| 1 | /* $Id$Revision: */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "config.h" |
| 15 | |
| 16 | #include <stdio.h> |
| 17 | #include <stdlib.h> |
| 18 | #include <math.h> |
| 19 | #include <time.h> |
| 20 | #include <graph_generator.h> |
| 21 | |
| 22 | void makePath(int n, edgefn ef) |
| 23 | { |
| 24 | int i; |
| 25 | |
| 26 | if (n == 1) { |
| 27 | ef (1, 0); |
| 28 | return; |
| 29 | } |
| 30 | for (i = 2; i <= n; i++) |
| 31 | ef (i - 1, i); |
| 32 | } |
| 33 | |
| 34 | void makeComplete(int n, edgefn ef) |
| 35 | { |
| 36 | int i, j; |
| 37 | |
| 38 | if (n == 1) { |
| 39 | ef (1, 0); |
| 40 | return; |
| 41 | } |
| 42 | for (i = 1; i < n; i++) { |
| 43 | for (j = i + 1; j <= n; j++) { |
| 44 | ef ( i, j); |
| 45 | } |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | void makeCircle(int n, edgefn ef) |
| 50 | { |
| 51 | int i; |
| 52 | |
| 53 | if (n < 3) { |
| 54 | fprintf(stderr, "Warning: degenerate circle of %d vertices\n" , n); |
| 55 | makePath(n, ef); |
| 56 | return; |
| 57 | } |
| 58 | |
| 59 | for (i = 1; i < n; i++) |
| 60 | ef ( i, i + 1); |
| 61 | ef (1, n); |
| 62 | } |
| 63 | |
| 64 | void makeStar(int n, edgefn ef) |
| 65 | { |
| 66 | int i; |
| 67 | |
| 68 | if (n < 3) { |
| 69 | fprintf(stderr, "Warning: degenerate star of %d vertices\n" , n); |
| 70 | makePath(n, ef); |
| 71 | return; |
| 72 | } |
| 73 | |
| 74 | for (i = 2; i <= n; i++) |
| 75 | ef (1, i); |
| 76 | } |
| 77 | |
| 78 | void makeWheel(int n, edgefn ef) |
| 79 | { |
| 80 | int i; |
| 81 | |
| 82 | if (n < 4) { |
| 83 | fprintf(stderr, "Warning: degenerate wheel of %d vertices\n" , n); |
| 84 | makeComplete(n, ef); |
| 85 | return; |
| 86 | } |
| 87 | |
| 88 | makeStar(n, ef); |
| 89 | |
| 90 | for (i = 2; i < n; i++) |
| 91 | ef( i, i + 1); |
| 92 | ef (2, n); |
| 93 | } |
| 94 | |
| 95 | void makeCompleteB(int dim1, int dim2, edgefn ef) |
| 96 | { |
| 97 | int i, j; |
| 98 | |
| 99 | for (i = 1; i <= dim1; i++) { |
| 100 | for (j = 1; j <= dim2; j++) { |
| 101 | ef ( i, dim1 + j); |
| 102 | } |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | void makeTorus(int dim1, int dim2, edgefn ef) |
| 107 | { |
| 108 | int i, j, n = 0; |
| 109 | |
| 110 | for (i = 1; i <= dim1; i++) { |
| 111 | for (j = 1; j < dim2; j++) { |
| 112 | ef( n + j, n + j + 1); |
| 113 | } |
| 114 | ef( n + 1, n + dim2); |
| 115 | n += dim2; |
| 116 | } |
| 117 | |
| 118 | for (i = 1; i <= dim2; i++) { |
| 119 | for (j = 1; j < dim1; j++) { |
| 120 | ef( dim2 * (j - 1) + i, dim2 * j + i); |
| 121 | } |
| 122 | ef( i, dim2 * (dim1 - 1) + i); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | void makeTwistedTorus(int dim1, int dim2, int t1, int t2, edgefn ef) |
| 127 | { |
| 128 | int i, j, li, lj; |
| 129 | |
| 130 | for (i = 0; i < dim1; i++) { |
| 131 | for (j = 0; j < dim2; j++) { |
| 132 | li = (i + t1) % dim1; |
| 133 | lj = (j + 1) % dim2; |
| 134 | ef (i+j*dim1+1, li+lj*dim1+1); |
| 135 | |
| 136 | li = (i + 1) % dim1; |
| 137 | lj = (j + t2) % dim2; |
| 138 | ef(i+j*dim1+1, li+lj*dim1+1); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | void makeCylinder(int dim1, int dim2, edgefn ef) |
| 144 | { |
| 145 | int i, j, n = 0; |
| 146 | |
| 147 | for (i = 1; i <= dim1; i++) { |
| 148 | for (j = 1; j < dim2; j++) { |
| 149 | ef( n + j, n + j + 1); |
| 150 | } |
| 151 | ef( n + 1, n + dim2); |
| 152 | n += dim2; |
| 153 | } |
| 154 | |
| 155 | for (i = 1; i <= dim2; i++) { |
| 156 | for (j = 1; j < dim1; j++) { |
| 157 | ef( dim2 * (j - 1) + i, dim2 * j + i); |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | #define OUTE(h) if (tl < (hd=(h))) ef( tl, hd) |
| 163 | |
| 164 | void |
| 165 | makeSquareGrid(int dim1, int dim2, int connect_corners, int partial, edgefn ef) |
| 166 | { |
| 167 | int i, j, tl, hd; |
| 168 | |
| 169 | for (i = 0; i < dim1; i++) |
| 170 | for (j = 0; j < dim2; j++) { |
| 171 | // write the neighbors of the node i*dim2+j+1 |
| 172 | tl = i * dim2 + j + 1; |
| 173 | if (j > 0 |
| 174 | && (!partial || j <= 2 * dim2 / 6 || j > 4 * dim2 / 6 |
| 175 | || i <= 2 * dim1 / 6 || i > 4 * dim1 / 6)) { |
| 176 | OUTE(i * dim2 + j); |
| 177 | } |
| 178 | if (j < dim2 - 1 |
| 179 | && (!partial || j < 2 * dim2 / 6 || j >= 4 * dim2 / 6 |
| 180 | || i <= 2 * dim1 / 6 || i > 4 * dim1 / 6)) { |
| 181 | OUTE(i * dim2 + j + 2); |
| 182 | } |
| 183 | if (i > 0) { |
| 184 | OUTE((i - 1) * dim2 + j + 1); |
| 185 | } |
| 186 | if (i < dim1 - 1) { |
| 187 | OUTE((i + 1) * dim2 + j + 1); |
| 188 | } |
| 189 | if (connect_corners == 1) { |
| 190 | if (i == 0 && j == 0) { // upper left |
| 191 | OUTE((dim1 - 1) * dim2 + dim2); |
| 192 | } else if (i == (dim1 - 1) && j == 0) { // lower left |
| 193 | OUTE(dim2); |
| 194 | } else if (i == 0 && j == (dim2 - 1)) { // upper right |
| 195 | OUTE((dim1 - 1) * dim2 + 1); |
| 196 | } else if (i == (dim1 - 1) && j == (dim2 - 1)) { // lower right |
| 197 | OUTE(1); |
| 198 | } |
| 199 | } else if (connect_corners == 2) { |
| 200 | if (i == 0 && j == 0) { // upper left |
| 201 | OUTE(dim2); |
| 202 | } else if (i == (dim1 - 1) && j == 0) { // lower left |
| 203 | OUTE((dim1 - 1) * dim2 + dim2); |
| 204 | } else if (i == 0 && j == (dim2 - 1)) { // upper right |
| 205 | OUTE(1); |
| 206 | } else if (i == (dim1 - 1) && j == (dim2 - 1)) { // lower right |
| 207 | OUTE((dim1 - 1) * dim2 + 1); |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | static int |
| 214 | ipow (int base, int power) |
| 215 | { |
| 216 | int ip; |
| 217 | if (power == 0) return 1; |
| 218 | if (power == 1) return base; |
| 219 | |
| 220 | ip = base; |
| 221 | power--; |
| 222 | while (power--) ip *= base; |
| 223 | return ip; |
| 224 | } |
| 225 | |
| 226 | void makeTree(int depth, int nary, edgefn ef) |
| 227 | { |
| 228 | unsigned int i, j; |
| 229 | unsigned int n = (ipow(nary,depth)-1)/(nary-1); /* no. of non-leaf nodes */ |
| 230 | unsigned int idx = 2; |
| 231 | |
| 232 | for (i = 1; i <= n; i++) { |
| 233 | for (j = 0; j < nary; j++) { |
| 234 | ef (i, idx++); |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | void makeBinaryTree(int depth, edgefn ef) |
| 240 | { |
| 241 | unsigned int i; |
| 242 | unsigned int n = (1 << depth) - 1; |
| 243 | |
| 244 | for (i = 1; i <= n; i++) { |
| 245 | ef( i, 2 * i); |
| 246 | ef( i, 2 * i + 1); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | typedef struct { |
| 251 | int nedges; |
| 252 | int* edges; |
| 253 | } vtx_data; |
| 254 | |
| 255 | static void |
| 256 | constructSierpinski(int v1, int v2, int v3, int depth, vtx_data* graph) |
| 257 | { |
| 258 | static int last_used_node_name = 3; |
| 259 | int v4, v5, v6; |
| 260 | |
| 261 | int nedges; |
| 262 | |
| 263 | if (depth > 0) { |
| 264 | v4 = ++last_used_node_name; |
| 265 | v5 = ++last_used_node_name; |
| 266 | v6 = ++last_used_node_name; |
| 267 | constructSierpinski(v1, v4, v5, depth - 1, graph); |
| 268 | constructSierpinski(v2, v5, v6, depth - 1, graph); |
| 269 | constructSierpinski(v3, v4, v6, depth - 1, graph); |
| 270 | return; |
| 271 | } |
| 272 | // depth==0, Construct graph: |
| 273 | |
| 274 | nedges = graph[v1].nedges; |
| 275 | graph[v1].edges[nedges++] = v2; |
| 276 | graph[v1].edges[nedges++] = v3; |
| 277 | graph[v1].nedges = nedges; |
| 278 | |
| 279 | nedges = graph[v2].nedges; |
| 280 | graph[v2].edges[nedges++] = v1; |
| 281 | graph[v2].edges[nedges++] = v3; |
| 282 | graph[v2].nedges = nedges; |
| 283 | |
| 284 | nedges = graph[v3].nedges; |
| 285 | graph[v3].edges[nedges++] = v1; |
| 286 | graph[v3].edges[nedges++] = v2; |
| 287 | graph[v3].nedges = nedges; |
| 288 | |
| 289 | return; |
| 290 | |
| 291 | } |
| 292 | |
| 293 | #define NEW(t) (t*)calloc((1),sizeof(t)) |
| 294 | #define N_NEW(n,t) (t*)calloc((n),sizeof(t)) |
| 295 | |
| 296 | void makeSierpinski(int depth, edgefn ef) |
| 297 | { |
| 298 | vtx_data* graph; |
| 299 | int* edges; |
| 300 | int n; |
| 301 | int nedges; |
| 302 | int i, j; |
| 303 | |
| 304 | depth--; |
| 305 | n = 3 * (1 + ((int) (pow(3.0, (double) depth) + 0.5) - 1) / 2); |
| 306 | |
| 307 | nedges = (int) (pow(3.0, depth + 1.0) + 0.5); |
| 308 | |
| 309 | graph = N_NEW(n + 1, vtx_data); |
| 310 | edges = N_NEW(4 * n, int); |
| 311 | |
| 312 | for (i = 1; i <= n; i++) { |
| 313 | graph[i].edges = edges; |
| 314 | edges += 4; |
| 315 | graph[i].nedges = 0; |
| 316 | } |
| 317 | |
| 318 | constructSierpinski(1, 2, 3, depth, graph); |
| 319 | |
| 320 | for (i = 1; i <= n; i++) { |
| 321 | int nghbr; |
| 322 | // write the neighbors of the node i |
| 323 | for (j = 0; j < graph[i].nedges; j++) { |
| 324 | nghbr = graph[i].edges[j]; |
| 325 | if (i < nghbr) ef( i, nghbr); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | free(graph[1].edges); |
| 330 | free(graph); |
| 331 | } |
| 332 | |
| 333 | static void |
| 334 | constructTetrix(int v1, int v2, int v3, int v4, int depth, vtx_data* graph) |
| 335 | { |
| 336 | static int last_used_node_name = 4; |
| 337 | int v5, v6, v7, v8, v9, v10; |
| 338 | |
| 339 | int nedges; |
| 340 | |
| 341 | if (depth > 0) { |
| 342 | v5 = ++last_used_node_name; |
| 343 | v6 = ++last_used_node_name; |
| 344 | v7 = ++last_used_node_name; |
| 345 | v8 = ++last_used_node_name; |
| 346 | v9 = ++last_used_node_name; |
| 347 | v10 = ++last_used_node_name; |
| 348 | constructTetrix(v1, v5, v6, v8, depth - 1, graph); |
| 349 | constructTetrix(v2, v6, v7, v9, depth - 1, graph); |
| 350 | constructTetrix(v3, v5, v7, v10, depth - 1, graph); |
| 351 | constructTetrix(v4, v8, v9, v10, depth - 1, graph); |
| 352 | return; |
| 353 | } |
| 354 | // depth==0, Construct graph: |
| 355 | nedges = graph[v1].nedges; |
| 356 | graph[v1].edges[nedges++] = v2; |
| 357 | graph[v1].edges[nedges++] = v3; |
| 358 | graph[v1].edges[nedges++] = v4; |
| 359 | graph[v1].nedges = nedges; |
| 360 | |
| 361 | nedges = graph[v2].nedges; |
| 362 | graph[v2].edges[nedges++] = v1; |
| 363 | graph[v2].edges[nedges++] = v3; |
| 364 | graph[v2].edges[nedges++] = v4; |
| 365 | graph[v2].nedges = nedges; |
| 366 | |
| 367 | nedges = graph[v3].nedges; |
| 368 | graph[v3].edges[nedges++] = v1; |
| 369 | graph[v3].edges[nedges++] = v2; |
| 370 | graph[v3].edges[nedges++] = v4; |
| 371 | graph[v3].nedges = nedges; |
| 372 | |
| 373 | nedges = graph[v4].nedges; |
| 374 | graph[v4].edges[nedges++] = v1; |
| 375 | graph[v4].edges[nedges++] = v2; |
| 376 | graph[v4].edges[nedges++] = v3; |
| 377 | graph[v4].nedges = nedges; |
| 378 | |
| 379 | return; |
| 380 | |
| 381 | } |
| 382 | |
| 383 | void makeTetrix(int depth, edgefn ef) |
| 384 | { |
| 385 | vtx_data* graph; |
| 386 | int* edges; |
| 387 | int n; |
| 388 | int nedges; |
| 389 | int i, j; |
| 390 | |
| 391 | depth--; |
| 392 | n = 4 + 2 * (((int) (pow(4.0, (double) depth) + 0.5) - 1)); |
| 393 | |
| 394 | nedges = 6 * (int) (pow(4.0, depth) + 0.5); |
| 395 | |
| 396 | graph = N_NEW(n + 1, vtx_data); |
| 397 | edges = N_NEW(6 * n, int); |
| 398 | |
| 399 | for (i = 1; i <= n; i++) { |
| 400 | graph[i].edges = edges; |
| 401 | edges += 6; |
| 402 | graph[i].nedges = 0; |
| 403 | } |
| 404 | |
| 405 | constructTetrix(1, 2, 3, 4, depth, graph); |
| 406 | |
| 407 | for (i = 1; i <= n; i++) { |
| 408 | int nghbr; |
| 409 | // write the neighbors of the node i |
| 410 | for (j = 0; j < graph[i].nedges; j++) { |
| 411 | nghbr = graph[i].edges[j]; |
| 412 | if (i < nghbr) ef( i, nghbr); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | free(graph[1].edges); |
| 417 | free(graph); |
| 418 | } |
| 419 | |
| 420 | void makeHypercube(int dim, edgefn ef) |
| 421 | { |
| 422 | int i, j, n; |
| 423 | int neighbor; |
| 424 | |
| 425 | n = 1 << dim; |
| 426 | |
| 427 | for (i = 0; i < n; i++) { |
| 428 | for (j = 0; j < dim; j++) { |
| 429 | neighbor = (i ^ (1 << j)) + 1; |
| 430 | if (i < neighbor) |
| 431 | ef( i + 1, neighbor); |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | void makeTriMesh(int sz, edgefn ef) |
| 437 | { |
| 438 | int i, j, idx; |
| 439 | |
| 440 | if (sz == 1) { |
| 441 | ef (1, 0); |
| 442 | return; |
| 443 | } |
| 444 | ef(1,2); |
| 445 | ef(1,3); |
| 446 | idx = 2; |
| 447 | for (i=2; i < sz; i++) { |
| 448 | for (j=1; j <= i; j++) { |
| 449 | ef(idx,idx+i); |
| 450 | ef(idx,idx+i+1); |
| 451 | if (j < i) |
| 452 | ef(idx,idx+1); |
| 453 | idx++; |
| 454 | } |
| 455 | } |
| 456 | for (j=1; j < sz; j++) { |
| 457 | ef (idx,idx+1); |
| 458 | idx++; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | void makeBall(int w, int h, edgefn ef) |
| 463 | { |
| 464 | int i, cap; |
| 465 | |
| 466 | makeCylinder (w, h, ef); |
| 467 | |
| 468 | for (i = 1; i <= h; i++) |
| 469 | ef (0, i); |
| 470 | |
| 471 | cap = w*h+1; |
| 472 | for (i = (w-1)*h+1; i <= w*h; i++) |
| 473 | ef (i, cap); |
| 474 | |
| 475 | } |
| 476 | |
| 477 | /* makeRandom: |
| 478 | * No. of nodes is largest 2^n - 1 less than or equal to h. |
| 479 | */ |
| 480 | void makeRandom(int h, int w, edgefn ef) |
| 481 | { |
| 482 | int i, j, type, size, depth; |
| 483 | |
| 484 | srand(time(0)); |
| 485 | if (rand()%2==1) |
| 486 | type = 1; |
| 487 | else |
| 488 | type = 0; |
| 489 | |
| 490 | size = depth = 0; |
| 491 | while (size <= h) { |
| 492 | size += ipow(2,depth); |
| 493 | depth++; |
| 494 | } |
| 495 | depth--; |
| 496 | if (size > h) { |
| 497 | size -= ipow(2,depth); |
| 498 | depth--; |
| 499 | } |
| 500 | |
| 501 | if (type) |
| 502 | makeBinaryTree (depth, ef); |
| 503 | else |
| 504 | makePath (size, ef); |
| 505 | |
| 506 | for (i=3; i<=size; i++) { |
| 507 | for (j=1; j<i-1; j++) { |
| 508 | int th = rand()%(size*size); |
| 509 | if (((th<=(w*w))&&((i<5)||((i>h-4)&&(j>h-4)))) || (th<=w)) |
| 510 | ef(j,i); |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | void makeMobius(int w, int h, edgefn ef) |
| 516 | { |
| 517 | int i, j; |
| 518 | |
| 519 | if (h == 1) { |
| 520 | fprintf(stderr, "Warning: degenerate Moebius strip of %d vertices\n" , w); |
| 521 | makePath(w, ef); |
| 522 | return; |
| 523 | } |
| 524 | if (w == 1) { |
| 525 | fprintf(stderr, "Warning: degenerate Moebius strip of %d vertices\n" , h); |
| 526 | makePath(h, ef); |
| 527 | return; |
| 528 | } |
| 529 | |
| 530 | for(i=0; i < w-1; i++) { |
| 531 | for(j = 1; j < h; j++){ |
| 532 | ef(j + i*h, j + (i+1)*h); |
| 533 | ef(j + i*h, j+1 + i*h); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | for(i = 1; i < h; i++){ |
| 538 | ef (i + (w-1)*h, i+1 + (w-1)*h); |
| 539 | } |
| 540 | for(i=1; i < w; i++) { |
| 541 | ef(i*h , (i+1)*h); |
| 542 | ef(i*h, (w-i)*h+1); |
| 543 | } |
| 544 | |
| 545 | ef(1,w*h); |
| 546 | } |
| 547 | |
| 548 | typedef struct { |
| 549 | int j, d; |
| 550 | } pair; |
| 551 | |
| 552 | typedef struct { |
| 553 | int top, root; |
| 554 | int* p; |
| 555 | } tree_t; |
| 556 | |
| 557 | static tree_t* |
| 558 | mkTree (int sz) |
| 559 | { |
| 560 | tree_t* tp = NEW(tree_t); |
| 561 | tp->root = 0; |
| 562 | tp->top = 0; |
| 563 | tp->p = N_NEW(sz,int); |
| 564 | return tp; |
| 565 | } |
| 566 | |
| 567 | static void |
| 568 | freeTree (tree_t* tp) |
| 569 | { |
| 570 | free (tp->p); |
| 571 | free (tp); |
| 572 | } |
| 573 | |
| 574 | static void |
| 575 | resetTree (tree_t* tp) |
| 576 | { |
| 577 | tp->root = 0; |
| 578 | tp->top = 0; |
| 579 | } |
| 580 | |
| 581 | static int |
| 582 | treeRoot (tree_t* tp) |
| 583 | { |
| 584 | return tp->root; |
| 585 | } |
| 586 | |
| 587 | static int |
| 588 | prevRoot (tree_t* tp) |
| 589 | { |
| 590 | return tp->p[tp->root]; |
| 591 | } |
| 592 | |
| 593 | static int |
| 594 | treeSize (tree_t* tp) |
| 595 | { |
| 596 | return (tp->top - tp->root + 1); |
| 597 | } |
| 598 | |
| 599 | static int |
| 600 | treeTop (tree_t* tp) |
| 601 | { |
| 602 | return (tp->top); |
| 603 | } |
| 604 | |
| 605 | static void |
| 606 | treePop (tree_t* tp) |
| 607 | { |
| 608 | tp->root = prevRoot(tp); |
| 609 | } |
| 610 | |
| 611 | static void |
| 612 | addTree (tree_t* tp, int sz) |
| 613 | { |
| 614 | tp->p[tp->top+1] = tp->root; |
| 615 | tp->root = tp->top+1; |
| 616 | tp->top += sz; |
| 617 | if (sz > 1) tp->p[tp->top] = tp->top-1; |
| 618 | } |
| 619 | |
| 620 | static void |
| 621 | treeDup (tree_t* tp, int J) |
| 622 | { |
| 623 | int M = treeSize(tp); |
| 624 | int L = treeRoot(tp); |
| 625 | int LL = prevRoot(tp); |
| 626 | int i, LS = L + (J-1)*M - 1; |
| 627 | for (i = L; i <= LS; i++) { |
| 628 | if ((i-L)%M == 0) tp->p[i+M] = LL; |
| 629 | else tp->p[i+M] = tp->p[i] + M; |
| 630 | } |
| 631 | tp->top = LS + M; |
| 632 | } |
| 633 | |
| 634 | /*****************/ |
| 635 | |
| 636 | typedef struct { |
| 637 | int top; |
| 638 | pair* v; |
| 639 | } stack; |
| 640 | |
| 641 | static stack* |
| 642 | mkStack (int sz) |
| 643 | { |
| 644 | stack* sp = NEW(stack); |
| 645 | sp->top = 0; |
| 646 | sp->v = N_NEW(sz,pair); |
| 647 | return sp; |
| 648 | } |
| 649 | |
| 650 | static void |
| 651 | freeStack (stack* sp) |
| 652 | { |
| 653 | free (sp->v); |
| 654 | free (sp); |
| 655 | } |
| 656 | |
| 657 | static void |
| 658 | resetStack (stack* sp) |
| 659 | { |
| 660 | sp->top = 0; |
| 661 | } |
| 662 | |
| 663 | static void |
| 664 | push(stack* sp, int j, int d) |
| 665 | { |
| 666 | sp->top++; |
| 667 | sp->v[sp->top].j = j; |
| 668 | sp->v[sp->top].d = d; |
| 669 | } |
| 670 | |
| 671 | static pair |
| 672 | pop (stack* sp) |
| 673 | { |
| 674 | sp->top--; |
| 675 | return sp->v[sp->top+1]; |
| 676 | } |
| 677 | |
| 678 | /*****************/ |
| 679 | |
| 680 | static int* |
| 681 | genCnt(int NN) |
| 682 | { |
| 683 | int* T = N_NEW(NN+1,int); |
| 684 | int D, I, J, TD; |
| 685 | int SUM; |
| 686 | int NLAST = 1; |
| 687 | T[1] = 1; |
| 688 | while (NN > NLAST) { |
| 689 | SUM = 0; |
| 690 | for (D = 1; D <= NLAST; D++) { |
| 691 | I = NLAST+1; |
| 692 | TD = T[D]*D; |
| 693 | for (J = 1; J <= NLAST; J++) { |
| 694 | I = I-D; |
| 695 | if (I <= 0) break; |
| 696 | SUM += T[I]*TD; |
| 697 | } |
| 698 | } |
| 699 | NLAST++; |
| 700 | T[NLAST] = SUM/(NLAST-1); |
| 701 | } |
| 702 | return T; |
| 703 | } |
| 704 | |
| 705 | static double |
| 706 | drand(void) |
| 707 | { |
| 708 | double d; |
| 709 | d = rand(); |
| 710 | d = d / RAND_MAX; |
| 711 | return d; |
| 712 | } |
| 713 | |
| 714 | static void |
| 715 | genTree (int NN, int* T, stack* stack, tree_t* TREE) |
| 716 | { |
| 717 | double v; |
| 718 | pair p; |
| 719 | int Z, D, N, J, TD, M, more; |
| 720 | |
| 721 | N = NN; |
| 722 | |
| 723 | while (1) { |
| 724 | while (N > 2) { |
| 725 | v = (N-1)*T[N]; |
| 726 | Z = v*drand(); |
| 727 | D = 0; |
| 728 | more = 1; |
| 729 | do { |
| 730 | D++; |
| 731 | TD = D*T[D]; |
| 732 | M = N; |
| 733 | J = 0; |
| 734 | do { |
| 735 | J++; |
| 736 | M -= D; |
| 737 | if (M < 1) break; |
| 738 | Z -= T[M]*TD; |
| 739 | if (Z < 0) more = 0; |
| 740 | } while (Z >= 0); |
| 741 | } while (more); |
| 742 | push(stack, J, D); |
| 743 | N = M; |
| 744 | } |
| 745 | addTree (TREE, N); |
| 746 | |
| 747 | while (1) { |
| 748 | p = pop(stack); |
| 749 | N = p.d; |
| 750 | if (N != 0) { |
| 751 | push(stack,p.j,0); |
| 752 | break; |
| 753 | } |
| 754 | J = p.j; |
| 755 | if (J > 1) treeDup (TREE, J); |
| 756 | if (treeTop(TREE) == NN) return; |
| 757 | treePop(TREE); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | } |
| 762 | |
| 763 | static void |
| 764 | writeTree (tree_t* tp, edgefn ef) |
| 765 | { |
| 766 | int i; |
| 767 | for (i = 2; i <= tp->top; i++) |
| 768 | ef (tp->p[i], i); |
| 769 | } |
| 770 | |
| 771 | struct treegen_s { |
| 772 | int N; |
| 773 | int* T; |
| 774 | stack* sp; |
| 775 | tree_t* tp; |
| 776 | }; |
| 777 | |
| 778 | treegen_t* |
| 779 | makeTreeGen (int N) |
| 780 | { |
| 781 | treegen_t* tg = NEW(treegen_t); |
| 782 | |
| 783 | tg->N = N; |
| 784 | tg->T = genCnt(N); |
| 785 | tg->sp = mkStack(N+1); |
| 786 | tg->tp = mkTree(N+1); |
| 787 | srand(time(0)); |
| 788 | |
| 789 | return tg; |
| 790 | } |
| 791 | |
| 792 | void makeRandomTree (treegen_t* tg, edgefn ef) |
| 793 | { |
| 794 | resetStack(tg->sp); |
| 795 | resetTree(tg->tp); |
| 796 | genTree (tg->N, tg->T, tg->sp, tg->tp); |
| 797 | writeTree (tg->tp, ef); |
| 798 | } |
| 799 | |
| 800 | void |
| 801 | freeTreeGen(treegen_t* tg) |
| 802 | { |
| 803 | free (tg->T); |
| 804 | freeStack (tg->sp); |
| 805 | freeTree (tg->tp); |
| 806 | free (tg); |
| 807 | } |
| 808 | |
| 809 | |