| 1 | // Special functions -*- C++ -*- | 
|---|
| 2 |  | 
|---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
|---|
| 4 | // | 
|---|
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
|---|
| 6 | // software; you can redistribute it and/or modify it under the | 
|---|
| 7 | // terms of the GNU General Public License as published by the | 
|---|
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
|---|
| 9 | // any later version. | 
|---|
| 10 | // | 
|---|
| 11 | // This library is distributed in the hope that it will be useful, | 
|---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | // GNU General Public License for more details. | 
|---|
| 15 | // | 
|---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
|---|
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
|---|
| 18 | // 3.1, as published by the Free Software Foundation. | 
|---|
| 19 |  | 
|---|
| 20 | // You should have received a copy of the GNU General Public License and | 
|---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
|---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|---|
| 23 | // <http://www.gnu.org/licenses/>. | 
|---|
| 24 |  | 
|---|
| 25 | /** @file tr1/modified_bessel_func.tcc | 
|---|
| 26 | *  This is an internal header file, included by other library headers. | 
|---|
| 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | // | 
|---|
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
|---|
| 32 | // | 
|---|
| 33 |  | 
|---|
| 34 | // Written by Edward Smith-Rowland. | 
|---|
| 35 | // | 
|---|
| 36 | // References: | 
|---|
| 37 | //   (1) Handbook of Mathematical Functions, | 
|---|
| 38 | //       Ed. Milton Abramowitz and Irene A. Stegun, | 
|---|
| 39 | //       Dover Publications, | 
|---|
| 40 | //       Section 9, pp. 355-434, Section 10 pp. 435-478 | 
|---|
| 41 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
|---|
| 42 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
|---|
| 43 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
|---|
| 44 | //       2nd ed, pp. 246-249. | 
|---|
| 45 |  | 
|---|
| 46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC | 
|---|
| 47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1 | 
|---|
| 48 |  | 
|---|
| 49 | #include <tr1/special_function_util.h> | 
|---|
| 50 |  | 
|---|
| 51 | namespace std _GLIBCXX_VISIBILITY(default) | 
|---|
| 52 | { | 
|---|
| 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
|---|
| 54 |  | 
|---|
| 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
|---|
| 56 | #elif defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 57 | namespace tr1 | 
|---|
| 58 | { | 
|---|
| 59 | #else | 
|---|
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
|---|
| 61 | #endif | 
|---|
| 62 | // [5.2] Special functions | 
|---|
| 63 |  | 
|---|
| 64 | // Implementation-space details. | 
|---|
| 65 | namespace __detail | 
|---|
| 66 | { | 
|---|
| 67 | /** | 
|---|
| 68 | *   @brief  Compute the modified Bessel functions @f$ I_\nu(x) @f$ and | 
|---|
| 69 | *           @f$ K_\nu(x) @f$ and their first derivatives | 
|---|
| 70 | *           @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively. | 
|---|
| 71 | *           These four functions are computed together for numerical | 
|---|
| 72 | *           stability. | 
|---|
| 73 | * | 
|---|
| 74 | *   @param  __nu  The order of the Bessel functions. | 
|---|
| 75 | *   @param  __x   The argument of the Bessel functions. | 
|---|
| 76 | *   @param  __Inu  The output regular modified Bessel function. | 
|---|
| 77 | *   @param  __Knu  The output irregular modified Bessel function. | 
|---|
| 78 | *   @param  __Ipnu  The output derivative of the regular | 
|---|
| 79 | *                   modified Bessel function. | 
|---|
| 80 | *   @param  __Kpnu  The output derivative of the irregular | 
|---|
| 81 | *                   modified Bessel function. | 
|---|
| 82 | */ | 
|---|
| 83 | template <typename _Tp> | 
|---|
| 84 | void | 
|---|
| 85 | __bessel_ik(_Tp __nu, _Tp __x, | 
|---|
| 86 | _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu) | 
|---|
| 87 | { | 
|---|
| 88 | if (__x == _Tp(0)) | 
|---|
| 89 | { | 
|---|
| 90 | if (__nu == _Tp(0)) | 
|---|
| 91 | { | 
|---|
| 92 | __Inu = _Tp(1); | 
|---|
| 93 | __Ipnu = _Tp(0); | 
|---|
| 94 | } | 
|---|
| 95 | else if (__nu == _Tp(1)) | 
|---|
| 96 | { | 
|---|
| 97 | __Inu = _Tp(0); | 
|---|
| 98 | __Ipnu = _Tp(0.5L); | 
|---|
| 99 | } | 
|---|
| 100 | else | 
|---|
| 101 | { | 
|---|
| 102 | __Inu = _Tp(0); | 
|---|
| 103 | __Ipnu = _Tp(0); | 
|---|
| 104 | } | 
|---|
| 105 | __Knu = std::numeric_limits<_Tp>::infinity(); | 
|---|
| 106 | __Kpnu = -std::numeric_limits<_Tp>::infinity(); | 
|---|
| 107 | return; | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
| 111 | const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon(); | 
|---|
| 112 | const int __max_iter = 15000; | 
|---|
| 113 | const _Tp __x_min = _Tp(2); | 
|---|
| 114 |  | 
|---|
| 115 | const int __nl = static_cast<int>(__nu + _Tp(0.5L)); | 
|---|
| 116 |  | 
|---|
| 117 | const _Tp __mu = __nu - __nl; | 
|---|
| 118 | const _Tp __mu2 = __mu * __mu; | 
|---|
| 119 | const _Tp __xi = _Tp(1) / __x; | 
|---|
| 120 | const _Tp __xi2 = _Tp(2) * __xi; | 
|---|
| 121 | _Tp __h = __nu * __xi; | 
|---|
| 122 | if ( __h < __fp_min ) | 
|---|
| 123 | __h = __fp_min; | 
|---|
| 124 | _Tp __b = __xi2 * __nu; | 
|---|
| 125 | _Tp __d = _Tp(0); | 
|---|
| 126 | _Tp __c = __h; | 
|---|
| 127 | int __i; | 
|---|
| 128 | for ( __i = 1; __i <= __max_iter; ++__i ) | 
|---|
| 129 | { | 
|---|
| 130 | __b += __xi2; | 
|---|
| 131 | __d = _Tp(1) / (__b + __d); | 
|---|
| 132 | __c = __b + _Tp(1) / __c; | 
|---|
| 133 | const _Tp __del = __c * __d; | 
|---|
| 134 | __h *= __del; | 
|---|
| 135 | if (std::abs(__del - _Tp(1)) < __eps) | 
|---|
| 136 | break; | 
|---|
| 137 | } | 
|---|
| 138 | if (__i > __max_iter) | 
|---|
| 139 | std::__throw_runtime_error(__N( "Argument x too large " | 
|---|
| 140 | "in __bessel_ik; " | 
|---|
| 141 | "try asymptotic expansion.")); | 
|---|
| 142 | _Tp __Inul = __fp_min; | 
|---|
| 143 | _Tp __Ipnul = __h * __Inul; | 
|---|
| 144 | _Tp __Inul1 = __Inul; | 
|---|
| 145 | _Tp __Ipnu1 = __Ipnul; | 
|---|
| 146 | _Tp __fact = __nu * __xi; | 
|---|
| 147 | for (int __l = __nl; __l >= 1; --__l) | 
|---|
| 148 | { | 
|---|
| 149 | const _Tp __Inutemp = __fact * __Inul + __Ipnul; | 
|---|
| 150 | __fact -= __xi; | 
|---|
| 151 | __Ipnul = __fact * __Inutemp + __Inul; | 
|---|
| 152 | __Inul = __Inutemp; | 
|---|
| 153 | } | 
|---|
| 154 | _Tp __f = __Ipnul / __Inul; | 
|---|
| 155 | _Tp __Kmu, __Knu1; | 
|---|
| 156 | if (__x < __x_min) | 
|---|
| 157 | { | 
|---|
| 158 | const _Tp __x2 = __x / _Tp(2); | 
|---|
| 159 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; | 
|---|
| 160 | const _Tp __fact = (std::abs(__pimu) < __eps | 
|---|
| 161 | ? _Tp(1) : __pimu / std::sin(__pimu)); | 
|---|
| 162 | _Tp __d = -std::log(__x2); | 
|---|
| 163 | _Tp __e = __mu * __d; | 
|---|
| 164 | const _Tp __fact2 = (std::abs(__e) < __eps | 
|---|
| 165 | ? _Tp(1) : std::sinh(__e) / __e); | 
|---|
| 166 | _Tp __gam1, __gam2, __gampl, __gammi; | 
|---|
| 167 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); | 
|---|
| 168 | _Tp __ff = __fact | 
|---|
| 169 | * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); | 
|---|
| 170 | _Tp __sum = __ff; | 
|---|
| 171 | __e = std::exp(__e); | 
|---|
| 172 | _Tp __p = __e / (_Tp(2) * __gampl); | 
|---|
| 173 | _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi); | 
|---|
| 174 | _Tp __c = _Tp(1); | 
|---|
| 175 | __d = __x2 * __x2; | 
|---|
| 176 | _Tp __sum1 = __p; | 
|---|
| 177 | int __i; | 
|---|
| 178 | for (__i = 1; __i <= __max_iter; ++__i) | 
|---|
| 179 | { | 
|---|
| 180 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); | 
|---|
| 181 | __c *= __d / __i; | 
|---|
| 182 | __p /= __i - __mu; | 
|---|
| 183 | __q /= __i + __mu; | 
|---|
| 184 | const _Tp __del = __c * __ff; | 
|---|
| 185 | __sum += __del; | 
|---|
| 186 | const _Tp __del1 = __c * (__p - __i * __ff); | 
|---|
| 187 | __sum1 += __del1; | 
|---|
| 188 | if (std::abs(__del) < __eps * std::abs(__sum)) | 
|---|
| 189 | break; | 
|---|
| 190 | } | 
|---|
| 191 | if (__i > __max_iter) | 
|---|
| 192 | std::__throw_runtime_error(__N( "Bessel k series failed to converge " | 
|---|
| 193 | "in __bessel_ik.")); | 
|---|
| 194 | __Kmu = __sum; | 
|---|
| 195 | __Knu1 = __sum1 * __xi2; | 
|---|
| 196 | } | 
|---|
| 197 | else | 
|---|
| 198 | { | 
|---|
| 199 | _Tp __b = _Tp(2) * (_Tp(1) + __x); | 
|---|
| 200 | _Tp __d = _Tp(1) / __b; | 
|---|
| 201 | _Tp __delh = __d; | 
|---|
| 202 | _Tp __h = __delh; | 
|---|
| 203 | _Tp __q1 = _Tp(0); | 
|---|
| 204 | _Tp __q2 = _Tp(1); | 
|---|
| 205 | _Tp __a1 = _Tp(0.25L) - __mu2; | 
|---|
| 206 | _Tp __q = __c = __a1; | 
|---|
| 207 | _Tp __a = -__a1; | 
|---|
| 208 | _Tp __s = _Tp(1) + __q * __delh; | 
|---|
| 209 | int __i; | 
|---|
| 210 | for (__i = 2; __i <= __max_iter; ++__i) | 
|---|
| 211 | { | 
|---|
| 212 | __a -= 2 * (__i - 1); | 
|---|
| 213 | __c = -__a * __c / __i; | 
|---|
| 214 | const _Tp __qnew = (__q1 - __b * __q2) / __a; | 
|---|
| 215 | __q1 = __q2; | 
|---|
| 216 | __q2 = __qnew; | 
|---|
| 217 | __q += __c * __qnew; | 
|---|
| 218 | __b += _Tp(2); | 
|---|
| 219 | __d = _Tp(1) / (__b + __a * __d); | 
|---|
| 220 | __delh = (__b * __d - _Tp(1)) * __delh; | 
|---|
| 221 | __h += __delh; | 
|---|
| 222 | const _Tp __dels = __q * __delh; | 
|---|
| 223 | __s += __dels; | 
|---|
| 224 | if ( std::abs(__dels / __s) < __eps ) | 
|---|
| 225 | break; | 
|---|
| 226 | } | 
|---|
| 227 | if (__i > __max_iter) | 
|---|
| 228 | std::__throw_runtime_error(__N( "Steed's method failed " | 
|---|
| 229 | "in __bessel_ik.")); | 
|---|
| 230 | __h = __a1 * __h; | 
|---|
| 231 | __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x)) | 
|---|
| 232 | * std::exp(-__x) / __s; | 
|---|
| 233 | __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi; | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1; | 
|---|
| 237 | _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu); | 
|---|
| 238 | __Inu = __Inumu * __Inul1 / __Inul; | 
|---|
| 239 | __Ipnu = __Inumu * __Ipnu1 / __Inul; | 
|---|
| 240 | for ( __i = 1; __i <= __nl; ++__i ) | 
|---|
| 241 | { | 
|---|
| 242 | const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu; | 
|---|
| 243 | __Kmu = __Knu1; | 
|---|
| 244 | __Knu1 = __Knutemp; | 
|---|
| 245 | } | 
|---|
| 246 | __Knu = __Kmu; | 
|---|
| 247 | __Kpnu = __nu * __xi * __Kmu - __Knu1; | 
|---|
| 248 |  | 
|---|
| 249 | return; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 |  | 
|---|
| 253 | /** | 
|---|
| 254 | *   @brief  Return the regular modified Bessel function of order | 
|---|
| 255 | *           \f$ \nu \f$: \f$ I_{\nu}(x) \f$. | 
|---|
| 256 | * | 
|---|
| 257 | *   The regular modified cylindrical Bessel function is: | 
|---|
| 258 | *   @f[ | 
|---|
| 259 | *    I_{\nu}(x) = \sum_{k=0}^{\infty} | 
|---|
| 260 | *              \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
|---|
| 261 | *   @f] | 
|---|
| 262 | * | 
|---|
| 263 | *   @param  __nu  The order of the regular modified Bessel function. | 
|---|
| 264 | *   @param  __x   The argument of the regular modified Bessel function. | 
|---|
| 265 | *   @return  The output regular modified Bessel function. | 
|---|
| 266 | */ | 
|---|
| 267 | template<typename _Tp> | 
|---|
| 268 | _Tp | 
|---|
| 269 | __cyl_bessel_i(_Tp __nu, _Tp __x) | 
|---|
| 270 | { | 
|---|
| 271 | if (__nu < _Tp(0) || __x < _Tp(0)) | 
|---|
| 272 | std::__throw_domain_error(__N( "Bad argument " | 
|---|
| 273 | "in __cyl_bessel_i.")); | 
|---|
| 274 | else if (__isnan(__nu) || __isnan(__x)) | 
|---|
| 275 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 276 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) | 
|---|
| 277 | return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200); | 
|---|
| 278 | else | 
|---|
| 279 | { | 
|---|
| 280 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; | 
|---|
| 281 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
|---|
| 282 | return __I_nu; | 
|---|
| 283 | } | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 |  | 
|---|
| 287 | /** | 
|---|
| 288 | *   @brief  Return the irregular modified Bessel function | 
|---|
| 289 | *           \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$. | 
|---|
| 290 | * | 
|---|
| 291 | *   The irregular modified Bessel function is defined by: | 
|---|
| 292 | *   @f[ | 
|---|
| 293 | *      K_{\nu}(x) = \frac{\pi}{2} | 
|---|
| 294 | *                   \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} | 
|---|
| 295 | *   @f] | 
|---|
| 296 | *   where for integral \f$ \nu = n \f$ a limit is taken: | 
|---|
| 297 | *   \f$ lim_{\nu \to n} \f$. | 
|---|
| 298 | * | 
|---|
| 299 | *   @param  __nu  The order of the irregular modified Bessel function. | 
|---|
| 300 | *   @param  __x   The argument of the irregular modified Bessel function. | 
|---|
| 301 | *   @return  The output irregular modified Bessel function. | 
|---|
| 302 | */ | 
|---|
| 303 | template<typename _Tp> | 
|---|
| 304 | _Tp | 
|---|
| 305 | __cyl_bessel_k(_Tp __nu, _Tp __x) | 
|---|
| 306 | { | 
|---|
| 307 | if (__nu < _Tp(0) || __x < _Tp(0)) | 
|---|
| 308 | std::__throw_domain_error(__N( "Bad argument " | 
|---|
| 309 | "in __cyl_bessel_k.")); | 
|---|
| 310 | else if (__isnan(__nu) || __isnan(__x)) | 
|---|
| 311 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 312 | else | 
|---|
| 313 | { | 
|---|
| 314 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; | 
|---|
| 315 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
|---|
| 316 | return __K_nu; | 
|---|
| 317 | } | 
|---|
| 318 | } | 
|---|
| 319 |  | 
|---|
| 320 |  | 
|---|
| 321 | /** | 
|---|
| 322 | *   @brief  Compute the spherical modified Bessel functions | 
|---|
| 323 | *           @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first | 
|---|
| 324 | *           derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$ | 
|---|
| 325 | *           respectively. | 
|---|
| 326 | * | 
|---|
| 327 | *   @param  __n  The order of the modified spherical Bessel function. | 
|---|
| 328 | *   @param  __x  The argument of the modified spherical Bessel function. | 
|---|
| 329 | *   @param  __i_n  The output regular modified spherical Bessel function. | 
|---|
| 330 | *   @param  __k_n  The output irregular modified spherical | 
|---|
| 331 | *                  Bessel function. | 
|---|
| 332 | *   @param  __ip_n  The output derivative of the regular modified | 
|---|
| 333 | *                   spherical Bessel function. | 
|---|
| 334 | *   @param  __kp_n  The output derivative of the irregular modified | 
|---|
| 335 | *                   spherical Bessel function. | 
|---|
| 336 | */ | 
|---|
| 337 | template <typename _Tp> | 
|---|
| 338 | void | 
|---|
| 339 | __sph_bessel_ik(unsigned int __n, _Tp __x, | 
|---|
| 340 | _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n) | 
|---|
| 341 | { | 
|---|
| 342 | const _Tp __nu = _Tp(__n) + _Tp(0.5L); | 
|---|
| 343 |  | 
|---|
| 344 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; | 
|---|
| 345 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
|---|
| 346 |  | 
|---|
| 347 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() | 
|---|
| 348 | / std::sqrt(__x); | 
|---|
| 349 |  | 
|---|
| 350 | __i_n = __factor * __I_nu; | 
|---|
| 351 | __k_n = __factor * __K_nu; | 
|---|
| 352 | __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x); | 
|---|
| 353 | __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x); | 
|---|
| 354 |  | 
|---|
| 355 | return; | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 |  | 
|---|
| 359 | /** | 
|---|
| 360 | *   @brief  Compute the Airy functions | 
|---|
| 361 | *           @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first | 
|---|
| 362 | *           derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$ | 
|---|
| 363 | *           respectively. | 
|---|
| 364 | * | 
|---|
| 365 | *   @param  __x  The argument of the Airy functions. | 
|---|
| 366 | *   @param  __Ai  The output Airy function of the first kind. | 
|---|
| 367 | *   @param  __Bi  The output Airy function of the second kind. | 
|---|
| 368 | *   @param  __Aip  The output derivative of the Airy function | 
|---|
| 369 | *                  of the first kind. | 
|---|
| 370 | *   @param  __Bip  The output derivative of the Airy function | 
|---|
| 371 | *                  of the second kind. | 
|---|
| 372 | */ | 
|---|
| 373 | template <typename _Tp> | 
|---|
| 374 | void | 
|---|
| 375 | __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip) | 
|---|
| 376 | { | 
|---|
| 377 | const _Tp __absx = std::abs(__x); | 
|---|
| 378 | const _Tp __rootx = std::sqrt(__absx); | 
|---|
| 379 | const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3); | 
|---|
| 380 | const _Tp _S_inf = std::numeric_limits<_Tp>::infinity(); | 
|---|
| 381 |  | 
|---|
| 382 | if (__isnan(__x)) | 
|---|
| 383 | __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 384 | else if (__z == _S_inf) | 
|---|
| 385 | { | 
|---|
| 386 | __Aip = __Ai = _Tp(0); | 
|---|
| 387 | __Bip = __Bi = _S_inf; | 
|---|
| 388 | } | 
|---|
| 389 | else if (__z == -_S_inf) | 
|---|
| 390 | __Bip = __Aip = __Bi = __Ai = _Tp(0); | 
|---|
| 391 | else if (__x > _Tp(0)) | 
|---|
| 392 | { | 
|---|
| 393 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; | 
|---|
| 394 |  | 
|---|
| 395 | __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
|---|
| 396 | __Ai = __rootx * __K_nu | 
|---|
| 397 | / (__numeric_constants<_Tp>::__sqrt3() | 
|---|
| 398 | * __numeric_constants<_Tp>::__pi()); | 
|---|
| 399 | __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi() | 
|---|
| 400 | + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3()); | 
|---|
| 401 |  | 
|---|
| 402 | __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
|---|
| 403 | __Aip = -__x * __K_nu | 
|---|
| 404 | / (__numeric_constants<_Tp>::__sqrt3() | 
|---|
| 405 | * __numeric_constants<_Tp>::__pi()); | 
|---|
| 406 | __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi() | 
|---|
| 407 | + _Tp(2) * __I_nu | 
|---|
| 408 | / __numeric_constants<_Tp>::__sqrt3()); | 
|---|
| 409 | } | 
|---|
| 410 | else if (__x < _Tp(0)) | 
|---|
| 411 | { | 
|---|
| 412 | _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu; | 
|---|
| 413 |  | 
|---|
| 414 | __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
|---|
| 415 | __Ai = __rootx * (__J_nu | 
|---|
| 416 | - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); | 
|---|
| 417 | __Bi = -__rootx * (__N_nu | 
|---|
| 418 | + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); | 
|---|
| 419 |  | 
|---|
| 420 | __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
|---|
| 421 | __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3() | 
|---|
| 422 | + __J_nu) / _Tp(2); | 
|---|
| 423 | __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3() | 
|---|
| 424 | - __N_nu) / _Tp(2); | 
|---|
| 425 | } | 
|---|
| 426 | else | 
|---|
| 427 | { | 
|---|
| 428 | //  Reference: | 
|---|
| 429 | //    Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions. | 
|---|
| 430 | //  The number is Ai(0) = 3^{-2/3}/\Gamma(2/3). | 
|---|
| 431 | __Ai = _Tp(0.35502805388781723926L); | 
|---|
| 432 | __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3(); | 
|---|
| 433 |  | 
|---|
| 434 | //  Reference: | 
|---|
| 435 | //    Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions. | 
|---|
| 436 | //  The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3). | 
|---|
| 437 | __Aip = -_Tp(0.25881940379280679840L); | 
|---|
| 438 | __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3(); | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 | return; | 
|---|
| 442 | } | 
|---|
| 443 | } // namespace __detail | 
|---|
| 444 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 445 | } // namespace tr1 | 
|---|
| 446 | #endif | 
|---|
| 447 |  | 
|---|
| 448 | _GLIBCXX_END_NAMESPACE_VERSION | 
|---|
| 449 | } | 
|---|
| 450 |  | 
|---|
| 451 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC | 
|---|
| 452 |  | 
|---|