| 1 | // Special functions -*- C++ -*- | 
|---|
| 2 |  | 
|---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
|---|
| 4 | // | 
|---|
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
|---|
| 6 | // software; you can redistribute it and/or modify it under the | 
|---|
| 7 | // terms of the GNU General Public License as published by the | 
|---|
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
|---|
| 9 | // any later version. | 
|---|
| 10 | // | 
|---|
| 11 | // This library is distributed in the hope that it will be useful, | 
|---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | // GNU General Public License for more details. | 
|---|
| 15 | // | 
|---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
|---|
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
|---|
| 18 | // 3.1, as published by the Free Software Foundation. | 
|---|
| 19 |  | 
|---|
| 20 | // You should have received a copy of the GNU General Public License and | 
|---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
|---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|---|
| 23 | // <http://www.gnu.org/licenses/>. | 
|---|
| 24 |  | 
|---|
| 25 | /** @file tr1/poly_laguerre.tcc | 
|---|
| 26 | *  This is an internal header file, included by other library headers. | 
|---|
| 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | // | 
|---|
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
|---|
| 32 | // | 
|---|
| 33 |  | 
|---|
| 34 | // Written by Edward Smith-Rowland based on: | 
|---|
| 35 | //   (1) Handbook of Mathematical Functions, | 
|---|
| 36 | //       Ed. Milton Abramowitz and Irene A. Stegun, | 
|---|
| 37 | //       Dover Publications, | 
|---|
| 38 | //       Section 13, pp. 509-510, Section 22 pp. 773-802 | 
|---|
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
|---|
| 40 |  | 
|---|
| 41 | #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC | 
|---|
| 42 | #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 | 
|---|
| 43 |  | 
|---|
| 44 | namespace std _GLIBCXX_VISIBILITY(default) | 
|---|
| 45 | { | 
|---|
| 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
|---|
| 47 |  | 
|---|
| 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
|---|
| 49 | # define _GLIBCXX_MATH_NS ::std | 
|---|
| 50 | #elif defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 51 | namespace tr1 | 
|---|
| 52 | { | 
|---|
| 53 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
|---|
| 54 | #else | 
|---|
| 55 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
|---|
| 56 | #endif | 
|---|
| 57 | // [5.2] Special functions | 
|---|
| 58 |  | 
|---|
| 59 | // Implementation-space details. | 
|---|
| 60 | namespace __detail | 
|---|
| 61 | { | 
|---|
| 62 | /** | 
|---|
| 63 | *   @brief This routine returns the associated Laguerre polynomial | 
|---|
| 64 | *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n. | 
|---|
| 65 | *   Abramowitz & Stegun, 13.5.21 | 
|---|
| 66 | * | 
|---|
| 67 | *   @param __n The order of the Laguerre function. | 
|---|
| 68 | *   @param __alpha The degree of the Laguerre function. | 
|---|
| 69 | *   @param __x The argument of the Laguerre function. | 
|---|
| 70 | *   @return The value of the Laguerre function of order n, | 
|---|
| 71 | *           degree @f$ \alpha @f$, and argument x. | 
|---|
| 72 | * | 
|---|
| 73 | *  This is from the GNU Scientific Library. | 
|---|
| 74 | */ | 
|---|
| 75 | template<typename _Tpa, typename _Tp> | 
|---|
| 76 | _Tp | 
|---|
| 77 | __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x) | 
|---|
| 78 | { | 
|---|
| 79 | const _Tp __a = -_Tp(__n); | 
|---|
| 80 | const _Tp __b = _Tp(__alpha1) + _Tp(1); | 
|---|
| 81 | const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; | 
|---|
| 82 | const _Tp __cos2th = __x / __eta; | 
|---|
| 83 | const _Tp __sin2th = _Tp(1) - __cos2th; | 
|---|
| 84 | const _Tp __th = std::acos(std::sqrt(__cos2th)); | 
|---|
| 85 | const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() | 
|---|
| 86 | * __numeric_constants<_Tp>::__pi_2() | 
|---|
| 87 | * __eta * __eta * __cos2th * __sin2th; | 
|---|
| 88 |  | 
|---|
| 89 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
|---|
| 90 | const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b); | 
|---|
| 91 | const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); | 
|---|
| 92 | #else | 
|---|
| 93 | const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); | 
|---|
| 94 | const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); | 
|---|
| 95 | #endif | 
|---|
| 96 |  | 
|---|
| 97 | _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) | 
|---|
| 98 | * std::log(_Tp(0.25L) * __x * __eta); | 
|---|
| 99 | _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); | 
|---|
| 100 | _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x | 
|---|
| 101 | + __pre_term1 - __pre_term2; | 
|---|
| 102 | _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); | 
|---|
| 103 | _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta | 
|---|
| 104 | * (_Tp(2) * __th | 
|---|
| 105 | - std::sin(_Tp(2) * __th)) | 
|---|
| 106 | + __numeric_constants<_Tp>::__pi_4()); | 
|---|
| 107 | _Tp __ser = __ser_term1 + __ser_term2; | 
|---|
| 108 |  | 
|---|
| 109 | return std::exp(__lnpre) * __ser; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 |  | 
|---|
| 113 | /** | 
|---|
| 114 | *  @brief  Evaluate the polynomial based on the confluent hypergeometric | 
|---|
| 115 | *          function in a safe way, with no restriction on the arguments. | 
|---|
| 116 | * | 
|---|
| 117 | *   The associated Laguerre function is defined by | 
|---|
| 118 | *   @f[ | 
|---|
| 119 | *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
|---|
| 120 | *                       _1F_1(-n; \alpha + 1; x) | 
|---|
| 121 | *   @f] | 
|---|
| 122 | *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
|---|
| 123 | *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
|---|
| 124 | * | 
|---|
| 125 | *  This function assumes x != 0. | 
|---|
| 126 | * | 
|---|
| 127 | *  This is from the GNU Scientific Library. | 
|---|
| 128 | */ | 
|---|
| 129 | template<typename _Tpa, typename _Tp> | 
|---|
| 130 | _Tp | 
|---|
| 131 | __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x) | 
|---|
| 132 | { | 
|---|
| 133 | const _Tp __b = _Tp(__alpha1) + _Tp(1); | 
|---|
| 134 | const _Tp __mx = -__x; | 
|---|
| 135 | const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) | 
|---|
| 136 | : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); | 
|---|
| 137 | //  Get |x|^n/n! | 
|---|
| 138 | _Tp __tc = _Tp(1); | 
|---|
| 139 | const _Tp __ax = std::abs(__x); | 
|---|
| 140 | for (unsigned int __k = 1; __k <= __n; ++__k) | 
|---|
| 141 | __tc *= (__ax / __k); | 
|---|
| 142 |  | 
|---|
| 143 | _Tp __term = __tc * __tc_sgn; | 
|---|
| 144 | _Tp __sum = __term; | 
|---|
| 145 | for (int __k = int(__n) - 1; __k >= 0; --__k) | 
|---|
| 146 | { | 
|---|
| 147 | __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) | 
|---|
| 148 | * _Tp(__k + 1) / __mx; | 
|---|
| 149 | __sum += __term; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | return __sum; | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 |  | 
|---|
| 156 | /** | 
|---|
| 157 | *   @brief This routine returns the associated Laguerre polynomial | 
|---|
| 158 | *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ | 
|---|
| 159 | *          by recursion. | 
|---|
| 160 | * | 
|---|
| 161 | *   The associated Laguerre function is defined by | 
|---|
| 162 | *   @f[ | 
|---|
| 163 | *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
|---|
| 164 | *                       _1F_1(-n; \alpha + 1; x) | 
|---|
| 165 | *   @f] | 
|---|
| 166 | *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
|---|
| 167 | *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
|---|
| 168 | * | 
|---|
| 169 | *   The associated Laguerre polynomial is defined for integral | 
|---|
| 170 | *   @f$ \alpha = m @f$ by: | 
|---|
| 171 | *   @f[ | 
|---|
| 172 | *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
|---|
| 173 | *   @f] | 
|---|
| 174 | *   where the Laguerre polynomial is defined by: | 
|---|
| 175 | *   @f[ | 
|---|
| 176 | *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
|---|
| 177 | *   @f] | 
|---|
| 178 | * | 
|---|
| 179 | *   @param __n The order of the Laguerre function. | 
|---|
| 180 | *   @param __alpha The degree of the Laguerre function. | 
|---|
| 181 | *   @param __x The argument of the Laguerre function. | 
|---|
| 182 | *   @return The value of the Laguerre function of order n, | 
|---|
| 183 | *           degree @f$ \alpha @f$, and argument x. | 
|---|
| 184 | */ | 
|---|
| 185 | template<typename _Tpa, typename _Tp> | 
|---|
| 186 | _Tp | 
|---|
| 187 | __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x) | 
|---|
| 188 | { | 
|---|
| 189 | //   Compute l_0. | 
|---|
| 190 | _Tp __l_0 = _Tp(1); | 
|---|
| 191 | if  (__n == 0) | 
|---|
| 192 | return __l_0; | 
|---|
| 193 |  | 
|---|
| 194 | //  Compute l_1^alpha. | 
|---|
| 195 | _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); | 
|---|
| 196 | if  (__n == 1) | 
|---|
| 197 | return __l_1; | 
|---|
| 198 |  | 
|---|
| 199 | //  Compute l_n^alpha by recursion on n. | 
|---|
| 200 | _Tp __l_n2 = __l_0; | 
|---|
| 201 | _Tp __l_n1 = __l_1; | 
|---|
| 202 | _Tp __l_n = _Tp(0); | 
|---|
| 203 | for  (unsigned int __nn = 2; __nn <= __n; ++__nn) | 
|---|
| 204 | { | 
|---|
| 205 | __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) | 
|---|
| 206 | * __l_n1 / _Tp(__nn) | 
|---|
| 207 | - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); | 
|---|
| 208 | __l_n2 = __l_n1; | 
|---|
| 209 | __l_n1 = __l_n; | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | return __l_n; | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 |  | 
|---|
| 216 | /** | 
|---|
| 217 | *   @brief This routine returns the associated Laguerre polynomial | 
|---|
| 218 | *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. | 
|---|
| 219 | * | 
|---|
| 220 | *   The associated Laguerre function is defined by | 
|---|
| 221 | *   @f[ | 
|---|
| 222 | *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
|---|
| 223 | *                       _1F_1(-n; \alpha + 1; x) | 
|---|
| 224 | *   @f] | 
|---|
| 225 | *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
|---|
| 226 | *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
|---|
| 227 | * | 
|---|
| 228 | *   The associated Laguerre polynomial is defined for integral | 
|---|
| 229 | *   @f$ \alpha = m @f$ by: | 
|---|
| 230 | *   @f[ | 
|---|
| 231 | *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
|---|
| 232 | *   @f] | 
|---|
| 233 | *   where the Laguerre polynomial is defined by: | 
|---|
| 234 | *   @f[ | 
|---|
| 235 | *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
|---|
| 236 | *   @f] | 
|---|
| 237 | * | 
|---|
| 238 | *   @param __n The order of the Laguerre function. | 
|---|
| 239 | *   @param __alpha The degree of the Laguerre function. | 
|---|
| 240 | *   @param __x The argument of the Laguerre function. | 
|---|
| 241 | *   @return The value of the Laguerre function of order n, | 
|---|
| 242 | *           degree @f$ \alpha @f$, and argument x. | 
|---|
| 243 | */ | 
|---|
| 244 | template<typename _Tpa, typename _Tp> | 
|---|
| 245 | _Tp | 
|---|
| 246 | __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x) | 
|---|
| 247 | { | 
|---|
| 248 | if (__x < _Tp(0)) | 
|---|
| 249 | std::__throw_domain_error(__N( "Negative argument " | 
|---|
| 250 | "in __poly_laguerre.")); | 
|---|
| 251 | //  Return NaN on NaN input. | 
|---|
| 252 | else if (__isnan(__x)) | 
|---|
| 253 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
| 254 | else if (__n == 0) | 
|---|
| 255 | return _Tp(1); | 
|---|
| 256 | else if (__n == 1) | 
|---|
| 257 | return _Tp(1) + _Tp(__alpha1) - __x; | 
|---|
| 258 | else if (__x == _Tp(0)) | 
|---|
| 259 | { | 
|---|
| 260 | _Tp __prod = _Tp(__alpha1) + _Tp(1); | 
|---|
| 261 | for (unsigned int __k = 2; __k <= __n; ++__k) | 
|---|
| 262 | __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); | 
|---|
| 263 | return __prod; | 
|---|
| 264 | } | 
|---|
| 265 | else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) | 
|---|
| 266 | && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) | 
|---|
| 267 | return __poly_laguerre_large_n(__n, __alpha1, __x); | 
|---|
| 268 | else if (_Tp(__alpha1) >= _Tp(0) | 
|---|
| 269 | || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) | 
|---|
| 270 | return __poly_laguerre_recursion(__n, __alpha1, __x); | 
|---|
| 271 | else | 
|---|
| 272 | return __poly_laguerre_hyperg(__n, __alpha1, __x); | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 |  | 
|---|
| 276 | /** | 
|---|
| 277 | *   @brief This routine returns the associated Laguerre polynomial | 
|---|
| 278 | *          of order n, degree m: @f$ L_n^m(x) @f$. | 
|---|
| 279 | * | 
|---|
| 280 | *   The associated Laguerre polynomial is defined for integral | 
|---|
| 281 | *   @f$ \alpha = m @f$ by: | 
|---|
| 282 | *   @f[ | 
|---|
| 283 | *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
|---|
| 284 | *   @f] | 
|---|
| 285 | *   where the Laguerre polynomial is defined by: | 
|---|
| 286 | *   @f[ | 
|---|
| 287 | *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
|---|
| 288 | *   @f] | 
|---|
| 289 | * | 
|---|
| 290 | *   @param __n The order of the Laguerre polynomial. | 
|---|
| 291 | *   @param __m The degree of the Laguerre polynomial. | 
|---|
| 292 | *   @param __x The argument of the Laguerre polynomial. | 
|---|
| 293 | *   @return The value of the associated Laguerre polynomial of order n, | 
|---|
| 294 | *           degree m, and argument x. | 
|---|
| 295 | */ | 
|---|
| 296 | template<typename _Tp> | 
|---|
| 297 | inline _Tp | 
|---|
| 298 | __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) | 
|---|
| 299 | { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); } | 
|---|
| 300 |  | 
|---|
| 301 |  | 
|---|
| 302 | /** | 
|---|
| 303 | *   @brief This routine returns the Laguerre polynomial | 
|---|
| 304 | *          of order n: @f$ L_n(x) @f$. | 
|---|
| 305 | * | 
|---|
| 306 | *   The Laguerre polynomial is defined by: | 
|---|
| 307 | *   @f[ | 
|---|
| 308 | *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
|---|
| 309 | *   @f] | 
|---|
| 310 | * | 
|---|
| 311 | *   @param __n The order of the Laguerre polynomial. | 
|---|
| 312 | *   @param __x The argument of the Laguerre polynomial. | 
|---|
| 313 | *   @return The value of the Laguerre polynomial of order n | 
|---|
| 314 | *           and argument x. | 
|---|
| 315 | */ | 
|---|
| 316 | template<typename _Tp> | 
|---|
| 317 | inline _Tp | 
|---|
| 318 | __laguerre(unsigned int __n, _Tp __x) | 
|---|
| 319 | { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); } | 
|---|
| 320 | } // namespace __detail | 
|---|
| 321 | #undef _GLIBCXX_MATH_NS | 
|---|
| 322 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
|---|
| 323 | } // namespace tr1 | 
|---|
| 324 | #endif | 
|---|
| 325 |  | 
|---|
| 326 | _GLIBCXX_END_NAMESPACE_VERSION | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC | 
|---|
| 330 |  | 
|---|