding checking any |
338 | * further in this loop, make sure we |
339 | * skip checking in the dictionary. */ |
340 | } |
341 | break; /* drop, to guarantee consistency (miss a little bit of compression) */ |
342 | } |
343 | } |
344 | |
345 | if (match[matchLength] < ip[matchLength]) { |
346 | /* match is smaller than current */ |
347 | *smallerPtr = matchIndex; /* update smaller idx */ |
348 | commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ |
349 | if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ |
350 | smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ |
351 | matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ |
352 | } else { |
353 | /* match is larger than current */ |
354 | *largerPtr = matchIndex; |
355 | commonLengthLarger = matchLength; |
356 | if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ |
357 | largerPtr = nextPtr; |
358 | matchIndex = nextPtr[0]; |
359 | } } |
360 | |
361 | *smallerPtr = *largerPtr = 0; |
362 | |
363 | assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ |
364 | if (dictMode == ZSTD_dictMatchState && nbCompares) { |
365 | bestLength = ZSTD_DUBT_findBetterDictMatch( |
366 | ms, ip, iend, |
367 | offBasePtr, bestLength, nbCompares, |
368 | mls, dictMode); |
369 | } |
370 | |
371 | assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */ |
372 | ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ |
373 | if (bestLength >= MINMATCH) { |
374 | U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex; |
375 | DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)" , |
376 | curr, (U32)bestLength, (U32)*offBasePtr, mIndex); |
377 | } |
378 | return bestLength; |
379 | } |
380 | } |
381 | |
382 | |
383 | /** ZSTD_BtFindBestMatch() : Tree updater, providing best match */ |
384 | FORCE_INLINE_TEMPLATE size_t |
385 | ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms, |
386 | const BYTE* const ip, const BYTE* const iLimit, |
387 | size_t* offBasePtr, |
388 | const U32 mls /* template */, |
389 | const ZSTD_dictMode_e dictMode) |
390 | { |
391 | DEBUGLOG(7, "ZSTD_BtFindBestMatch" ); |
392 | if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ |
393 | ZSTD_updateDUBT(ms, ip, iLimit, mls); |
394 | return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode); |
395 | } |
396 | |
397 | /*********************************** |
398 | * Dedicated dict search |
399 | ***********************************/ |
400 | |
401 | void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip) |
402 | { |
403 | const BYTE* const base = ms->window.base; |
404 | U32 const target = (U32)(ip - base); |
405 | U32* const hashTable = ms->hashTable; |
406 | U32* const chainTable = ms->chainTable; |
407 | U32 const chainSize = 1 << ms->cParams.chainLog; |
408 | U32 idx = ms->nextToUpdate; |
409 | U32 const minChain = chainSize < target - idx ? target - chainSize : idx; |
410 | U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG; |
411 | U32 const cacheSize = bucketSize - 1; |
412 | U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize; |
413 | U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts; |
414 | |
415 | /* We know the hashtable is oversized by a factor of `bucketSize`. |
416 | * We are going to temporarily pretend `bucketSize == 1`, keeping only a |
417 | * single entry. We will use the rest of the space to construct a temporary |
418 | * chaintable. |
419 | */ |
420 | U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; |
421 | U32* const tmpHashTable = hashTable; |
422 | U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog); |
423 | U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog; |
424 | U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx; |
425 | U32 hashIdx; |
426 | |
427 | assert(ms->cParams.chainLog <= 24); |
428 | assert(ms->cParams.hashLog > ms->cParams.chainLog); |
429 | assert(idx != 0); |
430 | assert(tmpMinChain <= minChain); |
431 | |
432 | /* fill conventional hash table and conventional chain table */ |
433 | for ( ; idx < target; idx++) { |
434 | U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch); |
435 | if (idx >= tmpMinChain) { |
436 | tmpChainTable[idx - tmpMinChain] = hashTable[h]; |
437 | } |
438 | tmpHashTable[h] = idx; |
439 | } |
440 | |
441 | /* sort chains into ddss chain table */ |
442 | { |
443 | U32 chainPos = 0; |
444 | for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) { |
445 | U32 count; |
446 | U32 countBeyondMinChain = 0; |
447 | U32 i = tmpHashTable[hashIdx]; |
448 | for (count = 0; i >= tmpMinChain && count < cacheSize; count++) { |
449 | /* skip through the chain to the first position that won't be |
450 | * in the hash cache bucket */ |
451 | if (i < minChain) { |
452 | countBeyondMinChain++; |
453 | } |
454 | i = tmpChainTable[i - tmpMinChain]; |
455 | } |
456 | if (count == cacheSize) { |
457 | for (count = 0; count < chainLimit;) { |
458 | if (i < minChain) { |
459 | if (!i || ++countBeyondMinChain > cacheSize) { |
460 | /* only allow pulling `cacheSize` number of entries |
461 | * into the cache or chainTable beyond `minChain`, |
462 | * to replace the entries pulled out of the |
463 | * chainTable into the cache. This lets us reach |
464 | * back further without increasing the total number |
465 | * of entries in the chainTable, guaranteeing the |
466 | * DDSS chain table will fit into the space |
467 | * allocated for the regular one. */ |
468 | break; |
469 | } |
470 | } |
471 | chainTable[chainPos++] = i; |
472 | count++; |
473 | if (i < tmpMinChain) { |
474 | break; |
475 | } |
476 | i = tmpChainTable[i - tmpMinChain]; |
477 | } |
478 | } else { |
479 | count = 0; |
480 | } |
481 | if (count) { |
482 | tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count; |
483 | } else { |
484 | tmpHashTable[hashIdx] = 0; |
485 | } |
486 | } |
487 | assert(chainPos <= chainSize); /* I believe this is guaranteed... */ |
488 | } |
489 | |
490 | /* move chain pointers into the last entry of each hash bucket */ |
491 | for (hashIdx = (1 << hashLog); hashIdx; ) { |
492 | U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG; |
493 | U32 const chainPackedPointer = tmpHashTable[hashIdx]; |
494 | U32 i; |
495 | for (i = 0; i < cacheSize; i++) { |
496 | hashTable[bucketIdx + i] = 0; |
497 | } |
498 | hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer; |
499 | } |
500 | |
501 | /* fill the buckets of the hash table */ |
502 | for (idx = ms->nextToUpdate; idx < target; idx++) { |
503 | U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch) |
504 | << ZSTD_LAZY_DDSS_BUCKET_LOG; |
505 | U32 i; |
506 | /* Shift hash cache down 1. */ |
507 | for (i = cacheSize - 1; i; i--) |
508 | hashTable[h + i] = hashTable[h + i - 1]; |
509 | hashTable[h] = idx; |
510 | } |
511 | |
512 | ms->nextToUpdate = target; |
513 | } |
514 | |
515 | /* Returns the longest match length found in the dedicated dict search structure. |
516 | * If none are longer than the argument ml, then ml will be returned. |
517 | */ |
518 | FORCE_INLINE_TEMPLATE |
519 | size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts, |
520 | const ZSTD_matchState_t* const dms, |
521 | const BYTE* const ip, const BYTE* const iLimit, |
522 | const BYTE* const prefixStart, const U32 curr, |
523 | const U32 dictLimit, const size_t ddsIdx) { |
524 | const U32 ddsLowestIndex = dms->window.dictLimit; |
525 | const BYTE* const ddsBase = dms->window.base; |
526 | const BYTE* const ddsEnd = dms->window.nextSrc; |
527 | const U32 ddsSize = (U32)(ddsEnd - ddsBase); |
528 | const U32 ddsIndexDelta = dictLimit - ddsSize; |
529 | const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG); |
530 | const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1; |
531 | U32 ddsAttempt; |
532 | U32 matchIndex; |
533 | |
534 | for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) { |
535 | PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]); |
536 | } |
537 | |
538 | { |
539 | U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; |
540 | U32 const chainIndex = chainPackedPointer >> 8; |
541 | |
542 | PREFETCH_L1(&dms->chainTable[chainIndex]); |
543 | } |
544 | |
545 | for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) { |
546 | size_t currentMl=0; |
547 | const BYTE* match; |
548 | matchIndex = dms->hashTable[ddsIdx + ddsAttempt]; |
549 | match = ddsBase + matchIndex; |
550 | |
551 | if (!matchIndex) { |
552 | return ml; |
553 | } |
554 | |
555 | /* guaranteed by table construction */ |
556 | (void)ddsLowestIndex; |
557 | assert(matchIndex >= ddsLowestIndex); |
558 | assert(match+4 <= ddsEnd); |
559 | if (MEM_read32(match) == MEM_read32(ip)) { |
560 | /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
561 | currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; |
562 | } |
563 | |
564 | /* save best solution */ |
565 | if (currentMl > ml) { |
566 | ml = currentMl; |
567 | *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta)); |
568 | if (ip+currentMl == iLimit) { |
569 | /* best possible, avoids read overflow on next attempt */ |
570 | return ml; |
571 | } |
572 | } |
573 | } |
574 | |
575 | { |
576 | U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; |
577 | U32 chainIndex = chainPackedPointer >> 8; |
578 | U32 const chainLength = chainPackedPointer & 0xFF; |
579 | U32 const chainAttempts = nbAttempts - ddsAttempt; |
580 | U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts; |
581 | U32 chainAttempt; |
582 | |
583 | for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) { |
584 | PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]); |
585 | } |
586 | |
587 | for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) { |
588 | size_t currentMl=0; |
589 | const BYTE* match; |
590 | matchIndex = dms->chainTable[chainIndex]; |
591 | match = ddsBase + matchIndex; |
592 | |
593 | /* guaranteed by table construction */ |
594 | assert(matchIndex >= ddsLowestIndex); |
595 | assert(match+4 <= ddsEnd); |
596 | if (MEM_read32(match) == MEM_read32(ip)) { |
597 | /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
598 | currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; |
599 | } |
600 | |
601 | /* save best solution */ |
602 | if (currentMl > ml) { |
603 | ml = currentMl; |
604 | *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta)); |
605 | if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
606 | } |
607 | } |
608 | } |
609 | return ml; |
610 | } |
611 | |
612 | |
613 | /* ********************************* |
614 | * Hash Chain |
615 | ***********************************/ |
616 | #define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)] |
617 | |
618 | /* Update chains up to ip (excluded) |
619 | Assumption : always within prefix (i.e. not within extDict) */ |
620 | FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal( |
621 | ZSTD_matchState_t* ms, |
622 | const ZSTD_compressionParameters* const cParams, |
623 | const BYTE* ip, U32 const mls, U32 const lazySkipping) |
624 | { |
625 | U32* const hashTable = ms->hashTable; |
626 | const U32 hashLog = cParams->hashLog; |
627 | U32* const chainTable = ms->chainTable; |
628 | const U32 chainMask = (1 << cParams->chainLog) - 1; |
629 | const BYTE* const base = ms->window.base; |
630 | const U32 target = (U32)(ip - base); |
631 | U32 idx = ms->nextToUpdate; |
632 | |
633 | while(idx < target) { /* catch up */ |
634 | size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls); |
635 | NEXT_IN_CHAIN(idx, chainMask) = hashTable[h]; |
636 | hashTable[h] = idx; |
637 | idx++; |
638 | /* Stop inserting every position when in the lazy skipping mode. */ |
639 | if (lazySkipping) |
640 | break; |
641 | } |
642 | |
643 | ms->nextToUpdate = target; |
644 | return hashTable[ZSTD_hashPtr(ip, hashLog, mls)]; |
645 | } |
646 | |
647 | U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) { |
648 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
649 | return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0); |
650 | } |
651 | |
652 | /* inlining is important to hardwire a hot branch (template emulation) */ |
653 | FORCE_INLINE_TEMPLATE |
654 | size_t ZSTD_HcFindBestMatch( |
655 | ZSTD_matchState_t* ms, |
656 | const BYTE* const ip, const BYTE* const iLimit, |
657 | size_t* offsetPtr, |
658 | const U32 mls, const ZSTD_dictMode_e dictMode) |
659 | { |
660 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
661 | U32* const chainTable = ms->chainTable; |
662 | const U32 chainSize = (1 << cParams->chainLog); |
663 | const U32 chainMask = chainSize-1; |
664 | const BYTE* const base = ms->window.base; |
665 | const BYTE* const dictBase = ms->window.dictBase; |
666 | const U32 dictLimit = ms->window.dictLimit; |
667 | const BYTE* const prefixStart = base + dictLimit; |
668 | const BYTE* const dictEnd = dictBase + dictLimit; |
669 | const U32 curr = (U32)(ip-base); |
670 | const U32 maxDistance = 1U << cParams->windowLog; |
671 | const U32 lowestValid = ms->window.lowLimit; |
672 | const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; |
673 | const U32 isDictionary = (ms->loadedDictEnd != 0); |
674 | const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; |
675 | const U32 minChain = curr > chainSize ? curr - chainSize : 0; |
676 | U32 nbAttempts = 1U << cParams->searchLog; |
677 | size_t ml=4-1; |
678 | |
679 | const ZSTD_matchState_t* const dms = ms->dictMatchState; |
680 | const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch |
681 | ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0; |
682 | const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch |
683 | ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0; |
684 | |
685 | U32 matchIndex; |
686 | |
687 | if (dictMode == ZSTD_dedicatedDictSearch) { |
688 | const U32* entry = &dms->hashTable[ddsIdx]; |
689 | PREFETCH_L1(entry); |
690 | } |
691 | |
692 | /* HC4 match finder */ |
693 | matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping); |
694 | |
695 | for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) { |
696 | size_t currentMl=0; |
697 | if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { |
698 | const BYTE* const match = base + matchIndex; |
699 | assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ |
700 | /* read 4B starting from (match + ml + 1 - sizeof(U32)) */ |
701 | if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */ |
702 | currentMl = ZSTD_count(ip, match, iLimit); |
703 | } else { |
704 | const BYTE* const match = dictBase + matchIndex; |
705 | assert(match+4 <= dictEnd); |
706 | if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
707 | currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; |
708 | } |
709 | |
710 | /* save best solution */ |
711 | if (currentMl > ml) { |
712 | ml = currentMl; |
713 | *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); |
714 | if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
715 | } |
716 | |
717 | if (matchIndex <= minChain) break; |
718 | matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask); |
719 | } |
720 | |
721 | assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ |
722 | if (dictMode == ZSTD_dedicatedDictSearch) { |
723 | ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms, |
724 | ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); |
725 | } else if (dictMode == ZSTD_dictMatchState) { |
726 | const U32* const dmsChainTable = dms->chainTable; |
727 | const U32 dmsChainSize = (1 << dms->cParams.chainLog); |
728 | const U32 dmsChainMask = dmsChainSize - 1; |
729 | const U32 dmsLowestIndex = dms->window.dictLimit; |
730 | const BYTE* const dmsBase = dms->window.base; |
731 | const BYTE* const dmsEnd = dms->window.nextSrc; |
732 | const U32 dmsSize = (U32)(dmsEnd - dmsBase); |
733 | const U32 dmsIndexDelta = dictLimit - dmsSize; |
734 | const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0; |
735 | |
736 | matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)]; |
737 | |
738 | for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) { |
739 | size_t currentMl=0; |
740 | const BYTE* const match = dmsBase + matchIndex; |
741 | assert(match+4 <= dmsEnd); |
742 | if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
743 | currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; |
744 | |
745 | /* save best solution */ |
746 | if (currentMl > ml) { |
747 | ml = currentMl; |
748 | assert(curr > matchIndex + dmsIndexDelta); |
749 | *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta)); |
750 | if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
751 | } |
752 | |
753 | if (matchIndex <= dmsMinChain) break; |
754 | |
755 | matchIndex = dmsChainTable[matchIndex & dmsChainMask]; |
756 | } |
757 | } |
758 | |
759 | return ml; |
760 | } |
761 | |
762 | /* ********************************* |
763 | * (SIMD) Row-based matchfinder |
764 | ***********************************/ |
765 | /* Constants for row-based hash */ |
766 | #define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1) |
767 | #define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */ |
768 | |
769 | #define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1) |
770 | |
771 | typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */ |
772 | |
773 | /* ZSTD_VecMask_next(): |
774 | * Starting from the LSB, returns the idx of the next non-zero bit. |
775 | * Basically counting the nb of trailing zeroes. |
776 | */ |
777 | MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) { |
778 | return ZSTD_countTrailingZeros64(val); |
779 | } |
780 | |
781 | /* ZSTD_row_nextIndex(): |
782 | * Returns the next index to insert at within a tagTable row, and updates the "head" |
783 | * value to reflect the update. Essentially cycles backwards from [1, {entries per row}) |
784 | */ |
785 | FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) { |
786 | U32 next = (*tagRow-1) & rowMask; |
787 | next += (next == 0) ? rowMask : 0; /* skip first position */ |
788 | *tagRow = (BYTE)next; |
789 | return next; |
790 | } |
791 | |
792 | /* ZSTD_isAligned(): |
793 | * Checks that a pointer is aligned to "align" bytes which must be a power of 2. |
794 | */ |
795 | MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) { |
796 | assert((align & (align - 1)) == 0); |
797 | return (((size_t)ptr) & (align - 1)) == 0; |
798 | } |
799 | |
800 | /* ZSTD_row_prefetch(): |
801 | * Performs prefetching for the hashTable and tagTable at a given row. |
802 | */ |
803 | FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) { |
804 | PREFETCH_L1(hashTable + relRow); |
805 | if (rowLog >= 5) { |
806 | PREFETCH_L1(hashTable + relRow + 16); |
807 | /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */ |
808 | } |
809 | PREFETCH_L1(tagTable + relRow); |
810 | if (rowLog == 6) { |
811 | PREFETCH_L1(tagTable + relRow + 32); |
812 | } |
813 | assert(rowLog == 4 || rowLog == 5 || rowLog == 6); |
814 | assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */ |
815 | assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */ |
816 | } |
817 | |
818 | /* ZSTD_row_fillHashCache(): |
819 | * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries, |
820 | * but not beyond iLimit. |
821 | */ |
822 | FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base, |
823 | U32 const rowLog, U32 const mls, |
824 | U32 idx, const BYTE* const iLimit) |
825 | { |
826 | U32 const* const hashTable = ms->hashTable; |
827 | BYTE const* const tagTable = ms->tagTable; |
828 | U32 const hashLog = ms->rowHashLog; |
829 | U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1); |
830 | U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch); |
831 | |
832 | for (; idx < lim; ++idx) { |
833 | U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt); |
834 | U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
835 | ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); |
836 | ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash; |
837 | } |
838 | |
839 | DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]" , ms->hashCache[0], ms->hashCache[1], |
840 | ms->hashCache[2], ms->hashCache[3], ms->hashCache[4], |
841 | ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]); |
842 | } |
843 | |
844 | /* ZSTD_row_nextCachedHash(): |
845 | * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at |
846 | * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable. |
847 | */ |
848 | FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable, |
849 | BYTE const* tagTable, BYTE const* base, |
850 | U32 idx, U32 const hashLog, |
851 | U32 const rowLog, U32 const mls, |
852 | U64 const hashSalt) |
853 | { |
854 | U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt); |
855 | U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
856 | ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); |
857 | { U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK]; |
858 | cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash; |
859 | return hash; |
860 | } |
861 | } |
862 | |
863 | /* ZSTD_row_update_internalImpl(): |
864 | * Updates the hash table with positions starting from updateStartIdx until updateEndIdx. |
865 | */ |
866 | FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms, |
867 | U32 updateStartIdx, U32 const updateEndIdx, |
868 | U32 const mls, U32 const rowLog, |
869 | U32 const rowMask, U32 const useCache) |
870 | { |
871 | U32* const hashTable = ms->hashTable; |
872 | BYTE* const tagTable = ms->tagTable; |
873 | U32 const hashLog = ms->rowHashLog; |
874 | const BYTE* const base = ms->window.base; |
875 | |
876 | DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u" , updateStartIdx, updateEndIdx); |
877 | for (; updateStartIdx < updateEndIdx; ++updateStartIdx) { |
878 | U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt) |
879 | : (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt); |
880 | U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
881 | U32* const row = hashTable + relRow; |
882 | BYTE* tagRow = tagTable + relRow; |
883 | U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); |
884 | |
885 | assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt)); |
886 | tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK; |
887 | row[pos] = updateStartIdx; |
888 | } |
889 | } |
890 | |
891 | /* ZSTD_row_update_internal(): |
892 | * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate. |
893 | * Skips sections of long matches as is necessary. |
894 | */ |
895 | FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip, |
896 | U32 const mls, U32 const rowLog, |
897 | U32 const rowMask, U32 const useCache) |
898 | { |
899 | U32 idx = ms->nextToUpdate; |
900 | const BYTE* const base = ms->window.base; |
901 | const U32 target = (U32)(ip - base); |
902 | const U32 kSkipThreshold = 384; |
903 | const U32 kMaxMatchStartPositionsToUpdate = 96; |
904 | const U32 kMaxMatchEndPositionsToUpdate = 32; |
905 | |
906 | if (useCache) { |
907 | /* Only skip positions when using hash cache, i.e. |
908 | * if we are loading a dict, don't skip anything. |
909 | * If we decide to skip, then we only update a set number |
910 | * of positions at the beginning and end of the match. |
911 | */ |
912 | if (UNLIKELY(target - idx > kSkipThreshold)) { |
913 | U32 const bound = idx + kMaxMatchStartPositionsToUpdate; |
914 | ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache); |
915 | idx = target - kMaxMatchEndPositionsToUpdate; |
916 | ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1); |
917 | } |
918 | } |
919 | assert(target >= idx); |
920 | ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache); |
921 | ms->nextToUpdate = target; |
922 | } |
923 | |
924 | /* ZSTD_row_update(): |
925 | * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary |
926 | * processing. |
927 | */ |
928 | void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) { |
929 | const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); |
930 | const U32 rowMask = (1u << rowLog) - 1; |
931 | const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */); |
932 | |
933 | DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u" , rowLog); |
934 | ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */); |
935 | } |
936 | |
937 | /* Returns the mask width of bits group of which will be set to 1. Given not all |
938 | * architectures have easy movemask instruction, this helps to iterate over |
939 | * groups of bits easier and faster. |
940 | */ |
941 | FORCE_INLINE_TEMPLATE U32 |
942 | ZSTD_row_matchMaskGroupWidth(const U32 rowEntries) |
943 | { |
944 | assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64); |
945 | assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES); |
946 | (void)rowEntries; |
947 | #if defined(ZSTD_ARCH_ARM_NEON) |
948 | /* NEON path only works for little endian */ |
949 | if (!MEM_isLittleEndian()) { |
950 | return 1; |
951 | } |
952 | if (rowEntries == 16) { |
953 | return 4; |
954 | } |
955 | if (rowEntries == 32) { |
956 | return 2; |
957 | } |
958 | if (rowEntries == 64) { |
959 | return 1; |
960 | } |
961 | #endif |
962 | return 1; |
963 | } |
964 | |
965 | #if defined(ZSTD_ARCH_X86_SSE2) |
966 | FORCE_INLINE_TEMPLATE ZSTD_VecMask |
967 | ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head) |
968 | { |
969 | const __m128i comparisonMask = _mm_set1_epi8((char)tag); |
970 | int matches[4] = {0}; |
971 | int i; |
972 | assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4); |
973 | for (i=0; i<nbChunks; i++) { |
974 | const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i)); |
975 | const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask); |
976 | matches[i] = _mm_movemask_epi8(equalMask); |
977 | } |
978 | if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head); |
979 | if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head); |
980 | assert(nbChunks == 4); |
981 | return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head); |
982 | } |
983 | #endif |
984 | |
985 | #if defined(ZSTD_ARCH_ARM_NEON) |
986 | FORCE_INLINE_TEMPLATE ZSTD_VecMask |
987 | ZSTD_row_getNEONMask(const U32 rowEntries, const BYTE* const src, const BYTE tag, const U32 headGrouped) |
988 | { |
989 | assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64); |
990 | if (rowEntries == 16) { |
991 | /* vshrn_n_u16 shifts by 4 every u16 and narrows to 8 lower bits. |
992 | * After that groups of 4 bits represent the equalMask. We lower |
993 | * all bits except the highest in these groups by doing AND with |
994 | * 0x88 = 0b10001000. |
995 | */ |
996 | const uint8x16_t chunk = vld1q_u8(src); |
997 | const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag))); |
998 | const uint8x8_t res = vshrn_n_u16(equalMask, 4); |
999 | const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0); |
1000 | return ZSTD_rotateRight_U64(matches, headGrouped) & 0x8888888888888888ull; |
1001 | } else if (rowEntries == 32) { |
1002 | /* Same idea as with rowEntries == 16 but doing AND with |
1003 | * 0x55 = 0b01010101. |
1004 | */ |
1005 | const uint16x8x2_t chunk = vld2q_u16((const uint16_t*)(const void*)src); |
1006 | const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]); |
1007 | const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]); |
1008 | const uint8x16_t dup = vdupq_n_u8(tag); |
1009 | const uint8x8_t t0 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk0, dup)), 6); |
1010 | const uint8x8_t t1 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk1, dup)), 6); |
1011 | const uint8x8_t res = vsli_n_u8(t0, t1, 4); |
1012 | const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0) ; |
1013 | return ZSTD_rotateRight_U64(matches, headGrouped) & 0x5555555555555555ull; |
1014 | } else { /* rowEntries == 64 */ |
1015 | const uint8x16x4_t chunk = vld4q_u8(src); |
1016 | const uint8x16_t dup = vdupq_n_u8(tag); |
1017 | const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup); |
1018 | const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup); |
1019 | const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup); |
1020 | const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup); |
1021 | |
1022 | const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1); |
1023 | const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1); |
1024 | const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2); |
1025 | const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4); |
1026 | const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4); |
1027 | const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0); |
1028 | return ZSTD_rotateRight_U64(matches, headGrouped); |
1029 | } |
1030 | } |
1031 | #endif |
1032 | |
1033 | /* Returns a ZSTD_VecMask (U64) that has the nth group (determined by |
1034 | * ZSTD_row_matchMaskGroupWidth) of bits set to 1 if the newly-computed "tag" |
1035 | * matches the hash at the nth position in a row of the tagTable. |
1036 | * Each row is a circular buffer beginning at the value of "headGrouped". So we |
1037 | * must rotate the "matches" bitfield to match up with the actual layout of the |
1038 | * entries within the hashTable */ |
1039 | FORCE_INLINE_TEMPLATE ZSTD_VecMask |
1040 | ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 headGrouped, const U32 rowEntries) |
1041 | { |
1042 | const BYTE* const src = tagRow; |
1043 | assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64); |
1044 | assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES); |
1045 | assert(ZSTD_row_matchMaskGroupWidth(rowEntries) * rowEntries <= sizeof(ZSTD_VecMask) * 8); |
1046 | |
1047 | #if defined(ZSTD_ARCH_X86_SSE2) |
1048 | |
1049 | return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, headGrouped); |
1050 | |
1051 | #else /* SW or NEON-LE */ |
1052 | |
1053 | # if defined(ZSTD_ARCH_ARM_NEON) |
1054 | /* This NEON path only works for little endian - otherwise use SWAR below */ |
1055 | if (MEM_isLittleEndian()) { |
1056 | return ZSTD_row_getNEONMask(rowEntries, src, tag, headGrouped); |
1057 | } |
1058 | # endif /* ZSTD_ARCH_ARM_NEON */ |
1059 | /* SWAR */ |
1060 | { const int chunkSize = sizeof(size_t); |
1061 | const size_t shiftAmount = ((chunkSize * 8) - chunkSize); |
1062 | const size_t xFF = ~((size_t)0); |
1063 | const size_t x01 = xFF / 0xFF; |
1064 | const size_t x80 = x01 << 7; |
1065 | const size_t splatChar = tag * x01; |
1066 | ZSTD_VecMask matches = 0; |
1067 | int i = rowEntries - chunkSize; |
1068 | assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8)); |
1069 | if (MEM_isLittleEndian()) { /* runtime check so have two loops */ |
1070 | const size_t extractMagic = (xFF / 0x7F) >> chunkSize; |
1071 | do { |
1072 | size_t chunk = MEM_readST(&src[i]); |
1073 | chunk ^= splatChar; |
1074 | chunk = (((chunk | x80) - x01) | chunk) & x80; |
1075 | matches <<= chunkSize; |
1076 | matches |= (chunk * extractMagic) >> shiftAmount; |
1077 | i -= chunkSize; |
1078 | } while (i >= 0); |
1079 | } else { /* big endian: reverse bits during extraction */ |
1080 | const size_t msb = xFF ^ (xFF >> 1); |
1081 | const size_t extractMagic = (msb / 0x1FF) | msb; |
1082 | do { |
1083 | size_t chunk = MEM_readST(&src[i]); |
1084 | chunk ^= splatChar; |
1085 | chunk = (((chunk | x80) - x01) | chunk) & x80; |
1086 | matches <<= chunkSize; |
1087 | matches |= ((chunk >> 7) * extractMagic) >> shiftAmount; |
1088 | i -= chunkSize; |
1089 | } while (i >= 0); |
1090 | } |
1091 | matches = ~matches; |
1092 | if (rowEntries == 16) { |
1093 | return ZSTD_rotateRight_U16((U16)matches, headGrouped); |
1094 | } else if (rowEntries == 32) { |
1095 | return ZSTD_rotateRight_U32((U32)matches, headGrouped); |
1096 | } else { |
1097 | return ZSTD_rotateRight_U64((U64)matches, headGrouped); |
1098 | } |
1099 | } |
1100 | #endif |
1101 | } |
1102 | |
1103 | /* The high-level approach of the SIMD row based match finder is as follows: |
1104 | * - Figure out where to insert the new entry: |
1105 | * - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag" |
1106 | * - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines |
1107 | * which row to insert into. |
1108 | * - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can |
1109 | * be considered as a circular buffer with a "head" index that resides in the tagTable. |
1110 | * - Also insert the "tag" into the equivalent row and position in the tagTable. |
1111 | * - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry. |
1112 | * The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively, |
1113 | * for alignment/performance reasons, leaving some bytes unused. |
1114 | * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and |
1115 | * generate a bitfield that we can cycle through to check the collisions in the hash table. |
1116 | * - Pick the longest match. |
1117 | */ |
1118 | FORCE_INLINE_TEMPLATE |
1119 | size_t ZSTD_RowFindBestMatch( |
1120 | ZSTD_matchState_t* ms, |
1121 | const BYTE* const ip, const BYTE* const iLimit, |
1122 | size_t* offsetPtr, |
1123 | const U32 mls, const ZSTD_dictMode_e dictMode, |
1124 | const U32 rowLog) |
1125 | { |
1126 | U32* const hashTable = ms->hashTable; |
1127 | BYTE* const tagTable = ms->tagTable; |
1128 | U32* const hashCache = ms->hashCache; |
1129 | const U32 hashLog = ms->rowHashLog; |
1130 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
1131 | const BYTE* const base = ms->window.base; |
1132 | const BYTE* const dictBase = ms->window.dictBase; |
1133 | const U32 dictLimit = ms->window.dictLimit; |
1134 | const BYTE* const prefixStart = base + dictLimit; |
1135 | const BYTE* const dictEnd = dictBase + dictLimit; |
1136 | const U32 curr = (U32)(ip-base); |
1137 | const U32 maxDistance = 1U << cParams->windowLog; |
1138 | const U32 lowestValid = ms->window.lowLimit; |
1139 | const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; |
1140 | const U32 isDictionary = (ms->loadedDictEnd != 0); |
1141 | const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; |
1142 | const U32 rowEntries = (1U << rowLog); |
1143 | const U32 rowMask = rowEntries - 1; |
1144 | const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */ |
1145 | const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries); |
1146 | const U64 hashSalt = ms->hashSalt; |
1147 | U32 nbAttempts = 1U << cappedSearchLog; |
1148 | size_t ml=4-1; |
1149 | U32 hash; |
1150 | |
1151 | /* DMS/DDS variables that may be referenced laster */ |
1152 | const ZSTD_matchState_t* const dms = ms->dictMatchState; |
1153 | |
1154 | /* Initialize the following variables to satisfy static analyzer */ |
1155 | size_t ddsIdx = 0; |
1156 | U32 = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */ |
1157 | U32 dmsTag = 0; |
1158 | U32* dmsRow = NULL; |
1159 | BYTE* dmsTagRow = NULL; |
1160 | |
1161 | if (dictMode == ZSTD_dedicatedDictSearch) { |
1162 | const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; |
1163 | { /* Prefetch DDS hashtable entry */ |
1164 | ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG; |
1165 | PREFETCH_L1(&dms->hashTable[ddsIdx]); |
1166 | } |
1167 | ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0; |
1168 | } |
1169 | |
1170 | if (dictMode == ZSTD_dictMatchState) { |
1171 | /* Prefetch DMS rows */ |
1172 | U32* const dmsHashTable = dms->hashTable; |
1173 | BYTE* const dmsTagTable = dms->tagTable; |
1174 | U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls); |
1175 | U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
1176 | dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK; |
1177 | dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow); |
1178 | dmsRow = dmsHashTable + dmsRelRow; |
1179 | ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog); |
1180 | } |
1181 | |
1182 | /* Update the hashTable and tagTable up to (but not including) ip */ |
1183 | if (!ms->lazySkipping) { |
1184 | ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */); |
1185 | hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt); |
1186 | } else { |
1187 | /* Stop inserting every position when in the lazy skipping mode. |
1188 | * The hash cache is also not kept up to date in this mode. |
1189 | */ |
1190 | hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt); |
1191 | ms->nextToUpdate = curr; |
1192 | } |
1193 | ms->hashSaltEntropy += hash; /* collect salt entropy */ |
1194 | |
1195 | { /* Get the hash for ip, compute the appropriate row */ |
1196 | U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
1197 | U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK; |
1198 | U32* const row = hashTable + relRow; |
1199 | BYTE* tagRow = (BYTE*)(tagTable + relRow); |
1200 | U32 const headGrouped = (*tagRow & rowMask) * groupWidth; |
1201 | U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; |
1202 | size_t numMatches = 0; |
1203 | size_t currMatch = 0; |
1204 | ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries); |
1205 | |
1206 | /* Cycle through the matches and prefetch */ |
1207 | for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) { |
1208 | U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask; |
1209 | U32 const matchIndex = row[matchPos]; |
1210 | if(matchPos == 0) continue; |
1211 | assert(numMatches < rowEntries); |
1212 | if (matchIndex < lowLimit) |
1213 | break; |
1214 | if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { |
1215 | PREFETCH_L1(base + matchIndex); |
1216 | } else { |
1217 | PREFETCH_L1(dictBase + matchIndex); |
1218 | } |
1219 | matchBuffer[numMatches++] = matchIndex; |
1220 | --nbAttempts; |
1221 | } |
1222 | |
1223 | /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop |
1224 | in ZSTD_row_update_internal() at the next search. */ |
1225 | { |
1226 | U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); |
1227 | tagRow[pos] = (BYTE)tag; |
1228 | row[pos] = ms->nextToUpdate++; |
1229 | } |
1230 | |
1231 | /* Return the longest match */ |
1232 | for (; currMatch < numMatches; ++currMatch) { |
1233 | U32 const matchIndex = matchBuffer[currMatch]; |
1234 | size_t currentMl=0; |
1235 | assert(matchIndex < curr); |
1236 | assert(matchIndex >= lowLimit); |
1237 | |
1238 | if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { |
1239 | const BYTE* const match = base + matchIndex; |
1240 | assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ |
1241 | /* read 4B starting from (match + ml + 1 - sizeof(U32)) */ |
1242 | if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */ |
1243 | currentMl = ZSTD_count(ip, match, iLimit); |
1244 | } else { |
1245 | const BYTE* const match = dictBase + matchIndex; |
1246 | assert(match+4 <= dictEnd); |
1247 | if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
1248 | currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; |
1249 | } |
1250 | |
1251 | /* Save best solution */ |
1252 | if (currentMl > ml) { |
1253 | ml = currentMl; |
1254 | *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); |
1255 | if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
1256 | } |
1257 | } |
1258 | } |
1259 | |
1260 | assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ |
1261 | if (dictMode == ZSTD_dedicatedDictSearch) { |
1262 | ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms, |
1263 | ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); |
1264 | } else if (dictMode == ZSTD_dictMatchState) { |
1265 | /* TODO: Measure and potentially add prefetching to DMS */ |
1266 | const U32 dmsLowestIndex = dms->window.dictLimit; |
1267 | const BYTE* const dmsBase = dms->window.base; |
1268 | const BYTE* const dmsEnd = dms->window.nextSrc; |
1269 | const U32 dmsSize = (U32)(dmsEnd - dmsBase); |
1270 | const U32 dmsIndexDelta = dictLimit - dmsSize; |
1271 | |
1272 | { U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth; |
1273 | U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; |
1274 | size_t numMatches = 0; |
1275 | size_t currMatch = 0; |
1276 | ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries); |
1277 | |
1278 | for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) { |
1279 | U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask; |
1280 | U32 const matchIndex = dmsRow[matchPos]; |
1281 | if(matchPos == 0) continue; |
1282 | if (matchIndex < dmsLowestIndex) |
1283 | break; |
1284 | PREFETCH_L1(dmsBase + matchIndex); |
1285 | matchBuffer[numMatches++] = matchIndex; |
1286 | --nbAttempts; |
1287 | } |
1288 | |
1289 | /* Return the longest match */ |
1290 | for (; currMatch < numMatches; ++currMatch) { |
1291 | U32 const matchIndex = matchBuffer[currMatch]; |
1292 | size_t currentMl=0; |
1293 | assert(matchIndex >= dmsLowestIndex); |
1294 | assert(matchIndex < curr); |
1295 | |
1296 | { const BYTE* const match = dmsBase + matchIndex; |
1297 | assert(match+4 <= dmsEnd); |
1298 | if (MEM_read32(match) == MEM_read32(ip)) |
1299 | currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; |
1300 | } |
1301 | |
1302 | if (currentMl > ml) { |
1303 | ml = currentMl; |
1304 | assert(curr > matchIndex + dmsIndexDelta); |
1305 | *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta)); |
1306 | if (ip+currentMl == iLimit) break; |
1307 | } |
1308 | } |
1309 | } |
1310 | } |
1311 | return ml; |
1312 | } |
1313 | |
1314 | |
1315 | /** |
1316 | * Generate search functions templated on (dictMode, mls, rowLog). |
1317 | * These functions are outlined for code size & compilation time. |
1318 | * ZSTD_searchMax() dispatches to the correct implementation function. |
1319 | * |
1320 | * TODO: The start of the search function involves loading and calculating a |
1321 | * bunch of constants from the ZSTD_matchState_t. These computations could be |
1322 | * done in an initialization function, and saved somewhere in the match state. |
1323 | * Then we could pass a pointer to the saved state instead of the match state, |
1324 | * and avoid duplicate computations. |
1325 | * |
1326 | * TODO: Move the match re-winding into searchMax. This improves compression |
1327 | * ratio, and unlocks further simplifications with the next TODO. |
1328 | * |
1329 | * TODO: Try moving the repcode search into searchMax. After the re-winding |
1330 | * and repcode search are in searchMax, there is no more logic in the match |
1331 | * finder loop that requires knowledge about the dictMode. So we should be |
1332 | * able to avoid force inlining it, and we can join the extDict loop with |
1333 | * the single segment loop. It should go in searchMax instead of its own |
1334 | * function to avoid having multiple virtual function calls per search. |
1335 | */ |
1336 | |
1337 | #define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls |
1338 | #define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls |
1339 | #define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog |
1340 | |
1341 | #define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE |
1342 | |
1343 | #define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \ |
1344 | ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \ |
1345 | ZSTD_matchState_t* ms, \ |
1346 | const BYTE* ip, const BYTE* const iLimit, \ |
1347 | size_t* offBasePtr) \ |
1348 | { \ |
1349 | assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ |
1350 | return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \ |
1351 | } \ |
1352 | |
1353 | #define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \ |
1354 | ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \ |
1355 | ZSTD_matchState_t* ms, \ |
1356 | const BYTE* ip, const BYTE* const iLimit, \ |
1357 | size_t* offsetPtr) \ |
1358 | { \ |
1359 | assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ |
1360 | return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \ |
1361 | } \ |
1362 | |
1363 | #define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \ |
1364 | ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \ |
1365 | ZSTD_matchState_t* ms, \ |
1366 | const BYTE* ip, const BYTE* const iLimit, \ |
1367 | size_t* offsetPtr) \ |
1368 | { \ |
1369 | assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ |
1370 | assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \ |
1371 | return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \ |
1372 | } \ |
1373 | |
1374 | #define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \ |
1375 | X(dictMode, mls, 4) \ |
1376 | X(dictMode, mls, 5) \ |
1377 | X(dictMode, mls, 6) |
1378 | |
1379 | #define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \ |
1380 | ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \ |
1381 | ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \ |
1382 | ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6) |
1383 | |
1384 | #define ZSTD_FOR_EACH_MLS(X, dictMode) \ |
1385 | X(dictMode, 4) \ |
1386 | X(dictMode, 5) \ |
1387 | X(dictMode, 6) |
1388 | |
1389 | #define ZSTD_FOR_EACH_DICT_MODE(X, ...) \ |
1390 | X(__VA_ARGS__, noDict) \ |
1391 | X(__VA_ARGS__, extDict) \ |
1392 | X(__VA_ARGS__, dictMatchState) \ |
1393 | X(__VA_ARGS__, dedicatedDictSearch) |
1394 | |
1395 | /* Generate row search fns for each combination of (dictMode, mls, rowLog) */ |
1396 | ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN) |
1397 | /* Generate binary Tree search fns for each combination of (dictMode, mls) */ |
1398 | ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN) |
1399 | /* Generate hash chain search fns for each combination of (dictMode, mls) */ |
1400 | ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN) |
1401 | |
1402 | typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e; |
1403 | |
1404 | #define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \ |
1405 | case mls: \ |
1406 | return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); |
1407 | #define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \ |
1408 | case mls: \ |
1409 | return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); |
1410 | #define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \ |
1411 | case rowLog: \ |
1412 | return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr); |
1413 | |
1414 | #define ZSTD_SWITCH_MLS(X, dictMode) \ |
1415 | switch (mls) { \ |
1416 | ZSTD_FOR_EACH_MLS(X, dictMode) \ |
1417 | } |
1418 | |
1419 | #define ZSTD_SWITCH_ROWLOG(dictMode, mls) \ |
1420 | case mls: \ |
1421 | switch (rowLog) { \ |
1422 | ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \ |
1423 | } \ |
1424 | ZSTD_UNREACHABLE; \ |
1425 | break; |
1426 | |
1427 | #define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \ |
1428 | switch (searchMethod) { \ |
1429 | case search_hashChain: \ |
1430 | ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \ |
1431 | break; \ |
1432 | case search_binaryTree: \ |
1433 | ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \ |
1434 | break; \ |
1435 | case search_rowHash: \ |
1436 | ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \ |
1437 | break; \ |
1438 | } \ |
1439 | ZSTD_UNREACHABLE; |
1440 | |
1441 | /** |
1442 | * Searches for the longest match at @p ip. |
1443 | * Dispatches to the correct implementation function based on the |
1444 | * (searchMethod, dictMode, mls, rowLog). We use switch statements |
1445 | * here instead of using an indirect function call through a function |
1446 | * pointer because after Spectre and Meltdown mitigations, indirect |
1447 | * function calls can be very costly, especially in the kernel. |
1448 | * |
1449 | * NOTE: dictMode and searchMethod should be templated, so those switch |
1450 | * statements should be optimized out. Only the mls & rowLog switches |
1451 | * should be left. |
1452 | * |
1453 | * @param ms The match state. |
1454 | * @param ip The position to search at. |
1455 | * @param iend The end of the input data. |
1456 | * @param[out] offsetPtr Stores the match offset into this pointer. |
1457 | * @param mls The minimum search length, in the range [4, 6]. |
1458 | * @param rowLog The row log (if applicable), in the range [4, 6]. |
1459 | * @param searchMethod The search method to use (templated). |
1460 | * @param dictMode The dictMode (templated). |
1461 | * |
1462 | * @returns The length of the longest match found, or < mls if no match is found. |
1463 | * If a match is found its offset is stored in @p offsetPtr. |
1464 | */ |
1465 | FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax( |
1466 | ZSTD_matchState_t* ms, |
1467 | const BYTE* ip, |
1468 | const BYTE* iend, |
1469 | size_t* offsetPtr, |
1470 | U32 const mls, |
1471 | U32 const rowLog, |
1472 | searchMethod_e const searchMethod, |
1473 | ZSTD_dictMode_e const dictMode) |
1474 | { |
1475 | if (dictMode == ZSTD_noDict) { |
1476 | ZSTD_SWITCH_SEARCH_METHOD(noDict) |
1477 | } else if (dictMode == ZSTD_extDict) { |
1478 | ZSTD_SWITCH_SEARCH_METHOD(extDict) |
1479 | } else if (dictMode == ZSTD_dictMatchState) { |
1480 | ZSTD_SWITCH_SEARCH_METHOD(dictMatchState) |
1481 | } else if (dictMode == ZSTD_dedicatedDictSearch) { |
1482 | ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch) |
1483 | } |
1484 | ZSTD_UNREACHABLE; |
1485 | return 0; |
1486 | } |
1487 | |
1488 | /* ******************************* |
1489 | * Common parser - lazy strategy |
1490 | *********************************/ |
1491 | |
1492 | FORCE_INLINE_TEMPLATE size_t |
1493 | ZSTD_compressBlock_lazy_generic( |
1494 | ZSTD_matchState_t* ms, seqStore_t* seqStore, |
1495 | U32 rep[ZSTD_REP_NUM], |
1496 | const void* src, size_t srcSize, |
1497 | const searchMethod_e searchMethod, const U32 depth, |
1498 | ZSTD_dictMode_e const dictMode) |
1499 | { |
1500 | const BYTE* const istart = (const BYTE*)src; |
1501 | const BYTE* ip = istart; |
1502 | const BYTE* anchor = istart; |
1503 | const BYTE* const iend = istart + srcSize; |
1504 | const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; |
1505 | const BYTE* const base = ms->window.base; |
1506 | const U32 prefixLowestIndex = ms->window.dictLimit; |
1507 | const BYTE* const prefixLowest = base + prefixLowestIndex; |
1508 | const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); |
1509 | const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); |
1510 | |
1511 | U32 offset_1 = rep[0], offset_2 = rep[1]; |
1512 | U32 offsetSaved1 = 0, offsetSaved2 = 0; |
1513 | |
1514 | const int isDMS = dictMode == ZSTD_dictMatchState; |
1515 | const int isDDS = dictMode == ZSTD_dedicatedDictSearch; |
1516 | const int isDxS = isDMS || isDDS; |
1517 | const ZSTD_matchState_t* const dms = ms->dictMatchState; |
1518 | const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0; |
1519 | const BYTE* const dictBase = isDxS ? dms->window.base : NULL; |
1520 | const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL; |
1521 | const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL; |
1522 | const U32 dictIndexDelta = isDxS ? |
1523 | prefixLowestIndex - (U32)(dictEnd - dictBase) : |
1524 | 0; |
1525 | const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest)); |
1526 | |
1527 | DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)" , (U32)dictMode, (U32)searchMethod); |
1528 | ip += (dictAndPrefixLength == 0); |
1529 | if (dictMode == ZSTD_noDict) { |
1530 | U32 const curr = (U32)(ip - base); |
1531 | U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog); |
1532 | U32 const maxRep = curr - windowLow; |
1533 | if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0; |
1534 | if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0; |
1535 | } |
1536 | if (isDxS) { |
1537 | /* dictMatchState repCode checks don't currently handle repCode == 0 |
1538 | * disabling. */ |
1539 | assert(offset_1 <= dictAndPrefixLength); |
1540 | assert(offset_2 <= dictAndPrefixLength); |
1541 | } |
1542 | |
1543 | /* Reset the lazy skipping state */ |
1544 | ms->lazySkipping = 0; |
1545 | |
1546 | if (searchMethod == search_rowHash) { |
1547 | ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); |
1548 | } |
1549 | |
1550 | /* Match Loop */ |
1551 | #if defined(__GNUC__) && defined(__x86_64__) |
1552 | /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the |
1553 | * code alignment is perturbed. To fix the instability align the loop on 32-bytes. |
1554 | */ |
1555 | __asm__(".p2align 5" ); |
1556 | #endif |
1557 | while (ip < ilimit) { |
1558 | size_t matchLength=0; |
1559 | size_t offBase = REPCODE1_TO_OFFBASE; |
1560 | const BYTE* start=ip+1; |
1561 | DEBUGLOG(7, "search baseline (depth 0)" ); |
1562 | |
1563 | /* check repCode */ |
1564 | if (isDxS) { |
1565 | const U32 repIndex = (U32)(ip - base) + 1 - offset_1; |
1566 | const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch) |
1567 | && repIndex < prefixLowestIndex) ? |
1568 | dictBase + (repIndex - dictIndexDelta) : |
1569 | base + repIndex; |
1570 | if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) |
1571 | && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { |
1572 | const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; |
1573 | matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; |
1574 | if (depth==0) goto _storeSequence; |
1575 | } |
1576 | } |
1577 | if ( dictMode == ZSTD_noDict |
1578 | && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) { |
1579 | matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; |
1580 | if (depth==0) goto _storeSequence; |
1581 | } |
1582 | |
1583 | /* first search (depth 0) */ |
1584 | { size_t offbaseFound = 999999999; |
1585 | size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode); |
1586 | if (ml2 > matchLength) |
1587 | matchLength = ml2, start = ip, offBase = offbaseFound; |
1588 | } |
1589 | |
1590 | if (matchLength < 4) { |
1591 | size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */; |
1592 | ip += step; |
1593 | /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time. |
1594 | * In this mode we stop inserting every position into our tables, and only insert |
1595 | * positions that we search, which is one in step positions. |
1596 | * The exact cutoff is flexible, I've just chosen a number that is reasonably high, |
1597 | * so we minimize the compression ratio loss in "normal" scenarios. This mode gets |
1598 | * triggered once we've gone 2KB without finding any matches. |
1599 | */ |
1600 | ms->lazySkipping = step > kLazySkippingStep; |
1601 | continue; |
1602 | } |
1603 | |
1604 | /* let's try to find a better solution */ |
1605 | if (depth>=1) |
1606 | while (ip<ilimit) { |
1607 | DEBUGLOG(7, "search depth 1" ); |
1608 | ip ++; |
1609 | if ( (dictMode == ZSTD_noDict) |
1610 | && (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { |
1611 | size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; |
1612 | int const gain2 = (int)(mlRep * 3); |
1613 | int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); |
1614 | if ((mlRep >= 4) && (gain2 > gain1)) |
1615 | matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; |
1616 | } |
1617 | if (isDxS) { |
1618 | const U32 repIndex = (U32)(ip - base) - offset_1; |
1619 | const BYTE* repMatch = repIndex < prefixLowestIndex ? |
1620 | dictBase + (repIndex - dictIndexDelta) : |
1621 | base + repIndex; |
1622 | if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) |
1623 | && (MEM_read32(repMatch) == MEM_read32(ip)) ) { |
1624 | const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; |
1625 | size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; |
1626 | int const gain2 = (int)(mlRep * 3); |
1627 | int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); |
1628 | if ((mlRep >= 4) && (gain2 > gain1)) |
1629 | matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; |
1630 | } |
1631 | } |
1632 | { size_t ofbCandidate=999999999; |
1633 | size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode); |
1634 | int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ |
1635 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4); |
1636 | if ((ml2 >= 4) && (gain2 > gain1)) { |
1637 | matchLength = ml2, offBase = ofbCandidate, start = ip; |
1638 | continue; /* search a better one */ |
1639 | } } |
1640 | |
1641 | /* let's find an even better one */ |
1642 | if ((depth==2) && (ip<ilimit)) { |
1643 | DEBUGLOG(7, "search depth 2" ); |
1644 | ip ++; |
1645 | if ( (dictMode == ZSTD_noDict) |
1646 | && (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { |
1647 | size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; |
1648 | int const gain2 = (int)(mlRep * 4); |
1649 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); |
1650 | if ((mlRep >= 4) && (gain2 > gain1)) |
1651 | matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; |
1652 | } |
1653 | if (isDxS) { |
1654 | const U32 repIndex = (U32)(ip - base) - offset_1; |
1655 | const BYTE* repMatch = repIndex < prefixLowestIndex ? |
1656 | dictBase + (repIndex - dictIndexDelta) : |
1657 | base + repIndex; |
1658 | if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) |
1659 | && (MEM_read32(repMatch) == MEM_read32(ip)) ) { |
1660 | const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; |
1661 | size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; |
1662 | int const gain2 = (int)(mlRep * 4); |
1663 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); |
1664 | if ((mlRep >= 4) && (gain2 > gain1)) |
1665 | matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; |
1666 | } |
1667 | } |
1668 | { size_t ofbCandidate=999999999; |
1669 | size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode); |
1670 | int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ |
1671 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7); |
1672 | if ((ml2 >= 4) && (gain2 > gain1)) { |
1673 | matchLength = ml2, offBase = ofbCandidate, start = ip; |
1674 | continue; |
1675 | } } } |
1676 | break; /* nothing found : store previous solution */ |
1677 | } |
1678 | |
1679 | /* NOTE: |
1680 | * Pay attention that `start[-value]` can lead to strange undefined behavior |
1681 | * notably if `value` is unsigned, resulting in a large positive `-value`. |
1682 | */ |
1683 | /* catch up */ |
1684 | if (OFFBASE_IS_OFFSET(offBase)) { |
1685 | if (dictMode == ZSTD_noDict) { |
1686 | while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest)) |
1687 | && (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) ) /* only search for offset within prefix */ |
1688 | { start--; matchLength++; } |
1689 | } |
1690 | if (isDxS) { |
1691 | U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase)); |
1692 | const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex; |
1693 | const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest; |
1694 | while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ |
1695 | } |
1696 | offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase); |
1697 | } |
1698 | /* store sequence */ |
1699 | _storeSequence: |
1700 | { size_t const litLength = (size_t)(start - anchor); |
1701 | ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength); |
1702 | anchor = ip = start + matchLength; |
1703 | } |
1704 | if (ms->lazySkipping) { |
1705 | /* We've found a match, disable lazy skipping mode, and refill the hash cache. */ |
1706 | if (searchMethod == search_rowHash) { |
1707 | ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); |
1708 | } |
1709 | ms->lazySkipping = 0; |
1710 | } |
1711 | |
1712 | /* check immediate repcode */ |
1713 | if (isDxS) { |
1714 | while (ip <= ilimit) { |
1715 | U32 const current2 = (U32)(ip-base); |
1716 | U32 const repIndex = current2 - offset_2; |
1717 | const BYTE* repMatch = repIndex < prefixLowestIndex ? |
1718 | dictBase - dictIndexDelta + repIndex : |
1719 | base + repIndex; |
1720 | if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */) |
1721 | && (MEM_read32(repMatch) == MEM_read32(ip)) ) { |
1722 | const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend; |
1723 | matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4; |
1724 | offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset_2 <=> offset_1 */ |
1725 | ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); |
1726 | ip += matchLength; |
1727 | anchor = ip; |
1728 | continue; |
1729 | } |
1730 | break; |
1731 | } |
1732 | } |
1733 | |
1734 | if (dictMode == ZSTD_noDict) { |
1735 | while ( ((ip <= ilimit) & (offset_2>0)) |
1736 | && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) { |
1737 | /* store sequence */ |
1738 | matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; |
1739 | offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */ |
1740 | ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); |
1741 | ip += matchLength; |
1742 | anchor = ip; |
1743 | continue; /* faster when present ... (?) */ |
1744 | } } } |
1745 | |
1746 | /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), |
1747 | * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ |
1748 | offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; |
1749 | |
1750 | /* save reps for next block */ |
1751 | rep[0] = offset_1 ? offset_1 : offsetSaved1; |
1752 | rep[1] = offset_2 ? offset_2 : offsetSaved2; |
1753 | |
1754 | /* Return the last literals size */ |
1755 | return (size_t)(iend - anchor); |
1756 | } |
1757 | |
1758 | |
1759 | size_t ZSTD_compressBlock_btlazy2( |
1760 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1761 | void const* src, size_t srcSize) |
1762 | { |
1763 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict); |
1764 | } |
1765 | |
1766 | size_t ZSTD_compressBlock_lazy2( |
1767 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1768 | void const* src, size_t srcSize) |
1769 | { |
1770 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict); |
1771 | } |
1772 | |
1773 | size_t ZSTD_compressBlock_lazy( |
1774 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1775 | void const* src, size_t srcSize) |
1776 | { |
1777 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict); |
1778 | } |
1779 | |
1780 | size_t ZSTD_compressBlock_greedy( |
1781 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1782 | void const* src, size_t srcSize) |
1783 | { |
1784 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict); |
1785 | } |
1786 | |
1787 | size_t ZSTD_compressBlock_btlazy2_dictMatchState( |
1788 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1789 | void const* src, size_t srcSize) |
1790 | { |
1791 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState); |
1792 | } |
1793 | |
1794 | size_t ZSTD_compressBlock_lazy2_dictMatchState( |
1795 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1796 | void const* src, size_t srcSize) |
1797 | { |
1798 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState); |
1799 | } |
1800 | |
1801 | size_t ZSTD_compressBlock_lazy_dictMatchState( |
1802 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1803 | void const* src, size_t srcSize) |
1804 | { |
1805 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState); |
1806 | } |
1807 | |
1808 | size_t ZSTD_compressBlock_greedy_dictMatchState( |
1809 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1810 | void const* src, size_t srcSize) |
1811 | { |
1812 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState); |
1813 | } |
1814 | |
1815 | |
1816 | size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch( |
1817 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1818 | void const* src, size_t srcSize) |
1819 | { |
1820 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch); |
1821 | } |
1822 | |
1823 | size_t ZSTD_compressBlock_lazy_dedicatedDictSearch( |
1824 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1825 | void const* src, size_t srcSize) |
1826 | { |
1827 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch); |
1828 | } |
1829 | |
1830 | size_t ZSTD_compressBlock_greedy_dedicatedDictSearch( |
1831 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1832 | void const* src, size_t srcSize) |
1833 | { |
1834 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch); |
1835 | } |
1836 | |
1837 | /* Row-based matchfinder */ |
1838 | size_t ZSTD_compressBlock_lazy2_row( |
1839 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1840 | void const* src, size_t srcSize) |
1841 | { |
1842 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict); |
1843 | } |
1844 | |
1845 | size_t ZSTD_compressBlock_lazy_row( |
1846 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1847 | void const* src, size_t srcSize) |
1848 | { |
1849 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict); |
1850 | } |
1851 | |
1852 | size_t ZSTD_compressBlock_greedy_row( |
1853 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1854 | void const* src, size_t srcSize) |
1855 | { |
1856 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict); |
1857 | } |
1858 | |
1859 | size_t ZSTD_compressBlock_lazy2_dictMatchState_row( |
1860 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1861 | void const* src, size_t srcSize) |
1862 | { |
1863 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState); |
1864 | } |
1865 | |
1866 | size_t ZSTD_compressBlock_lazy_dictMatchState_row( |
1867 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1868 | void const* src, size_t srcSize) |
1869 | { |
1870 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState); |
1871 | } |
1872 | |
1873 | size_t ZSTD_compressBlock_greedy_dictMatchState_row( |
1874 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1875 | void const* src, size_t srcSize) |
1876 | { |
1877 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState); |
1878 | } |
1879 | |
1880 | |
1881 | size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row( |
1882 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1883 | void const* src, size_t srcSize) |
1884 | { |
1885 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch); |
1886 | } |
1887 | |
1888 | size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row( |
1889 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1890 | void const* src, size_t srcSize) |
1891 | { |
1892 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch); |
1893 | } |
1894 | |
1895 | size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row( |
1896 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
1897 | void const* src, size_t srcSize) |
1898 | { |
1899 | return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch); |
1900 | } |
1901 | |
1902 | FORCE_INLINE_TEMPLATE |
1903 | size_t ZSTD_compressBlock_lazy_extDict_generic( |
1904 | ZSTD_matchState_t* ms, seqStore_t* seqStore, |
1905 | U32 rep[ZSTD_REP_NUM], |
1906 | const void* src, size_t srcSize, |
1907 | const searchMethod_e searchMethod, const U32 depth) |
1908 | { |
1909 | const BYTE* const istart = (const BYTE*)src; |
1910 | const BYTE* ip = istart; |
1911 | const BYTE* anchor = istart; |
1912 | const BYTE* const iend = istart + srcSize; |
1913 | const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; |
1914 | const BYTE* const base = ms->window.base; |
1915 | const U32 dictLimit = ms->window.dictLimit; |
1916 | const BYTE* const prefixStart = base + dictLimit; |
1917 | const BYTE* const dictBase = ms->window.dictBase; |
1918 | const BYTE* const dictEnd = dictBase + dictLimit; |
1919 | const BYTE* const dictStart = dictBase + ms->window.lowLimit; |
1920 | const U32 windowLog = ms->cParams.windowLog; |
1921 | const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); |
1922 | const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); |
1923 | |
1924 | U32 offset_1 = rep[0], offset_2 = rep[1]; |
1925 | |
1926 | DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)" , (U32)searchMethod); |
1927 | |
1928 | /* Reset the lazy skipping state */ |
1929 | ms->lazySkipping = 0; |
1930 | |
1931 | /* init */ |
1932 | ip += (ip == prefixStart); |
1933 | if (searchMethod == search_rowHash) { |
1934 | ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); |
1935 | } |
1936 | |
1937 | /* Match Loop */ |
1938 | #if defined(__GNUC__) && defined(__x86_64__) |
1939 | /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the |
1940 | * code alignment is perturbed. To fix the instability align the loop on 32-bytes. |
1941 | */ |
1942 | __asm__(".p2align 5" ); |
1943 | #endif |
1944 | while (ip < ilimit) { |
1945 | size_t matchLength=0; |
1946 | size_t offBase = REPCODE1_TO_OFFBASE; |
1947 | const BYTE* start=ip+1; |
1948 | U32 curr = (U32)(ip-base); |
1949 | |
1950 | /* check repCode */ |
1951 | { const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog); |
1952 | const U32 repIndex = (U32)(curr+1 - offset_1); |
1953 | const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
1954 | const BYTE* const repMatch = repBase + repIndex; |
1955 | if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */ |
1956 | & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */ |
1957 | if (MEM_read32(ip+1) == MEM_read32(repMatch)) { |
1958 | /* repcode detected we should take it */ |
1959 | const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
1960 | matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
1961 | if (depth==0) goto _storeSequence; |
1962 | } } |
1963 | |
1964 | /* first search (depth 0) */ |
1965 | { size_t ofbCandidate = 999999999; |
1966 | size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); |
1967 | if (ml2 > matchLength) |
1968 | matchLength = ml2, start = ip, offBase = ofbCandidate; |
1969 | } |
1970 | |
1971 | if (matchLength < 4) { |
1972 | size_t const step = ((size_t)(ip-anchor) >> kSearchStrength); |
1973 | ip += step + 1; /* jump faster over incompressible sections */ |
1974 | /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time. |
1975 | * In this mode we stop inserting every position into our tables, and only insert |
1976 | * positions that we search, which is one in step positions. |
1977 | * The exact cutoff is flexible, I've just chosen a number that is reasonably high, |
1978 | * so we minimize the compression ratio loss in "normal" scenarios. This mode gets |
1979 | * triggered once we've gone 2KB without finding any matches. |
1980 | */ |
1981 | ms->lazySkipping = step > kLazySkippingStep; |
1982 | continue; |
1983 | } |
1984 | |
1985 | /* let's try to find a better solution */ |
1986 | if (depth>=1) |
1987 | while (ip<ilimit) { |
1988 | ip ++; |
1989 | curr++; |
1990 | /* check repCode */ |
1991 | if (offBase) { |
1992 | const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog); |
1993 | const U32 repIndex = (U32)(curr - offset_1); |
1994 | const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
1995 | const BYTE* const repMatch = repBase + repIndex; |
1996 | if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ |
1997 | & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ |
1998 | if (MEM_read32(ip) == MEM_read32(repMatch)) { |
1999 | /* repcode detected */ |
2000 | const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
2001 | size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
2002 | int const gain2 = (int)(repLength * 3); |
2003 | int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); |
2004 | if ((repLength >= 4) && (gain2 > gain1)) |
2005 | matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip; |
2006 | } } |
2007 | |
2008 | /* search match, depth 1 */ |
2009 | { size_t ofbCandidate = 999999999; |
2010 | size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); |
2011 | int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ |
2012 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4); |
2013 | if ((ml2 >= 4) && (gain2 > gain1)) { |
2014 | matchLength = ml2, offBase = ofbCandidate, start = ip; |
2015 | continue; /* search a better one */ |
2016 | } } |
2017 | |
2018 | /* let's find an even better one */ |
2019 | if ((depth==2) && (ip<ilimit)) { |
2020 | ip ++; |
2021 | curr++; |
2022 | /* check repCode */ |
2023 | if (offBase) { |
2024 | const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog); |
2025 | const U32 repIndex = (U32)(curr - offset_1); |
2026 | const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
2027 | const BYTE* const repMatch = repBase + repIndex; |
2028 | if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ |
2029 | & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ |
2030 | if (MEM_read32(ip) == MEM_read32(repMatch)) { |
2031 | /* repcode detected */ |
2032 | const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
2033 | size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
2034 | int const gain2 = (int)(repLength * 4); |
2035 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); |
2036 | if ((repLength >= 4) && (gain2 > gain1)) |
2037 | matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip; |
2038 | } } |
2039 | |
2040 | /* search match, depth 2 */ |
2041 | { size_t ofbCandidate = 999999999; |
2042 | size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); |
2043 | int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ |
2044 | int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7); |
2045 | if ((ml2 >= 4) && (gain2 > gain1)) { |
2046 | matchLength = ml2, offBase = ofbCandidate, start = ip; |
2047 | continue; |
2048 | } } } |
2049 | break; /* nothing found : store previous solution */ |
2050 | } |
2051 | |
2052 | /* catch up */ |
2053 | if (OFFBASE_IS_OFFSET(offBase)) { |
2054 | U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase)); |
2055 | const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex; |
2056 | const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart; |
2057 | while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ |
2058 | offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase); |
2059 | } |
2060 | |
2061 | /* store sequence */ |
2062 | _storeSequence: |
2063 | { size_t const litLength = (size_t)(start - anchor); |
2064 | ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength); |
2065 | anchor = ip = start + matchLength; |
2066 | } |
2067 | if (ms->lazySkipping) { |
2068 | /* We've found a match, disable lazy skipping mode, and refill the hash cache. */ |
2069 | if (searchMethod == search_rowHash) { |
2070 | ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); |
2071 | } |
2072 | ms->lazySkipping = 0; |
2073 | } |
2074 | |
2075 | /* check immediate repcode */ |
2076 | while (ip <= ilimit) { |
2077 | const U32 repCurrent = (U32)(ip-base); |
2078 | const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog); |
2079 | const U32 repIndex = repCurrent - offset_2; |
2080 | const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
2081 | const BYTE* const repMatch = repBase + repIndex; |
2082 | if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ |
2083 | & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ |
2084 | if (MEM_read32(ip) == MEM_read32(repMatch)) { |
2085 | /* repcode detected we should take it */ |
2086 | const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
2087 | matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
2088 | offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset history */ |
2089 | ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); |
2090 | ip += matchLength; |
2091 | anchor = ip; |
2092 | continue; /* faster when present ... (?) */ |
2093 | } |
2094 | break; |
2095 | } } |
2096 | |
2097 | /* Save reps for next block */ |
2098 | rep[0] = offset_1; |
2099 | rep[1] = offset_2; |
2100 | |
2101 | /* Return the last literals size */ |
2102 | return (size_t)(iend - anchor); |
2103 | } |
2104 | |
2105 | |
2106 | size_t ZSTD_compressBlock_greedy_extDict( |
2107 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2108 | void const* src, size_t srcSize) |
2109 | { |
2110 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0); |
2111 | } |
2112 | |
2113 | size_t ZSTD_compressBlock_lazy_extDict( |
2114 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2115 | void const* src, size_t srcSize) |
2116 | |
2117 | { |
2118 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1); |
2119 | } |
2120 | |
2121 | size_t ZSTD_compressBlock_lazy2_extDict( |
2122 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2123 | void const* src, size_t srcSize) |
2124 | |
2125 | { |
2126 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2); |
2127 | } |
2128 | |
2129 | size_t ZSTD_compressBlock_btlazy2_extDict( |
2130 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2131 | void const* src, size_t srcSize) |
2132 | |
2133 | { |
2134 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2); |
2135 | } |
2136 | |
2137 | size_t ZSTD_compressBlock_greedy_extDict_row( |
2138 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2139 | void const* src, size_t srcSize) |
2140 | { |
2141 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0); |
2142 | } |
2143 | |
2144 | size_t ZSTD_compressBlock_lazy_extDict_row( |
2145 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2146 | void const* src, size_t srcSize) |
2147 | |
2148 | { |
2149 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1); |
2150 | } |
2151 | |
2152 | size_t ZSTD_compressBlock_lazy2_extDict_row( |
2153 | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
2154 | void const* src, size_t srcSize) |
2155 | { |
2156 | return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2); |
2157 | } |
2158 | |