1 | /* $Id$Revision: */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | #include "config.h" |
15 | |
16 | #include <stdio.h> |
17 | #include <stdlib.h> |
18 | #include <math.h> |
19 | #include <time.h> |
20 | #include <graph_generator.h> |
21 | |
22 | void makePath(int n, edgefn ef) |
23 | { |
24 | int i; |
25 | |
26 | if (n == 1) { |
27 | ef (1, 0); |
28 | return; |
29 | } |
30 | for (i = 2; i <= n; i++) |
31 | ef (i - 1, i); |
32 | } |
33 | |
34 | void makeComplete(int n, edgefn ef) |
35 | { |
36 | int i, j; |
37 | |
38 | if (n == 1) { |
39 | ef (1, 0); |
40 | return; |
41 | } |
42 | for (i = 1; i < n; i++) { |
43 | for (j = i + 1; j <= n; j++) { |
44 | ef ( i, j); |
45 | } |
46 | } |
47 | } |
48 | |
49 | void makeCircle(int n, edgefn ef) |
50 | { |
51 | int i; |
52 | |
53 | if (n < 3) { |
54 | fprintf(stderr, "Warning: degenerate circle of %d vertices\n" , n); |
55 | makePath(n, ef); |
56 | return; |
57 | } |
58 | |
59 | for (i = 1; i < n; i++) |
60 | ef ( i, i + 1); |
61 | ef (1, n); |
62 | } |
63 | |
64 | void makeStar(int n, edgefn ef) |
65 | { |
66 | int i; |
67 | |
68 | if (n < 3) { |
69 | fprintf(stderr, "Warning: degenerate star of %d vertices\n" , n); |
70 | makePath(n, ef); |
71 | return; |
72 | } |
73 | |
74 | for (i = 2; i <= n; i++) |
75 | ef (1, i); |
76 | } |
77 | |
78 | void makeWheel(int n, edgefn ef) |
79 | { |
80 | int i; |
81 | |
82 | if (n < 4) { |
83 | fprintf(stderr, "Warning: degenerate wheel of %d vertices\n" , n); |
84 | makeComplete(n, ef); |
85 | return; |
86 | } |
87 | |
88 | makeStar(n, ef); |
89 | |
90 | for (i = 2; i < n; i++) |
91 | ef( i, i + 1); |
92 | ef (2, n); |
93 | } |
94 | |
95 | void makeCompleteB(int dim1, int dim2, edgefn ef) |
96 | { |
97 | int i, j; |
98 | |
99 | for (i = 1; i <= dim1; i++) { |
100 | for (j = 1; j <= dim2; j++) { |
101 | ef ( i, dim1 + j); |
102 | } |
103 | } |
104 | } |
105 | |
106 | void makeTorus(int dim1, int dim2, edgefn ef) |
107 | { |
108 | int i, j, n = 0; |
109 | |
110 | for (i = 1; i <= dim1; i++) { |
111 | for (j = 1; j < dim2; j++) { |
112 | ef( n + j, n + j + 1); |
113 | } |
114 | ef( n + 1, n + dim2); |
115 | n += dim2; |
116 | } |
117 | |
118 | for (i = 1; i <= dim2; i++) { |
119 | for (j = 1; j < dim1; j++) { |
120 | ef( dim2 * (j - 1) + i, dim2 * j + i); |
121 | } |
122 | ef( i, dim2 * (dim1 - 1) + i); |
123 | } |
124 | } |
125 | |
126 | void makeTwistedTorus(int dim1, int dim2, int t1, int t2, edgefn ef) |
127 | { |
128 | int i, j, li, lj; |
129 | |
130 | for (i = 0; i < dim1; i++) { |
131 | for (j = 0; j < dim2; j++) { |
132 | li = (i + t1) % dim1; |
133 | lj = (j + 1) % dim2; |
134 | ef (i+j*dim1+1, li+lj*dim1+1); |
135 | |
136 | li = (i + 1) % dim1; |
137 | lj = (j + t2) % dim2; |
138 | ef(i+j*dim1+1, li+lj*dim1+1); |
139 | } |
140 | } |
141 | } |
142 | |
143 | void makeCylinder(int dim1, int dim2, edgefn ef) |
144 | { |
145 | int i, j, n = 0; |
146 | |
147 | for (i = 1; i <= dim1; i++) { |
148 | for (j = 1; j < dim2; j++) { |
149 | ef( n + j, n + j + 1); |
150 | } |
151 | ef( n + 1, n + dim2); |
152 | n += dim2; |
153 | } |
154 | |
155 | for (i = 1; i <= dim2; i++) { |
156 | for (j = 1; j < dim1; j++) { |
157 | ef( dim2 * (j - 1) + i, dim2 * j + i); |
158 | } |
159 | } |
160 | } |
161 | |
162 | #define OUTE(h) if (tl < (hd=(h))) ef( tl, hd) |
163 | |
164 | void |
165 | makeSquareGrid(int dim1, int dim2, int connect_corners, int partial, edgefn ef) |
166 | { |
167 | int i, j, tl, hd; |
168 | |
169 | for (i = 0; i < dim1; i++) |
170 | for (j = 0; j < dim2; j++) { |
171 | // write the neighbors of the node i*dim2+j+1 |
172 | tl = i * dim2 + j + 1; |
173 | if (j > 0 |
174 | && (!partial || j <= 2 * dim2 / 6 || j > 4 * dim2 / 6 |
175 | || i <= 2 * dim1 / 6 || i > 4 * dim1 / 6)) { |
176 | OUTE(i * dim2 + j); |
177 | } |
178 | if (j < dim2 - 1 |
179 | && (!partial || j < 2 * dim2 / 6 || j >= 4 * dim2 / 6 |
180 | || i <= 2 * dim1 / 6 || i > 4 * dim1 / 6)) { |
181 | OUTE(i * dim2 + j + 2); |
182 | } |
183 | if (i > 0) { |
184 | OUTE((i - 1) * dim2 + j + 1); |
185 | } |
186 | if (i < dim1 - 1) { |
187 | OUTE((i + 1) * dim2 + j + 1); |
188 | } |
189 | if (connect_corners == 1) { |
190 | if (i == 0 && j == 0) { // upper left |
191 | OUTE((dim1 - 1) * dim2 + dim2); |
192 | } else if (i == (dim1 - 1) && j == 0) { // lower left |
193 | OUTE(dim2); |
194 | } else if (i == 0 && j == (dim2 - 1)) { // upper right |
195 | OUTE((dim1 - 1) * dim2 + 1); |
196 | } else if (i == (dim1 - 1) && j == (dim2 - 1)) { // lower right |
197 | OUTE(1); |
198 | } |
199 | } else if (connect_corners == 2) { |
200 | if (i == 0 && j == 0) { // upper left |
201 | OUTE(dim2); |
202 | } else if (i == (dim1 - 1) && j == 0) { // lower left |
203 | OUTE((dim1 - 1) * dim2 + dim2); |
204 | } else if (i == 0 && j == (dim2 - 1)) { // upper right |
205 | OUTE(1); |
206 | } else if (i == (dim1 - 1) && j == (dim2 - 1)) { // lower right |
207 | OUTE((dim1 - 1) * dim2 + 1); |
208 | } |
209 | } |
210 | } |
211 | } |
212 | |
213 | static int |
214 | ipow (int base, int power) |
215 | { |
216 | int ip; |
217 | if (power == 0) return 1; |
218 | if (power == 1) return base; |
219 | |
220 | ip = base; |
221 | power--; |
222 | while (power--) ip *= base; |
223 | return ip; |
224 | } |
225 | |
226 | void makeTree(int depth, int nary, edgefn ef) |
227 | { |
228 | unsigned int i, j; |
229 | unsigned int n = (ipow(nary,depth)-1)/(nary-1); /* no. of non-leaf nodes */ |
230 | unsigned int idx = 2; |
231 | |
232 | for (i = 1; i <= n; i++) { |
233 | for (j = 0; j < nary; j++) { |
234 | ef (i, idx++); |
235 | } |
236 | } |
237 | } |
238 | |
239 | void makeBinaryTree(int depth, edgefn ef) |
240 | { |
241 | unsigned int i; |
242 | unsigned int n = (1 << depth) - 1; |
243 | |
244 | for (i = 1; i <= n; i++) { |
245 | ef( i, 2 * i); |
246 | ef( i, 2 * i + 1); |
247 | } |
248 | } |
249 | |
250 | typedef struct { |
251 | int nedges; |
252 | int* edges; |
253 | } vtx_data; |
254 | |
255 | static void |
256 | constructSierpinski(int v1, int v2, int v3, int depth, vtx_data* graph) |
257 | { |
258 | static int last_used_node_name = 3; |
259 | int v4, v5, v6; |
260 | |
261 | int nedges; |
262 | |
263 | if (depth > 0) { |
264 | v4 = ++last_used_node_name; |
265 | v5 = ++last_used_node_name; |
266 | v6 = ++last_used_node_name; |
267 | constructSierpinski(v1, v4, v5, depth - 1, graph); |
268 | constructSierpinski(v2, v5, v6, depth - 1, graph); |
269 | constructSierpinski(v3, v4, v6, depth - 1, graph); |
270 | return; |
271 | } |
272 | // depth==0, Construct graph: |
273 | |
274 | nedges = graph[v1].nedges; |
275 | graph[v1].edges[nedges++] = v2; |
276 | graph[v1].edges[nedges++] = v3; |
277 | graph[v1].nedges = nedges; |
278 | |
279 | nedges = graph[v2].nedges; |
280 | graph[v2].edges[nedges++] = v1; |
281 | graph[v2].edges[nedges++] = v3; |
282 | graph[v2].nedges = nedges; |
283 | |
284 | nedges = graph[v3].nedges; |
285 | graph[v3].edges[nedges++] = v1; |
286 | graph[v3].edges[nedges++] = v2; |
287 | graph[v3].nedges = nedges; |
288 | |
289 | return; |
290 | |
291 | } |
292 | |
293 | #define NEW(t) (t*)calloc((1),sizeof(t)) |
294 | #define N_NEW(n,t) (t*)calloc((n),sizeof(t)) |
295 | |
296 | void makeSierpinski(int depth, edgefn ef) |
297 | { |
298 | vtx_data* graph; |
299 | int* edges; |
300 | int n; |
301 | int nedges; |
302 | int i, j; |
303 | |
304 | depth--; |
305 | n = 3 * (1 + ((int) (pow(3.0, (double) depth) + 0.5) - 1) / 2); |
306 | |
307 | nedges = (int) (pow(3.0, depth + 1.0) + 0.5); |
308 | |
309 | graph = N_NEW(n + 1, vtx_data); |
310 | edges = N_NEW(4 * n, int); |
311 | |
312 | for (i = 1; i <= n; i++) { |
313 | graph[i].edges = edges; |
314 | edges += 4; |
315 | graph[i].nedges = 0; |
316 | } |
317 | |
318 | constructSierpinski(1, 2, 3, depth, graph); |
319 | |
320 | for (i = 1; i <= n; i++) { |
321 | int nghbr; |
322 | // write the neighbors of the node i |
323 | for (j = 0; j < graph[i].nedges; j++) { |
324 | nghbr = graph[i].edges[j]; |
325 | if (i < nghbr) ef( i, nghbr); |
326 | } |
327 | } |
328 | |
329 | free(graph[1].edges); |
330 | free(graph); |
331 | } |
332 | |
333 | static void |
334 | constructTetrix(int v1, int v2, int v3, int v4, int depth, vtx_data* graph) |
335 | { |
336 | static int last_used_node_name = 4; |
337 | int v5, v6, v7, v8, v9, v10; |
338 | |
339 | int nedges; |
340 | |
341 | if (depth > 0) { |
342 | v5 = ++last_used_node_name; |
343 | v6 = ++last_used_node_name; |
344 | v7 = ++last_used_node_name; |
345 | v8 = ++last_used_node_name; |
346 | v9 = ++last_used_node_name; |
347 | v10 = ++last_used_node_name; |
348 | constructTetrix(v1, v5, v6, v8, depth - 1, graph); |
349 | constructTetrix(v2, v6, v7, v9, depth - 1, graph); |
350 | constructTetrix(v3, v5, v7, v10, depth - 1, graph); |
351 | constructTetrix(v4, v8, v9, v10, depth - 1, graph); |
352 | return; |
353 | } |
354 | // depth==0, Construct graph: |
355 | nedges = graph[v1].nedges; |
356 | graph[v1].edges[nedges++] = v2; |
357 | graph[v1].edges[nedges++] = v3; |
358 | graph[v1].edges[nedges++] = v4; |
359 | graph[v1].nedges = nedges; |
360 | |
361 | nedges = graph[v2].nedges; |
362 | graph[v2].edges[nedges++] = v1; |
363 | graph[v2].edges[nedges++] = v3; |
364 | graph[v2].edges[nedges++] = v4; |
365 | graph[v2].nedges = nedges; |
366 | |
367 | nedges = graph[v3].nedges; |
368 | graph[v3].edges[nedges++] = v1; |
369 | graph[v3].edges[nedges++] = v2; |
370 | graph[v3].edges[nedges++] = v4; |
371 | graph[v3].nedges = nedges; |
372 | |
373 | nedges = graph[v4].nedges; |
374 | graph[v4].edges[nedges++] = v1; |
375 | graph[v4].edges[nedges++] = v2; |
376 | graph[v4].edges[nedges++] = v3; |
377 | graph[v4].nedges = nedges; |
378 | |
379 | return; |
380 | |
381 | } |
382 | |
383 | void makeTetrix(int depth, edgefn ef) |
384 | { |
385 | vtx_data* graph; |
386 | int* edges; |
387 | int n; |
388 | int nedges; |
389 | int i, j; |
390 | |
391 | depth--; |
392 | n = 4 + 2 * (((int) (pow(4.0, (double) depth) + 0.5) - 1)); |
393 | |
394 | nedges = 6 * (int) (pow(4.0, depth) + 0.5); |
395 | |
396 | graph = N_NEW(n + 1, vtx_data); |
397 | edges = N_NEW(6 * n, int); |
398 | |
399 | for (i = 1; i <= n; i++) { |
400 | graph[i].edges = edges; |
401 | edges += 6; |
402 | graph[i].nedges = 0; |
403 | } |
404 | |
405 | constructTetrix(1, 2, 3, 4, depth, graph); |
406 | |
407 | for (i = 1; i <= n; i++) { |
408 | int nghbr; |
409 | // write the neighbors of the node i |
410 | for (j = 0; j < graph[i].nedges; j++) { |
411 | nghbr = graph[i].edges[j]; |
412 | if (i < nghbr) ef( i, nghbr); |
413 | } |
414 | } |
415 | |
416 | free(graph[1].edges); |
417 | free(graph); |
418 | } |
419 | |
420 | void makeHypercube(int dim, edgefn ef) |
421 | { |
422 | int i, j, n; |
423 | int neighbor; |
424 | |
425 | n = 1 << dim; |
426 | |
427 | for (i = 0; i < n; i++) { |
428 | for (j = 0; j < dim; j++) { |
429 | neighbor = (i ^ (1 << j)) + 1; |
430 | if (i < neighbor) |
431 | ef( i + 1, neighbor); |
432 | } |
433 | } |
434 | } |
435 | |
436 | void makeTriMesh(int sz, edgefn ef) |
437 | { |
438 | int i, j, idx; |
439 | |
440 | if (sz == 1) { |
441 | ef (1, 0); |
442 | return; |
443 | } |
444 | ef(1,2); |
445 | ef(1,3); |
446 | idx = 2; |
447 | for (i=2; i < sz; i++) { |
448 | for (j=1; j <= i; j++) { |
449 | ef(idx,idx+i); |
450 | ef(idx,idx+i+1); |
451 | if (j < i) |
452 | ef(idx,idx+1); |
453 | idx++; |
454 | } |
455 | } |
456 | for (j=1; j < sz; j++) { |
457 | ef (idx,idx+1); |
458 | idx++; |
459 | } |
460 | } |
461 | |
462 | void makeBall(int w, int h, edgefn ef) |
463 | { |
464 | int i, cap; |
465 | |
466 | makeCylinder (w, h, ef); |
467 | |
468 | for (i = 1; i <= h; i++) |
469 | ef (0, i); |
470 | |
471 | cap = w*h+1; |
472 | for (i = (w-1)*h+1; i <= w*h; i++) |
473 | ef (i, cap); |
474 | |
475 | } |
476 | |
477 | /* makeRandom: |
478 | * No. of nodes is largest 2^n - 1 less than or equal to h. |
479 | */ |
480 | void makeRandom(int h, int w, edgefn ef) |
481 | { |
482 | int i, j, type, size, depth; |
483 | |
484 | srand(time(0)); |
485 | if (rand()%2==1) |
486 | type = 1; |
487 | else |
488 | type = 0; |
489 | |
490 | size = depth = 0; |
491 | while (size <= h) { |
492 | size += ipow(2,depth); |
493 | depth++; |
494 | } |
495 | depth--; |
496 | if (size > h) { |
497 | size -= ipow(2,depth); |
498 | depth--; |
499 | } |
500 | |
501 | if (type) |
502 | makeBinaryTree (depth, ef); |
503 | else |
504 | makePath (size, ef); |
505 | |
506 | for (i=3; i<=size; i++) { |
507 | for (j=1; j<i-1; j++) { |
508 | int th = rand()%(size*size); |
509 | if (((th<=(w*w))&&((i<5)||((i>h-4)&&(j>h-4)))) || (th<=w)) |
510 | ef(j,i); |
511 | } |
512 | } |
513 | } |
514 | |
515 | void makeMobius(int w, int h, edgefn ef) |
516 | { |
517 | int i, j; |
518 | |
519 | if (h == 1) { |
520 | fprintf(stderr, "Warning: degenerate Moebius strip of %d vertices\n" , w); |
521 | makePath(w, ef); |
522 | return; |
523 | } |
524 | if (w == 1) { |
525 | fprintf(stderr, "Warning: degenerate Moebius strip of %d vertices\n" , h); |
526 | makePath(h, ef); |
527 | return; |
528 | } |
529 | |
530 | for(i=0; i < w-1; i++) { |
531 | for(j = 1; j < h; j++){ |
532 | ef(j + i*h, j + (i+1)*h); |
533 | ef(j + i*h, j+1 + i*h); |
534 | } |
535 | } |
536 | |
537 | for(i = 1; i < h; i++){ |
538 | ef (i + (w-1)*h, i+1 + (w-1)*h); |
539 | } |
540 | for(i=1; i < w; i++) { |
541 | ef(i*h , (i+1)*h); |
542 | ef(i*h, (w-i)*h+1); |
543 | } |
544 | |
545 | ef(1,w*h); |
546 | } |
547 | |
548 | typedef struct { |
549 | int j, d; |
550 | } pair; |
551 | |
552 | typedef struct { |
553 | int top, root; |
554 | int* p; |
555 | } tree_t; |
556 | |
557 | static tree_t* |
558 | mkTree (int sz) |
559 | { |
560 | tree_t* tp = NEW(tree_t); |
561 | tp->root = 0; |
562 | tp->top = 0; |
563 | tp->p = N_NEW(sz,int); |
564 | return tp; |
565 | } |
566 | |
567 | static void |
568 | freeTree (tree_t* tp) |
569 | { |
570 | free (tp->p); |
571 | free (tp); |
572 | } |
573 | |
574 | static void |
575 | resetTree (tree_t* tp) |
576 | { |
577 | tp->root = 0; |
578 | tp->top = 0; |
579 | } |
580 | |
581 | static int |
582 | treeRoot (tree_t* tp) |
583 | { |
584 | return tp->root; |
585 | } |
586 | |
587 | static int |
588 | prevRoot (tree_t* tp) |
589 | { |
590 | return tp->p[tp->root]; |
591 | } |
592 | |
593 | static int |
594 | treeSize (tree_t* tp) |
595 | { |
596 | return (tp->top - tp->root + 1); |
597 | } |
598 | |
599 | static int |
600 | treeTop (tree_t* tp) |
601 | { |
602 | return (tp->top); |
603 | } |
604 | |
605 | static void |
606 | treePop (tree_t* tp) |
607 | { |
608 | tp->root = prevRoot(tp); |
609 | } |
610 | |
611 | static void |
612 | addTree (tree_t* tp, int sz) |
613 | { |
614 | tp->p[tp->top+1] = tp->root; |
615 | tp->root = tp->top+1; |
616 | tp->top += sz; |
617 | if (sz > 1) tp->p[tp->top] = tp->top-1; |
618 | } |
619 | |
620 | static void |
621 | treeDup (tree_t* tp, int J) |
622 | { |
623 | int M = treeSize(tp); |
624 | int L = treeRoot(tp); |
625 | int LL = prevRoot(tp); |
626 | int i, LS = L + (J-1)*M - 1; |
627 | for (i = L; i <= LS; i++) { |
628 | if ((i-L)%M == 0) tp->p[i+M] = LL; |
629 | else tp->p[i+M] = tp->p[i] + M; |
630 | } |
631 | tp->top = LS + M; |
632 | } |
633 | |
634 | /*****************/ |
635 | |
636 | typedef struct { |
637 | int top; |
638 | pair* v; |
639 | } stack; |
640 | |
641 | static stack* |
642 | mkStack (int sz) |
643 | { |
644 | stack* sp = NEW(stack); |
645 | sp->top = 0; |
646 | sp->v = N_NEW(sz,pair); |
647 | return sp; |
648 | } |
649 | |
650 | static void |
651 | freeStack (stack* sp) |
652 | { |
653 | free (sp->v); |
654 | free (sp); |
655 | } |
656 | |
657 | static void |
658 | resetStack (stack* sp) |
659 | { |
660 | sp->top = 0; |
661 | } |
662 | |
663 | static void |
664 | push(stack* sp, int j, int d) |
665 | { |
666 | sp->top++; |
667 | sp->v[sp->top].j = j; |
668 | sp->v[sp->top].d = d; |
669 | } |
670 | |
671 | static pair |
672 | pop (stack* sp) |
673 | { |
674 | sp->top--; |
675 | return sp->v[sp->top+1]; |
676 | } |
677 | |
678 | /*****************/ |
679 | |
680 | static int* |
681 | genCnt(int NN) |
682 | { |
683 | int* T = N_NEW(NN+1,int); |
684 | int D, I, J, TD; |
685 | int SUM; |
686 | int NLAST = 1; |
687 | T[1] = 1; |
688 | while (NN > NLAST) { |
689 | SUM = 0; |
690 | for (D = 1; D <= NLAST; D++) { |
691 | I = NLAST+1; |
692 | TD = T[D]*D; |
693 | for (J = 1; J <= NLAST; J++) { |
694 | I = I-D; |
695 | if (I <= 0) break; |
696 | SUM += T[I]*TD; |
697 | } |
698 | } |
699 | NLAST++; |
700 | T[NLAST] = SUM/(NLAST-1); |
701 | } |
702 | return T; |
703 | } |
704 | |
705 | static double |
706 | drand(void) |
707 | { |
708 | double d; |
709 | d = rand(); |
710 | d = d / RAND_MAX; |
711 | return d; |
712 | } |
713 | |
714 | static void |
715 | genTree (int NN, int* T, stack* stack, tree_t* TREE) |
716 | { |
717 | double v; |
718 | pair p; |
719 | int Z, D, N, J, TD, M, more; |
720 | |
721 | N = NN; |
722 | |
723 | while (1) { |
724 | while (N > 2) { |
725 | v = (N-1)*T[N]; |
726 | Z = v*drand(); |
727 | D = 0; |
728 | more = 1; |
729 | do { |
730 | D++; |
731 | TD = D*T[D]; |
732 | M = N; |
733 | J = 0; |
734 | do { |
735 | J++; |
736 | M -= D; |
737 | if (M < 1) break; |
738 | Z -= T[M]*TD; |
739 | if (Z < 0) more = 0; |
740 | } while (Z >= 0); |
741 | } while (more); |
742 | push(stack, J, D); |
743 | N = M; |
744 | } |
745 | addTree (TREE, N); |
746 | |
747 | while (1) { |
748 | p = pop(stack); |
749 | N = p.d; |
750 | if (N != 0) { |
751 | push(stack,p.j,0); |
752 | break; |
753 | } |
754 | J = p.j; |
755 | if (J > 1) treeDup (TREE, J); |
756 | if (treeTop(TREE) == NN) return; |
757 | treePop(TREE); |
758 | } |
759 | } |
760 | |
761 | } |
762 | |
763 | static void |
764 | writeTree (tree_t* tp, edgefn ef) |
765 | { |
766 | int i; |
767 | for (i = 2; i <= tp->top; i++) |
768 | ef (tp->p[i], i); |
769 | } |
770 | |
771 | struct treegen_s { |
772 | int N; |
773 | int* T; |
774 | stack* sp; |
775 | tree_t* tp; |
776 | }; |
777 | |
778 | treegen_t* |
779 | makeTreeGen (int N) |
780 | { |
781 | treegen_t* tg = NEW(treegen_t); |
782 | |
783 | tg->N = N; |
784 | tg->T = genCnt(N); |
785 | tg->sp = mkStack(N+1); |
786 | tg->tp = mkTree(N+1); |
787 | srand(time(0)); |
788 | |
789 | return tg; |
790 | } |
791 | |
792 | void makeRandomTree (treegen_t* tg, edgefn ef) |
793 | { |
794 | resetStack(tg->sp); |
795 | resetTree(tg->tp); |
796 | genTree (tg->N, tg->T, tg->sp, tg->tp); |
797 | writeTree (tg->tp, ef); |
798 | } |
799 | |
800 | void |
801 | freeTreeGen(treegen_t* tg) |
802 | { |
803 | free (tg->T); |
804 | freeStack (tg->sp); |
805 | freeTree (tg->tp); |
806 | free (tg); |
807 | } |
808 | |
809 | |