| 1 | // Special functions -*- C++ -*- | 
|---|
| 2 |  | 
|---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
|---|
| 4 | // | 
|---|
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
|---|
| 6 | // software; you can redistribute it and/or modify it under the | 
|---|
| 7 | // terms of the GNU General Public License as published by the | 
|---|
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
|---|
| 9 | // any later version. | 
|---|
| 10 | // | 
|---|
| 11 | // This library is distributed in the hope that it will be useful, | 
|---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | // GNU General Public License for more details. | 
|---|
| 15 | // | 
|---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
|---|
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
|---|
| 18 | // 3.1, as published by the Free Software Foundation. | 
|---|
| 19 |  | 
|---|
| 20 | // You should have received a copy of the GNU General Public License and | 
|---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
|---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|---|
| 23 | // <http://www.gnu.org/licenses/>. | 
|---|
| 24 |  | 
|---|
| 25 | /** @file tr1/legendre_function.tcc | 
|---|
| 26 | *  This is an internal header file, included by other library headers. | 
|---|
| 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | // | 
|---|
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
|---|
| 32 | // | 
|---|
| 33 |  | 
|---|
| 34 | // Written by Edward Smith-Rowland based on: | 
|---|
| 35 | //   (1) Handbook of Mathematical Functions, | 
|---|
| 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
|---|
| 37 | //       Dover Publications, | 
|---|
| 38 | //       Section 8, pp. 331-341 | 
|---|
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
|---|
| 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
|---|
| 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
|---|
| 42 | //       2nd ed, pp. 252-254 | 
|---|
| 43 |  | 
|---|
| 44 | #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC | 
|---|
| 45 | #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1 | 
|---|
| 46 |  | 
|---|
| 47 | #include <tr1/special_function_util.h> | 
|---|
| 48 |  | 
|---|
| 49 | namespace std _GLIBCXX_VISIBILITY(default) | 
|---|
| 50 | { | 
|---|
| 51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
|---|
| 52 |  | 
|---|
| 53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
|---|
| 54 | # define _GLIBCXX_MATH_NS ::std | 
|---|
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 56 | namespace tr1 | 
|---|
| 57 | { | 
|---|
| 58 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
|---|
| 59 | #else | 
|---|
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
|---|
| 61 | #endif | 
|---|
| 62 | // [5.2] Special functions | 
|---|
| 63 |  | 
|---|
| 64 | // Implementation-space details. | 
|---|
| 65 | namespace __detail | 
|---|
| 66 | { | 
|---|
| 67 | /** | 
|---|
| 68 | *   @brief  Return the Legendre polynomial by recursion on degree | 
|---|
| 69 | *           @f$ l @f$. | 
|---|
| 70 | * | 
|---|
| 71 | *   The Legendre function of @f$ l @f$ and @f$ x @f$, | 
|---|
| 72 | *   @f$ P_l(x) @f$, is defined by: | 
|---|
| 73 | *   @f[ | 
|---|
| 74 | *     P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} | 
|---|
| 75 | *   @f] | 
|---|
| 76 | * | 
|---|
| 77 | *   @param  l  The degree of the Legendre polynomial.  @f$l >= 0@f$. | 
|---|
| 78 | *   @param  x  The argument of the Legendre polynomial.  @f$|x| <= 1@f$. | 
|---|
| 79 | */ | 
|---|
| 80 | template<typename _Tp> | 
|---|
| 81 | _Tp | 
|---|
| 82 | __poly_legendre_p(unsigned int __l, _Tp __x) | 
|---|
| 83 | { | 
|---|
| 84 |  | 
|---|
| 85 | if (__isnan(__x)) | 
|---|
| 86 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 87 | else if (__x == +_Tp(1)) | 
|---|
| 88 | return +_Tp(1); | 
|---|
| 89 | else if (__x == -_Tp(1)) | 
|---|
| 90 | return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1)); | 
|---|
| 91 | else | 
|---|
| 92 | { | 
|---|
| 93 | _Tp __p_lm2 = _Tp(1); | 
|---|
| 94 | if (__l == 0) | 
|---|
| 95 | return __p_lm2; | 
|---|
| 96 |  | 
|---|
| 97 | _Tp __p_lm1 = __x; | 
|---|
| 98 | if (__l == 1) | 
|---|
| 99 | return __p_lm1; | 
|---|
| 100 |  | 
|---|
| 101 | _Tp __p_l = 0; | 
|---|
| 102 | for (unsigned int __ll = 2; __ll <= __l; ++__ll) | 
|---|
| 103 | { | 
|---|
| 104 | //  This arrangement is supposed to be better for roundoff | 
|---|
| 105 | //  protection, Arfken, 2nd Ed, Eq 12.17a. | 
|---|
| 106 | __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2 | 
|---|
| 107 | - (__x * __p_lm1 - __p_lm2) / _Tp(__ll); | 
|---|
| 108 | __p_lm2 = __p_lm1; | 
|---|
| 109 | __p_lm1 = __p_l; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | return __p_l; | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 |  | 
|---|
| 117 | /** | 
|---|
| 118 | *   @brief  Return the associated Legendre function by recursion | 
|---|
| 119 | *           on @f$ l @f$. | 
|---|
| 120 | * | 
|---|
| 121 | *   The associated Legendre function is derived from the Legendre function | 
|---|
| 122 | *   @f$ P_l(x) @f$ by the Rodrigues formula: | 
|---|
| 123 | *   @f[ | 
|---|
| 124 | *     P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) | 
|---|
| 125 | *   @f] | 
|---|
| 126 | *   @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$. | 
|---|
| 127 | * | 
|---|
| 128 | *   @param  l  The degree of the associated Legendre function. | 
|---|
| 129 | *              @f$ l >= 0 @f$. | 
|---|
| 130 | *   @param  m  The order of the associated Legendre function. | 
|---|
| 131 | *   @param  x  The argument of the associated Legendre function. | 
|---|
| 132 | *              @f$ |x| <= 1 @f$. | 
|---|
| 133 | *   @param  phase  The phase of the associated Legendre function. | 
|---|
| 134 | *                  Use -1 for the Condon-Shortley phase convention. | 
|---|
| 135 | */ | 
|---|
| 136 | template<typename _Tp> | 
|---|
| 137 | _Tp | 
|---|
| 138 | __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x, | 
|---|
| 139 | _Tp __phase = _Tp(+1)) | 
|---|
| 140 | { | 
|---|
| 141 |  | 
|---|
| 142 | if (__m > __l) | 
|---|
| 143 | return _Tp(0); | 
|---|
| 144 | else if (__isnan(__x)) | 
|---|
| 145 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 146 | else if (__m == 0) | 
|---|
| 147 | return __poly_legendre_p(__l, __x); | 
|---|
| 148 | else | 
|---|
| 149 | { | 
|---|
| 150 | _Tp __p_mm = _Tp(1); | 
|---|
| 151 | if (__m > 0) | 
|---|
| 152 | { | 
|---|
| 153 | //  Two square roots seem more accurate more of the time | 
|---|
| 154 | //  than just one. | 
|---|
| 155 | _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x); | 
|---|
| 156 | _Tp __fact = _Tp(1); | 
|---|
| 157 | for (unsigned int __i = 1; __i <= __m; ++__i) | 
|---|
| 158 | { | 
|---|
| 159 | __p_mm *= __phase * __fact * __root; | 
|---|
| 160 | __fact += _Tp(2); | 
|---|
| 161 | } | 
|---|
| 162 | } | 
|---|
| 163 | if (__l == __m) | 
|---|
| 164 | return __p_mm; | 
|---|
| 165 |  | 
|---|
| 166 | _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm; | 
|---|
| 167 | if (__l == __m + 1) | 
|---|
| 168 | return __p_mp1m; | 
|---|
| 169 |  | 
|---|
| 170 | _Tp __p_lm2m = __p_mm; | 
|---|
| 171 | _Tp __P_lm1m = __p_mp1m; | 
|---|
| 172 | _Tp __p_lm = _Tp(0); | 
|---|
| 173 | for (unsigned int __j = __m + 2; __j <= __l; ++__j) | 
|---|
| 174 | { | 
|---|
| 175 | __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m | 
|---|
| 176 | - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m); | 
|---|
| 177 | __p_lm2m = __P_lm1m; | 
|---|
| 178 | __P_lm1m = __p_lm; | 
|---|
| 179 | } | 
|---|
| 180 |  | 
|---|
| 181 | return __p_lm; | 
|---|
| 182 | } | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 |  | 
|---|
| 186 | /** | 
|---|
| 187 | *   @brief  Return the spherical associated Legendre function. | 
|---|
| 188 | * | 
|---|
| 189 | *   The spherical associated Legendre function of @f$ l @f$, @f$ m @f$, | 
|---|
| 190 | *   and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where | 
|---|
| 191 | *   @f[ | 
|---|
| 192 | *      Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} | 
|---|
| 193 | *                                  \frac{(l-m)!}{(l+m)!}] | 
|---|
| 194 | *                     P_l^m(\cos\theta) \exp^{im\phi} | 
|---|
| 195 | *   @f] | 
|---|
| 196 | *   is the spherical harmonic function and @f$ P_l^m(x) @f$ is the | 
|---|
| 197 | *   associated Legendre function. | 
|---|
| 198 | * | 
|---|
| 199 | *   This function differs from the associated Legendre function by | 
|---|
| 200 | *   argument (@f$x = \cos(\theta)@f$) and by a normalization factor | 
|---|
| 201 | *   but this factor is rather large for large @f$ l @f$ and @f$ m @f$ | 
|---|
| 202 | *   and so this function is stable for larger differences of @f$ l @f$ | 
|---|
| 203 | *   and @f$ m @f$. | 
|---|
| 204 | *   @note Unlike the case for __assoc_legendre_p the Condon-Shortley | 
|---|
| 205 | *         phase factor @f$ (-1)^m @f$ is present here. | 
|---|
| 206 | *   @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$. | 
|---|
| 207 | * | 
|---|
| 208 | *   @param  l  The degree of the spherical associated Legendre function. | 
|---|
| 209 | *              @f$ l >= 0 @f$. | 
|---|
| 210 | *   @param  m  The order of the spherical associated Legendre function. | 
|---|
| 211 | *   @param  theta  The radian angle argument of the spherical associated | 
|---|
| 212 | *                  Legendre function. | 
|---|
| 213 | */ | 
|---|
| 214 | template <typename _Tp> | 
|---|
| 215 | _Tp | 
|---|
| 216 | __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) | 
|---|
| 217 | { | 
|---|
| 218 | if (__isnan(__theta)) | 
|---|
| 219 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 220 |  | 
|---|
| 221 | const _Tp __x = std::cos(__theta); | 
|---|
| 222 |  | 
|---|
| 223 | if (__m > __l) | 
|---|
| 224 | return _Tp(0); | 
|---|
| 225 | else if (__m == 0) | 
|---|
| 226 | { | 
|---|
| 227 | _Tp __P = __poly_legendre_p(__l, __x); | 
|---|
| 228 | _Tp __fact = std::sqrt(_Tp(2 * __l + 1) | 
|---|
| 229 | / (_Tp(4) * __numeric_constants<_Tp>::__pi())); | 
|---|
| 230 | __P *= __fact; | 
|---|
| 231 | return __P; | 
|---|
| 232 | } | 
|---|
| 233 | else if (__x == _Tp(1) || __x == -_Tp(1)) | 
|---|
| 234 | { | 
|---|
| 235 | //  m > 0 here | 
|---|
| 236 | return _Tp(0); | 
|---|
| 237 | } | 
|---|
| 238 | else | 
|---|
| 239 | { | 
|---|
| 240 | // m > 0 and |x| < 1 here | 
|---|
| 241 |  | 
|---|
| 242 | // Starting value for recursion. | 
|---|
| 243 | // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) | 
|---|
| 244 | //             (-1)^m (1-x^2)^(m/2) / pi^(1/4) | 
|---|
| 245 | const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1)); | 
|---|
| 246 | const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3)); | 
|---|
| 247 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
|---|
| 248 | const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x); | 
|---|
| 249 | #else | 
|---|
| 250 | const _Tp __lncirc = std::log(_Tp(1) - __x * __x); | 
|---|
| 251 | #endif | 
|---|
| 252 | //  Gamma(m+1/2) / Gamma(m) | 
|---|
| 253 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
|---|
| 254 | const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L))) | 
|---|
| 255 | - _GLIBCXX_MATH_NS::lgamma(_Tp(__m)); | 
|---|
| 256 | #else | 
|---|
| 257 | const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L))) | 
|---|
| 258 | - __log_gamma(_Tp(__m)); | 
|---|
| 259 | #endif | 
|---|
| 260 | const _Tp __lnpre_val = | 
|---|
| 261 | -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi() | 
|---|
| 262 | + _Tp(0.5L) * (__lnpoch + __m * __lncirc); | 
|---|
| 263 | const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m) | 
|---|
| 264 | / (_Tp(4) * __numeric_constants<_Tp>::__pi())); | 
|---|
| 265 | _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val); | 
|---|
| 266 | _Tp __y_mp1m = __y_mp1m_factor * __y_mm; | 
|---|
| 267 |  | 
|---|
| 268 | if (__l == __m) | 
|---|
| 269 | return __y_mm; | 
|---|
| 270 | else if (__l == __m + 1) | 
|---|
| 271 | return __y_mp1m; | 
|---|
| 272 | else | 
|---|
| 273 | { | 
|---|
| 274 | _Tp __y_lm = _Tp(0); | 
|---|
| 275 |  | 
|---|
| 276 | // Compute Y_l^m, l > m+1, upward recursion on l. | 
|---|
| 277 | for (unsigned int __ll = __m + 2; __ll <= __l; ++__ll) | 
|---|
| 278 | { | 
|---|
| 279 | const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m); | 
|---|
| 280 | const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1); | 
|---|
| 281 | const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1) | 
|---|
| 282 | * _Tp(2 * __ll - 1)); | 
|---|
| 283 | const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1) | 
|---|
| 284 | / _Tp(2 * __ll - 3)); | 
|---|
| 285 | __y_lm = (__x * __y_mp1m * __fact1 | 
|---|
| 286 | - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m); | 
|---|
| 287 | __y_mm = __y_mp1m; | 
|---|
| 288 | __y_mp1m = __y_lm; | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | return __y_lm; | 
|---|
| 292 | } | 
|---|
| 293 | } | 
|---|
| 294 | } | 
|---|
| 295 | } // namespace __detail | 
|---|
| 296 | #undef _GLIBCXX_MATH_NS | 
|---|
| 297 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 298 | } // namespace tr1 | 
|---|
| 299 | #endif | 
|---|
| 300 |  | 
|---|
| 301 | _GLIBCXX_END_NAMESPACE_VERSION | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC | 
|---|
| 305 |  | 
|---|