| 1 | // Special functions -*- C++ -*- | 
|---|
| 2 |  | 
|---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
|---|
| 4 | // | 
|---|
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
|---|
| 6 | // software; you can redistribute it and/or modify it under the | 
|---|
| 7 | // terms of the GNU General Public License as published by the | 
|---|
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
|---|
| 9 | // any later version. | 
|---|
| 10 | // | 
|---|
| 11 | // This library is distributed in the hope that it will be useful, | 
|---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | // GNU General Public License for more details. | 
|---|
| 15 | // | 
|---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
|---|
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
|---|
| 18 | // 3.1, as published by the Free Software Foundation. | 
|---|
| 19 |  | 
|---|
| 20 | // You should have received a copy of the GNU General Public License and | 
|---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
|---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|---|
| 23 | // <http://www.gnu.org/licenses/>. | 
|---|
| 24 |  | 
|---|
| 25 | /** @file tr1/exp_integral.tcc | 
|---|
| 26 | *  This is an internal header file, included by other library headers. | 
|---|
| 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | // | 
|---|
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
|---|
| 32 | // | 
|---|
| 33 |  | 
|---|
| 34 | //  Written by Edward Smith-Rowland based on: | 
|---|
| 35 | // | 
|---|
| 36 | //   (1) Handbook of Mathematical Functions, | 
|---|
| 37 | //       Ed. by Milton Abramowitz and Irene A. Stegun, | 
|---|
| 38 | //       Dover Publications, New-York, Section 5, pp. 228-251. | 
|---|
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
|---|
| 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
|---|
| 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
|---|
| 42 | //       2nd ed, pp. 222-225. | 
|---|
| 43 | // | 
|---|
| 44 |  | 
|---|
| 45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC | 
|---|
| 46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 | 
|---|
| 47 |  | 
|---|
| 48 | #include <tr1/special_function_util.h> | 
|---|
| 49 |  | 
|---|
| 50 | namespace std _GLIBCXX_VISIBILITY(default) | 
|---|
| 51 | { | 
|---|
| 52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
|---|
| 53 |  | 
|---|
| 54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
|---|
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 56 | namespace tr1 | 
|---|
| 57 | { | 
|---|
| 58 | #else | 
|---|
| 59 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
|---|
| 60 | #endif | 
|---|
| 61 | // [5.2] Special functions | 
|---|
| 62 |  | 
|---|
| 63 | // Implementation-space details. | 
|---|
| 64 | namespace __detail | 
|---|
| 65 | { | 
|---|
| 66 | template<typename _Tp> _Tp __expint_E1(_Tp); | 
|---|
| 67 |  | 
|---|
| 68 | /** | 
|---|
| 69 | *   @brief Return the exponential integral @f$ E_1(x) @f$ | 
|---|
| 70 | *          by series summation.  This should be good | 
|---|
| 71 | *          for @f$ x < 1 @f$. | 
|---|
| 72 | * | 
|---|
| 73 | *   The exponential integral is given by | 
|---|
| 74 | *          \f[ | 
|---|
| 75 | *            E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt | 
|---|
| 76 | *          \f] | 
|---|
| 77 | * | 
|---|
| 78 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 79 | *   @return  The exponential integral. | 
|---|
| 80 | */ | 
|---|
| 81 | template<typename _Tp> | 
|---|
| 82 | _Tp | 
|---|
| 83 | __expint_E1_series(_Tp __x) | 
|---|
| 84 | { | 
|---|
| 85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
| 86 | _Tp __term = _Tp(1); | 
|---|
| 87 | _Tp __esum = _Tp(0); | 
|---|
| 88 | _Tp __osum = _Tp(0); | 
|---|
| 89 | const unsigned int __max_iter = 1000; | 
|---|
| 90 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
| 91 | { | 
|---|
| 92 | __term *= - __x / __i; | 
|---|
| 93 | if (std::abs(__term) < __eps) | 
|---|
| 94 | break; | 
|---|
| 95 | if (__term >= _Tp(0)) | 
|---|
| 96 | __esum += __term / __i; | 
|---|
| 97 | else | 
|---|
| 98 | __osum += __term / __i; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | return - __esum - __osum | 
|---|
| 102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 |  | 
|---|
| 106 | /** | 
|---|
| 107 | *   @brief Return the exponential integral @f$ E_1(x) @f$ | 
|---|
| 108 | *          by asymptotic expansion. | 
|---|
| 109 | * | 
|---|
| 110 | *   The exponential integral is given by | 
|---|
| 111 | *          \f[ | 
|---|
| 112 | *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt | 
|---|
| 113 | *          \f] | 
|---|
| 114 | * | 
|---|
| 115 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 116 | *   @return  The exponential integral. | 
|---|
| 117 | */ | 
|---|
| 118 | template<typename _Tp> | 
|---|
| 119 | _Tp | 
|---|
| 120 | __expint_E1_asymp(_Tp __x) | 
|---|
| 121 | { | 
|---|
| 122 | _Tp __term = _Tp(1); | 
|---|
| 123 | _Tp __esum = _Tp(1); | 
|---|
| 124 | _Tp __osum = _Tp(0); | 
|---|
| 125 | const unsigned int __max_iter = 1000; | 
|---|
| 126 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
| 127 | { | 
|---|
| 128 | _Tp __prev = __term; | 
|---|
| 129 | __term *= - __i / __x; | 
|---|
| 130 | if (std::abs(__term) > std::abs(__prev)) | 
|---|
| 131 | break; | 
|---|
| 132 | if (__term >= _Tp(0)) | 
|---|
| 133 | __esum += __term; | 
|---|
| 134 | else | 
|---|
| 135 | __osum += __term; | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 | return std::exp(- __x) * (__esum + __osum) / __x; | 
|---|
| 139 | } | 
|---|
| 140 |  | 
|---|
| 141 |  | 
|---|
| 142 | /** | 
|---|
| 143 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
| 144 | *          by series summation. | 
|---|
| 145 | * | 
|---|
| 146 | *   The exponential integral is given by | 
|---|
| 147 | *          \f[ | 
|---|
| 148 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
| 149 | *          \f] | 
|---|
| 150 | * | 
|---|
| 151 | *   @param  __n  The order of the exponential integral function. | 
|---|
| 152 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 153 | *   @return  The exponential integral. | 
|---|
| 154 | */ | 
|---|
| 155 | template<typename _Tp> | 
|---|
| 156 | _Tp | 
|---|
| 157 | __expint_En_series(unsigned int __n, _Tp __x) | 
|---|
| 158 | { | 
|---|
| 159 | const unsigned int __max_iter = 1000; | 
|---|
| 160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
| 161 | const int __nm1 = __n - 1; | 
|---|
| 162 | _Tp __ans = (__nm1 != 0 | 
|---|
| 163 | ? _Tp(1) / __nm1 : -std::log(__x) | 
|---|
| 164 | - __numeric_constants<_Tp>::__gamma_e()); | 
|---|
| 165 | _Tp __fact = _Tp(1); | 
|---|
| 166 | for (int __i = 1; __i <= __max_iter; ++__i) | 
|---|
| 167 | { | 
|---|
| 168 | __fact *= -__x / _Tp(__i); | 
|---|
| 169 | _Tp __del; | 
|---|
| 170 | if ( __i != __nm1 ) | 
|---|
| 171 | __del = -__fact / _Tp(__i - __nm1); | 
|---|
| 172 | else | 
|---|
| 173 | { | 
|---|
| 174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); | 
|---|
| 175 | for (int __ii = 1; __ii <= __nm1; ++__ii) | 
|---|
| 176 | __psi += _Tp(1) / _Tp(__ii); | 
|---|
| 177 | __del = __fact * (__psi - std::log(__x)); | 
|---|
| 178 | } | 
|---|
| 179 | __ans += __del; | 
|---|
| 180 | if (std::abs(__del) < __eps * std::abs(__ans)) | 
|---|
| 181 | return __ans; | 
|---|
| 182 | } | 
|---|
| 183 | std::__throw_runtime_error(__N( "Series summation failed " | 
|---|
| 184 | "in __expint_En_series.")); | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 |  | 
|---|
| 188 | /** | 
|---|
| 189 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
| 190 | *          by continued fractions. | 
|---|
| 191 | * | 
|---|
| 192 | *   The exponential integral is given by | 
|---|
| 193 | *          \f[ | 
|---|
| 194 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
| 195 | *          \f] | 
|---|
| 196 | * | 
|---|
| 197 | *   @param  __n  The order of the exponential integral function. | 
|---|
| 198 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 199 | *   @return  The exponential integral. | 
|---|
| 200 | */ | 
|---|
| 201 | template<typename _Tp> | 
|---|
| 202 | _Tp | 
|---|
| 203 | __expint_En_cont_frac(unsigned int __n, _Tp __x) | 
|---|
| 204 | { | 
|---|
| 205 | const unsigned int __max_iter = 1000; | 
|---|
| 206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
| 207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min(); | 
|---|
| 208 | const int __nm1 = __n - 1; | 
|---|
| 209 | _Tp __b = __x + _Tp(__n); | 
|---|
| 210 | _Tp __c = _Tp(1) / __fp_min; | 
|---|
| 211 | _Tp __d = _Tp(1) / __b; | 
|---|
| 212 | _Tp __h = __d; | 
|---|
| 213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) | 
|---|
| 214 | { | 
|---|
| 215 | _Tp __a = -_Tp(__i * (__nm1 + __i)); | 
|---|
| 216 | __b += _Tp(2); | 
|---|
| 217 | __d = _Tp(1) / (__a * __d + __b); | 
|---|
| 218 | __c = __b + __a / __c; | 
|---|
| 219 | const _Tp __del = __c * __d; | 
|---|
| 220 | __h *= __del; | 
|---|
| 221 | if (std::abs(__del - _Tp(1)) < __eps) | 
|---|
| 222 | { | 
|---|
| 223 | const _Tp __ans = __h * std::exp(-__x); | 
|---|
| 224 | return __ans; | 
|---|
| 225 | } | 
|---|
| 226 | } | 
|---|
| 227 | std::__throw_runtime_error(__N( "Continued fraction failed " | 
|---|
| 228 | "in __expint_En_cont_frac.")); | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 |  | 
|---|
| 232 | /** | 
|---|
| 233 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
| 234 | *          by recursion.  Use upward recursion for @f$ x < n @f$ | 
|---|
| 235 | *          and downward recursion (Miller's algorithm) otherwise. | 
|---|
| 236 | * | 
|---|
| 237 | *   The exponential integral is given by | 
|---|
| 238 | *          \f[ | 
|---|
| 239 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
| 240 | *          \f] | 
|---|
| 241 | * | 
|---|
| 242 | *   @param  __n  The order of the exponential integral function. | 
|---|
| 243 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 244 | *   @return  The exponential integral. | 
|---|
| 245 | */ | 
|---|
| 246 | template<typename _Tp> | 
|---|
| 247 | _Tp | 
|---|
| 248 | __expint_En_recursion(unsigned int __n, _Tp __x) | 
|---|
| 249 | { | 
|---|
| 250 | _Tp __En; | 
|---|
| 251 | _Tp __E1 = __expint_E1(__x); | 
|---|
| 252 | if (__x < _Tp(__n)) | 
|---|
| 253 | { | 
|---|
| 254 | //  Forward recursion is stable only for n < x. | 
|---|
| 255 | __En = __E1; | 
|---|
| 256 | for (unsigned int __j = 2; __j < __n; ++__j) | 
|---|
| 257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); | 
|---|
| 258 | } | 
|---|
| 259 | else | 
|---|
| 260 | { | 
|---|
| 261 | //  Backward recursion is stable only for n >= x. | 
|---|
| 262 | __En = _Tp(1); | 
|---|
| 263 | const int __N = __n + 20;  //  TODO: Check this starting number. | 
|---|
| 264 | _Tp __save = _Tp(0); | 
|---|
| 265 | for (int __j = __N; __j > 0; --__j) | 
|---|
| 266 | { | 
|---|
| 267 | __En = (std::exp(-__x) - __j * __En) / __x; | 
|---|
| 268 | if (__j == __n) | 
|---|
| 269 | __save = __En; | 
|---|
| 270 | } | 
|---|
| 271 | _Tp __norm = __En / __E1; | 
|---|
| 272 | __En /= __norm; | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | return __En; | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|
| 278 | /** | 
|---|
| 279 | *   @brief Return the exponential integral @f$ Ei(x) @f$ | 
|---|
| 280 | *          by series summation. | 
|---|
| 281 | * | 
|---|
| 282 | *   The exponential integral is given by | 
|---|
| 283 | *          \f[ | 
|---|
| 284 | *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
| 285 | *          \f] | 
|---|
| 286 | * | 
|---|
| 287 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 288 | *   @return  The exponential integral. | 
|---|
| 289 | */ | 
|---|
| 290 | template<typename _Tp> | 
|---|
| 291 | _Tp | 
|---|
| 292 | __expint_Ei_series(_Tp __x) | 
|---|
| 293 | { | 
|---|
| 294 | _Tp __term = _Tp(1); | 
|---|
| 295 | _Tp __sum = _Tp(0); | 
|---|
| 296 | const unsigned int __max_iter = 1000; | 
|---|
| 297 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
| 298 | { | 
|---|
| 299 | __term *= __x / __i; | 
|---|
| 300 | __sum += __term / __i; | 
|---|
| 301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) | 
|---|
| 302 | break; | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 |  | 
|---|
| 309 | /** | 
|---|
| 310 | *   @brief Return the exponential integral @f$ Ei(x) @f$ | 
|---|
| 311 | *          by asymptotic expansion. | 
|---|
| 312 | * | 
|---|
| 313 | *   The exponential integral is given by | 
|---|
| 314 | *          \f[ | 
|---|
| 315 | *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
| 316 | *          \f] | 
|---|
| 317 | * | 
|---|
| 318 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 319 | *   @return  The exponential integral. | 
|---|
| 320 | */ | 
|---|
| 321 | template<typename _Tp> | 
|---|
| 322 | _Tp | 
|---|
| 323 | __expint_Ei_asymp(_Tp __x) | 
|---|
| 324 | { | 
|---|
| 325 | _Tp __term = _Tp(1); | 
|---|
| 326 | _Tp __sum = _Tp(1); | 
|---|
| 327 | const unsigned int __max_iter = 1000; | 
|---|
| 328 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
| 329 | { | 
|---|
| 330 | _Tp __prev = __term; | 
|---|
| 331 | __term *= __i / __x; | 
|---|
| 332 | if (__term < std::numeric_limits<_Tp>::epsilon()) | 
|---|
| 333 | break; | 
|---|
| 334 | if (__term >= __prev) | 
|---|
| 335 | break; | 
|---|
| 336 | __sum += __term; | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | return std::exp(__x) * __sum / __x; | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 |  | 
|---|
| 343 | /** | 
|---|
| 344 | *   @brief Return the exponential integral @f$ Ei(x) @f$. | 
|---|
| 345 | * | 
|---|
| 346 | *   The exponential integral is given by | 
|---|
| 347 | *          \f[ | 
|---|
| 348 | *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
| 349 | *          \f] | 
|---|
| 350 | * | 
|---|
| 351 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 352 | *   @return  The exponential integral. | 
|---|
| 353 | */ | 
|---|
| 354 | template<typename _Tp> | 
|---|
| 355 | _Tp | 
|---|
| 356 | __expint_Ei(_Tp __x) | 
|---|
| 357 | { | 
|---|
| 358 | if (__x < _Tp(0)) | 
|---|
| 359 | return -__expint_E1(-__x); | 
|---|
| 360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) | 
|---|
| 361 | return __expint_Ei_series(__x); | 
|---|
| 362 | else | 
|---|
| 363 | return __expint_Ei_asymp(__x); | 
|---|
| 364 | } | 
|---|
| 365 |  | 
|---|
| 366 |  | 
|---|
| 367 | /** | 
|---|
| 368 | *   @brief Return the exponential integral @f$ E_1(x) @f$. | 
|---|
| 369 | * | 
|---|
| 370 | *   The exponential integral is given by | 
|---|
| 371 | *          \f[ | 
|---|
| 372 | *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt | 
|---|
| 373 | *          \f] | 
|---|
| 374 | * | 
|---|
| 375 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 376 | *   @return  The exponential integral. | 
|---|
| 377 | */ | 
|---|
| 378 | template<typename _Tp> | 
|---|
| 379 | _Tp | 
|---|
| 380 | __expint_E1(_Tp __x) | 
|---|
| 381 | { | 
|---|
| 382 | if (__x < _Tp(0)) | 
|---|
| 383 | return -__expint_Ei(-__x); | 
|---|
| 384 | else if (__x < _Tp(1)) | 
|---|
| 385 | return __expint_E1_series(__x); | 
|---|
| 386 | else if (__x < _Tp(100))  //  TODO: Find a good asymptotic switch point. | 
|---|
| 387 | return __expint_En_cont_frac(1, __x); | 
|---|
| 388 | else | 
|---|
| 389 | return __expint_E1_asymp(__x); | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 |  | 
|---|
| 393 | /** | 
|---|
| 394 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
| 395 | *          for large argument. | 
|---|
| 396 | * | 
|---|
| 397 | *   The exponential integral is given by | 
|---|
| 398 | *          \f[ | 
|---|
| 399 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
| 400 | *          \f] | 
|---|
| 401 | * | 
|---|
| 402 | *   This is something of an extension. | 
|---|
| 403 | * | 
|---|
| 404 | *   @param  __n  The order of the exponential integral function. | 
|---|
| 405 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 406 | *   @return  The exponential integral. | 
|---|
| 407 | */ | 
|---|
| 408 | template<typename _Tp> | 
|---|
| 409 | _Tp | 
|---|
| 410 | __expint_asymp(unsigned int __n, _Tp __x) | 
|---|
| 411 | { | 
|---|
| 412 | _Tp __term = _Tp(1); | 
|---|
| 413 | _Tp __sum = _Tp(1); | 
|---|
| 414 | for (unsigned int __i = 1; __i <= __n; ++__i) | 
|---|
| 415 | { | 
|---|
| 416 | _Tp __prev = __term; | 
|---|
| 417 | __term *= -(__n - __i + 1) / __x; | 
|---|
| 418 | if (std::abs(__term) > std::abs(__prev)) | 
|---|
| 419 | break; | 
|---|
| 420 | __sum += __term; | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 | return std::exp(-__x) * __sum / __x; | 
|---|
| 424 | } | 
|---|
| 425 |  | 
|---|
| 426 |  | 
|---|
| 427 | /** | 
|---|
| 428 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
| 429 | *          for large order. | 
|---|
| 430 | * | 
|---|
| 431 | *   The exponential integral is given by | 
|---|
| 432 | *          \f[ | 
|---|
| 433 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
| 434 | *          \f] | 
|---|
| 435 | * | 
|---|
| 436 | *   This is something of an extension. | 
|---|
| 437 | * | 
|---|
| 438 | *   @param  __n  The order of the exponential integral function. | 
|---|
| 439 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 440 | *   @return  The exponential integral. | 
|---|
| 441 | */ | 
|---|
| 442 | template<typename _Tp> | 
|---|
| 443 | _Tp | 
|---|
| 444 | __expint_large_n(unsigned int __n, _Tp __x) | 
|---|
| 445 | { | 
|---|
| 446 | const _Tp __xpn = __x + __n; | 
|---|
| 447 | const _Tp __xpn2 = __xpn * __xpn; | 
|---|
| 448 | _Tp __term = _Tp(1); | 
|---|
| 449 | _Tp __sum = _Tp(1); | 
|---|
| 450 | for (unsigned int __i = 1; __i <= __n; ++__i) | 
|---|
| 451 | { | 
|---|
| 452 | _Tp __prev = __term; | 
|---|
| 453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; | 
|---|
| 454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) | 
|---|
| 455 | break; | 
|---|
| 456 | __sum += __term; | 
|---|
| 457 | } | 
|---|
| 458 |  | 
|---|
| 459 | return std::exp(-__x) * __sum / __xpn; | 
|---|
| 460 | } | 
|---|
| 461 |  | 
|---|
| 462 |  | 
|---|
| 463 | /** | 
|---|
| 464 | *   @brief Return the exponential integral @f$ E_n(x) @f$. | 
|---|
| 465 | * | 
|---|
| 466 | *   The exponential integral is given by | 
|---|
| 467 | *          \f[ | 
|---|
| 468 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
| 469 | *          \f] | 
|---|
| 470 | *   This is something of an extension. | 
|---|
| 471 | * | 
|---|
| 472 | *   @param  __n  The order of the exponential integral function. | 
|---|
| 473 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 474 | *   @return  The exponential integral. | 
|---|
| 475 | */ | 
|---|
| 476 | template<typename _Tp> | 
|---|
| 477 | _Tp | 
|---|
| 478 | __expint(unsigned int __n, _Tp __x) | 
|---|
| 479 | { | 
|---|
| 480 | //  Return NaN on NaN input. | 
|---|
| 481 | if (__isnan(__x)) | 
|---|
| 482 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 483 | else if (__n <= 1 && __x == _Tp(0)) | 
|---|
| 484 | return std::numeric_limits<_Tp>::infinity(); | 
|---|
| 485 | else | 
|---|
| 486 | { | 
|---|
| 487 | _Tp __E0 = std::exp(__x) / __x; | 
|---|
| 488 | if (__n == 0) | 
|---|
| 489 | return __E0; | 
|---|
| 490 |  | 
|---|
| 491 | _Tp __E1 = __expint_E1(__x); | 
|---|
| 492 | if (__n == 1) | 
|---|
| 493 | return __E1; | 
|---|
| 494 |  | 
|---|
| 495 | if (__x == _Tp(0)) | 
|---|
| 496 | return _Tp(1) / static_cast<_Tp>(__n - 1); | 
|---|
| 497 |  | 
|---|
| 498 | _Tp __En = __expint_En_recursion(__n, __x); | 
|---|
| 499 |  | 
|---|
| 500 | return __En; | 
|---|
| 501 | } | 
|---|
| 502 | } | 
|---|
| 503 |  | 
|---|
| 504 |  | 
|---|
| 505 | /** | 
|---|
| 506 | *   @brief Return the exponential integral @f$ Ei(x) @f$. | 
|---|
| 507 | * | 
|---|
| 508 | *   The exponential integral is given by | 
|---|
| 509 | *   \f[ | 
|---|
| 510 | *     Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
| 511 | *   \f] | 
|---|
| 512 | * | 
|---|
| 513 | *   @param  __x  The argument of the exponential integral function. | 
|---|
| 514 | *   @return  The exponential integral. | 
|---|
| 515 | */ | 
|---|
| 516 | template<typename _Tp> | 
|---|
| 517 | inline _Tp | 
|---|
| 518 | __expint(_Tp __x) | 
|---|
| 519 | { | 
|---|
| 520 | if (__isnan(__x)) | 
|---|
| 521 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 522 | else | 
|---|
| 523 | return __expint_Ei(__x); | 
|---|
| 524 | } | 
|---|
| 525 | } // namespace __detail | 
|---|
| 526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 527 | } // namespace tr1 | 
|---|
| 528 | #endif | 
|---|
| 529 |  | 
|---|
| 530 | _GLIBCXX_END_NAMESPACE_VERSION | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC | 
|---|
| 534 |  | 
|---|