| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "blockpath.h" |
| 16 | #include "edgelist.h" |
| 17 | #include "nodeset.h" |
| 18 | #include "deglist.h" |
| 19 | |
| 20 | /* The code below lays out a single block on a circle. |
| 21 | */ |
| 22 | |
| 23 | /* We use the unused fields order and to_orig in cloned nodes and edges */ |
| 24 | #define ORIGE(e) (ED_to_orig(e)) |
| 25 | |
| 26 | /* clone_graph: |
| 27 | * Create two copies of the argument graph |
| 28 | * One is a subgraph, the other is an actual copy since we will be |
| 29 | * adding edges to it. |
| 30 | */ |
| 31 | static Agraph_t *clone_graph(Agraph_t * ing, Agraph_t ** xg) |
| 32 | { |
| 33 | Agraph_t *clone; |
| 34 | Agraph_t *xclone; |
| 35 | Agnode_t *n; |
| 36 | Agnode_t *xn; |
| 37 | Agnode_t *xh; |
| 38 | Agedge_t *e; |
| 39 | Agedge_t *xe; |
| 40 | char gname[SMALLBUF]; |
| 41 | static int id = 0; |
| 42 | |
| 43 | sprintf(gname, "_clone_%d" , id++); |
| 44 | clone = agsubg(ing, gname,1); |
| 45 | agbindrec(clone, "Agraphinfo_t" , sizeof(Agraphinfo_t), TRUE); //node custom data |
| 46 | sprintf(gname, "_clone_%d" , id++); |
| 47 | xclone = agopen(gname, ing->desc,NIL(Agdisc_t *)); |
| 48 | for (n = agfstnode(ing); n; n = agnxtnode(ing, n)) { |
| 49 | agsubnode(clone,n,1); |
| 50 | xn = agnode(xclone, agnameof(n),1); |
| 51 | agbindrec(xn, "Agnodeinfo_t" , sizeof(Agnodeinfo_t), TRUE); //node custom data |
| 52 | CLONE(n) = xn; |
| 53 | } |
| 54 | |
| 55 | for (n = agfstnode(ing); n; n = agnxtnode(ing, n)) { |
| 56 | xn = CLONE(n); |
| 57 | for (e = agfstout(ing, n); e; e = agnxtout(ing, e)) { |
| 58 | agsubedge(clone,e,1); |
| 59 | xh = CLONE(aghead(e)); |
| 60 | xe = agedge(xclone, xn, xh, NULL, 1); |
| 61 | agbindrec(xe, "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); //node custom data |
| 62 | ORIGE(xe) = e; |
| 63 | DEGREE(xn) += 1; |
| 64 | DEGREE(xh) += 1; |
| 65 | } |
| 66 | } |
| 67 | *xg = xclone; |
| 68 | return clone; |
| 69 | } |
| 70 | |
| 71 | /* fillList: |
| 72 | * Add nodes to deg_list, which stores them by degree. |
| 73 | */ |
| 74 | static deglist_t *getList(Agraph_t * g) |
| 75 | { |
| 76 | deglist_t *dl = mkDeglist(); |
| 77 | Agnode_t *n; |
| 78 | |
| 79 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 80 | insertDeglist(dl, n); |
| 81 | } |
| 82 | return dl; |
| 83 | } |
| 84 | |
| 85 | /* find_pair_edges: |
| 86 | */ |
| 87 | static void find_pair_edges(Agraph_t * g, Agnode_t * n, Agraph_t * outg) |
| 88 | { |
| 89 | Agnode_t **neighbors_with; |
| 90 | Agnode_t **neighbors_without; |
| 91 | |
| 92 | Agedge_t *e; |
| 93 | Agedge_t *ep; |
| 94 | Agedge_t *ex; |
| 95 | Agnode_t *n1; |
| 96 | Agnode_t *n2; |
| 97 | int has_pair_edge; |
| 98 | int diff; |
| 99 | int has_pair_count = 0; |
| 100 | int no_pair_count = 0; |
| 101 | int node_degree; |
| 102 | int edge_cnt = 0; |
| 103 | |
| 104 | node_degree = DEGREE(n); |
| 105 | neighbors_with = N_GNEW(node_degree, Agnode_t *); |
| 106 | neighbors_without = N_GNEW(node_degree, Agnode_t *); |
| 107 | |
| 108 | for (e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) { |
| 109 | n1 = aghead(e); |
| 110 | if (n1 == n) |
| 111 | n1 = agtail(e); |
| 112 | has_pair_edge = 0; |
| 113 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 114 | if (ep == e) |
| 115 | continue; |
| 116 | n2 = aghead(ep); |
| 117 | if (n2 == n) |
| 118 | n2 = agtail(ep); |
| 119 | ex = agfindedge(g, n1, n2); |
| 120 | if (ex) { |
| 121 | has_pair_edge = 1; |
| 122 | if (n1 < n2) { /* count edge only once */ |
| 123 | edge_cnt++; |
| 124 | if (ORIGE(ex)) { |
| 125 | agdelete(outg, ORIGE(ex)); |
| 126 | ORIGE(ex) = 0; /* delete only once */ |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | if (has_pair_edge) { |
| 132 | neighbors_with[has_pair_count] = n1; |
| 133 | has_pair_count++; |
| 134 | } else { |
| 135 | neighbors_without[no_pair_count] = n1; |
| 136 | no_pair_count++; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | diff = node_degree - 1 - edge_cnt; |
| 141 | if (diff > 0) { |
| 142 | int mark; |
| 143 | Agnode_t *hp; |
| 144 | Agnode_t *tp; |
| 145 | |
| 146 | if (diff < no_pair_count) { |
| 147 | for (mark = 0; mark < no_pair_count; mark += 2) { |
| 148 | if ((mark + 1) >= no_pair_count) |
| 149 | break; |
| 150 | tp = neighbors_without[mark]; |
| 151 | hp = neighbors_without[mark + 1]; |
| 152 | agbindrec(agedge(g, tp, hp, NULL, 1), "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); // edge custom data |
| 153 | DEGREE(tp)++; |
| 154 | DEGREE(hp)++; |
| 155 | diff--; |
| 156 | } |
| 157 | |
| 158 | mark = 2; |
| 159 | while (diff > 0) { |
| 160 | tp = neighbors_without[0]; |
| 161 | hp = neighbors_without[mark]; |
| 162 | agbindrec(agedge(g, tp, hp, NULL, 1), "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); // edge custom data |
| 163 | DEGREE(tp)++; |
| 164 | DEGREE(hp)++; |
| 165 | mark++; |
| 166 | diff--; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | else if (diff == no_pair_count) { |
| 171 | tp = neighbors_with[0]; |
| 172 | for (mark = 0; mark < no_pair_count; mark++) { |
| 173 | hp = neighbors_without[mark]; |
| 174 | agbindrec(agedge(g, tp, hp, NULL, 1), "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); //node custom data |
| 175 | DEGREE(tp)++; |
| 176 | DEGREE(hp)++; |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | free(neighbors_without); |
| 182 | free(neighbors_with); |
| 183 | } |
| 184 | |
| 185 | /* remove_pair_edges: |
| 186 | * Create layout skeleton of ing. |
| 187 | * Why is returned graph connected? |
| 188 | */ |
| 189 | static Agraph_t *remove_pair_edges(Agraph_t * ing) |
| 190 | { |
| 191 | int counter = 0; |
| 192 | int nodeCount; |
| 193 | Agraph_t *outg; |
| 194 | Agraph_t *g; |
| 195 | deglist_t *dl; |
| 196 | Agnode_t *currnode, *adjNode; |
| 197 | Agedge_t *e; |
| 198 | |
| 199 | outg = clone_graph(ing, &g); |
| 200 | nodeCount = agnnodes(g); |
| 201 | dl = getList(g); |
| 202 | |
| 203 | while (counter < (nodeCount - 3)) { |
| 204 | currnode = firstDeglist(dl); |
| 205 | |
| 206 | /* Remove all adjacent nodes since they have to be reinserted */ |
| 207 | for (e = agfstedge(g, currnode); e; e = agnxtedge(g, e, currnode)) { |
| 208 | adjNode = aghead(e); |
| 209 | if (currnode == adjNode) |
| 210 | adjNode = agtail(e); |
| 211 | removeDeglist(dl, adjNode); |
| 212 | } |
| 213 | |
| 214 | find_pair_edges(g, currnode, outg); |
| 215 | |
| 216 | for (e = agfstedge(g, currnode); e; e = agnxtedge(g, e, currnode)) { |
| 217 | adjNode = aghead(e); |
| 218 | if (currnode == adjNode) |
| 219 | adjNode = agtail(e); |
| 220 | |
| 221 | DEGREE(adjNode)--; |
| 222 | insertDeglist(dl, adjNode); |
| 223 | } |
| 224 | |
| 225 | agdelete(g, currnode); |
| 226 | |
| 227 | counter++; |
| 228 | } |
| 229 | |
| 230 | agclose(g); |
| 231 | freeDeglist(dl); |
| 232 | return outg; |
| 233 | } |
| 234 | |
| 235 | static void |
| 236 | measure_distance(Agnode_t * n, Agnode_t * ancestor, int dist, |
| 237 | Agnode_t * change) |
| 238 | { |
| 239 | Agnode_t *parent; |
| 240 | |
| 241 | parent = TPARENT(ancestor); |
| 242 | if (parent == NULL) |
| 243 | return; |
| 244 | |
| 245 | dist++; |
| 246 | |
| 247 | /* check parent to see if it has other leaf paths at greater distance |
| 248 | than the context node. |
| 249 | set the path/distance of the leaf at this ancestor node */ |
| 250 | |
| 251 | if (DISTONE(parent) == 0) { |
| 252 | LEAFONE(parent) = n; |
| 253 | DISTONE(parent) = dist; |
| 254 | } else if (dist > DISTONE(parent)) { |
| 255 | if (LEAFONE(parent) != change) { |
| 256 | if (!DISTTWO(parent) || (LEAFTWO(parent) != change)) |
| 257 | change = LEAFONE(parent); |
| 258 | LEAFTWO(parent) = LEAFONE(parent); |
| 259 | DISTTWO(parent) = DISTONE(parent); |
| 260 | } |
| 261 | LEAFONE(parent) = n; |
| 262 | DISTONE(parent) = dist; |
| 263 | } else if (dist > DISTTWO(parent)) { |
| 264 | LEAFTWO(parent) = n; |
| 265 | DISTTWO(parent) = dist; |
| 266 | return; |
| 267 | } else |
| 268 | return; |
| 269 | |
| 270 | measure_distance(n, parent, dist, change); |
| 271 | } |
| 272 | |
| 273 | /* find_longest_path: |
| 274 | * Find and return longest path in tree. |
| 275 | */ |
| 276 | static nodelist_t *find_longest_path(Agraph_t * tree) |
| 277 | { |
| 278 | Agnode_t *n; |
| 279 | Agedge_t *e; |
| 280 | Agnode_t *common = 0; |
| 281 | nodelist_t *path; |
| 282 | nodelist_t *endPath; |
| 283 | int maxlength = 0; |
| 284 | int length; |
| 285 | |
| 286 | if (agnnodes(tree) == 1) { |
| 287 | path = mkNodelist(); |
| 288 | n = agfstnode(tree); |
| 289 | appendNodelist(path, NULL, n); |
| 290 | SET_ONPATH(n); |
| 291 | return path; |
| 292 | } |
| 293 | |
| 294 | for (n = agfstnode(tree); n; n = agnxtnode(tree, n)) { |
| 295 | int count = 0; |
| 296 | for (e = agfstedge(tree, n); e; e = agnxtedge(tree, e, n)) { |
| 297 | count++; |
| 298 | } |
| 299 | if (count == 1) |
| 300 | measure_distance(n, n, 0, NULL); |
| 301 | } |
| 302 | |
| 303 | /* find the branch node rooted at the longest path */ |
| 304 | for (n = agfstnode(tree); n; n = agnxtnode(tree, n)) { |
| 305 | length = DISTONE(n) + DISTTWO(n); |
| 306 | if (length > maxlength) { |
| 307 | common = n; |
| 308 | maxlength = length; |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | path = mkNodelist(); |
| 313 | for (n = LEAFONE(common); n != common; n = TPARENT(n)) { |
| 314 | appendNodelist(path, NULL, n); |
| 315 | SET_ONPATH(n); |
| 316 | } |
| 317 | appendNodelist(path, NULL, common); |
| 318 | SET_ONPATH(common); |
| 319 | |
| 320 | if (DISTTWO(common)) { /* 2nd path might be empty */ |
| 321 | endPath = mkNodelist(); |
| 322 | for (n = LEAFTWO(common); n != common; n = TPARENT(n)) { |
| 323 | appendNodelist(endPath, NULL, n); |
| 324 | SET_ONPATH(n); |
| 325 | } |
| 326 | reverseAppend(path, endPath); |
| 327 | } |
| 328 | |
| 329 | return path; |
| 330 | } |
| 331 | |
| 332 | /* dfs: |
| 333 | * Simple depth first search, adding traversed edges to tree. |
| 334 | */ |
| 335 | static void dfs(Agraph_t * g, Agnode_t * n, Agraph_t * tree) |
| 336 | { |
| 337 | Agedge_t *e; |
| 338 | Agnode_t *neighbor; |
| 339 | |
| 340 | SET_VISITED(n); |
| 341 | for (e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) { |
| 342 | neighbor = aghead(e); |
| 343 | if (neighbor == n) |
| 344 | neighbor = agtail(e); |
| 345 | |
| 346 | if (!VISITED(neighbor)) { |
| 347 | /* add the edge to the dfs tree */ |
| 348 | agsubedge(tree,e,1); |
| 349 | TPARENT(neighbor) = n; |
| 350 | dfs(g, neighbor, tree); |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /* spanning_tree: |
| 356 | * Construct spanning forest of g as subgraph |
| 357 | */ |
| 358 | static Agraph_t *spanning_tree(Agraph_t * g) |
| 359 | { |
| 360 | Agnode_t *n; |
| 361 | Agraph_t *tree; |
| 362 | char gname[SMALLBUF]; |
| 363 | static int id = 0; |
| 364 | |
| 365 | sprintf(gname, "_span_%d" , id++); |
| 366 | tree = agsubg(g, gname,1); |
| 367 | agbindrec(tree, "Agraphinfo_t" , sizeof(Agraphinfo_t), TRUE); //node custom data |
| 368 | |
| 369 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 370 | agsubnode(tree,n,1); |
| 371 | DISTONE(n) = 0; |
| 372 | DISTTWO(n) = 0; |
| 373 | UNSET_VISITED(n); |
| 374 | } |
| 375 | |
| 376 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 377 | if (!VISITED(n)) { |
| 378 | TPARENT(n) = NULL; |
| 379 | dfs(g, n, tree); |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | return tree; |
| 384 | } |
| 385 | |
| 386 | /* block_graph: |
| 387 | * Add induced edges. |
| 388 | */ |
| 389 | static void block_graph(Agraph_t * g, block_t * sn) |
| 390 | { |
| 391 | Agnode_t *n; |
| 392 | Agedge_t *e; |
| 393 | Agraph_t *subg = sn->sub_graph; |
| 394 | |
| 395 | for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) { |
| 396 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 397 | if (BLOCK(aghead(e)) == sn) |
| 398 | agsubedge(subg,e,1); |
| 399 | } |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | static int count_all_crossings(nodelist_t * list, Agraph_t * subg) |
| 404 | { |
| 405 | nodelistitem_t *item; |
| 406 | edgelist *openEdgeList = init_edgelist(); |
| 407 | Agnode_t *n; |
| 408 | Agedge_t *e; |
| 409 | int crossings = 0; |
| 410 | int order = 1; |
| 411 | |
| 412 | for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) { |
| 413 | for (e = agfstout(subg, n); e; e = agnxtout(subg, e)) { |
| 414 | EDGEORDER(e) = 0; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | for (item = list->first; item; item = item->next) { |
| 419 | n = item->curr; |
| 420 | |
| 421 | for (e = agfstedge(subg, n); e; e = agnxtedge(subg, e, n)) { |
| 422 | if (EDGEORDER(e) > 0) { |
| 423 | edgelistitem *eitem; |
| 424 | Agedge_t *ep; |
| 425 | |
| 426 | for (eitem = (edgelistitem *) dtfirst(openEdgeList); eitem; |
| 427 | eitem = |
| 428 | (edgelistitem *) dtnext(openEdgeList, eitem)) { |
| 429 | ep = eitem->edge; |
| 430 | if (EDGEORDER(ep) > EDGEORDER(e)) { |
| 431 | if ((aghead(ep) != n) && (agtail(ep) != n)) |
| 432 | crossings++; |
| 433 | } |
| 434 | } |
| 435 | remove_edge(openEdgeList, e); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | for (e = agfstedge(subg, n); e; e = agnxtedge(subg, e, n)) { |
| 440 | if (EDGEORDER(e) == 0) { |
| 441 | EDGEORDER(e) = order; |
| 442 | add_edge(openEdgeList, e); |
| 443 | } |
| 444 | } |
| 445 | order++; |
| 446 | } |
| 447 | |
| 448 | free_edgelist(openEdgeList); |
| 449 | return crossings; |
| 450 | } |
| 451 | |
| 452 | #define CROSS_ITER 10 |
| 453 | |
| 454 | /* reduce: |
| 455 | * Attempt to reduce edge crossings by moving nodes. |
| 456 | * Original crossing count is in cnt; final count is returned there. |
| 457 | * list is the original list; return the best list found. |
| 458 | */ |
| 459 | static nodelist_t *reduce(nodelist_t * list, Agraph_t * subg, int *cnt) |
| 460 | { |
| 461 | Agnode_t *curnode; |
| 462 | Agedge_t *e; |
| 463 | Agnode_t *neighbor; |
| 464 | nodelist_t *listCopy; |
| 465 | int crossings, j, newCrossings; |
| 466 | |
| 467 | crossings = *cnt; |
| 468 | for (curnode = agfstnode(subg); curnode; |
| 469 | curnode = agnxtnode(subg, curnode)) { |
| 470 | /* move curnode next to its neighbors */ |
| 471 | for (e = agfstedge(subg, curnode); e; |
| 472 | e = agnxtedge(subg, e, curnode)) { |
| 473 | neighbor = agtail(e); |
| 474 | if (neighbor == curnode) |
| 475 | neighbor = aghead(e); |
| 476 | |
| 477 | for (j = 0; j < 2; j++) { |
| 478 | listCopy = cloneNodelist(list); |
| 479 | insertNodelist(list, curnode, neighbor, j); |
| 480 | newCrossings = count_all_crossings(list, subg); |
| 481 | if (newCrossings < crossings) { |
| 482 | crossings = newCrossings; |
| 483 | freeNodelist(listCopy); |
| 484 | if (crossings == 0) { |
| 485 | *cnt = 0; |
| 486 | return list; |
| 487 | } |
| 488 | } else { |
| 489 | freeNodelist(list); |
| 490 | list = listCopy; |
| 491 | } |
| 492 | } |
| 493 | } |
| 494 | } |
| 495 | *cnt = crossings; |
| 496 | return list; |
| 497 | } |
| 498 | |
| 499 | static nodelist_t *reduce_edge_crossings(nodelist_t * list, |
| 500 | Agraph_t * subg) |
| 501 | { |
| 502 | int i, crossings, origCrossings; |
| 503 | |
| 504 | crossings = count_all_crossings(list, subg); |
| 505 | if (crossings == 0) |
| 506 | return list; |
| 507 | |
| 508 | for (i = 0; i < CROSS_ITER; i++) { |
| 509 | origCrossings = crossings; |
| 510 | list = reduce(list, subg, &crossings); |
| 511 | /* return if no crossings or no improvement */ |
| 512 | if ((origCrossings == crossings) || (crossings == 0)) |
| 513 | return list; |
| 514 | } |
| 515 | return list; |
| 516 | } |
| 517 | |
| 518 | /* largest_nodesize: |
| 519 | * Return max dimension of nodes on list |
| 520 | */ |
| 521 | static double largest_nodesize(nodelist_t * list) |
| 522 | { |
| 523 | Agnode_t *n; |
| 524 | nodelistitem_t *item; |
| 525 | double size = 0; |
| 526 | |
| 527 | for (item = list->first; item; item = item->next) { |
| 528 | n = ORIGN(item->curr); |
| 529 | if (ND_width(n) > size) |
| 530 | size = ND_width(n); |
| 531 | if (ND_height(n) > size) |
| 532 | size = ND_height(n); |
| 533 | } |
| 534 | return size; |
| 535 | } |
| 536 | |
| 537 | /* place_node: |
| 538 | * Add n to list. By construction, n is not in list at start. |
| 539 | */ |
| 540 | static void place_node(Agraph_t * g, Agnode_t * n, nodelist_t * list) |
| 541 | { |
| 542 | Agedge_t *e; |
| 543 | int placed = 0; |
| 544 | nodelist_t *neighbors = mkNodelist(); |
| 545 | nodelistitem_t *one, *two; |
| 546 | |
| 547 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 548 | appendNodelist(neighbors, NULL, aghead(e)); |
| 549 | SET_NEIGHBOR(aghead(e)); |
| 550 | } |
| 551 | for (e = agfstin(g, n); e; e = agnxtin(g, e)) { |
| 552 | appendNodelist(neighbors, NULL, agtail(e)); |
| 553 | SET_NEIGHBOR(agtail(e)); |
| 554 | } |
| 555 | |
| 556 | /* Look for 2 neighbors consecutive on list */ |
| 557 | if (sizeNodelist(neighbors) >= 2) { |
| 558 | for (one = list->first; one; one = one->next) { |
| 559 | if (one == list->last) |
| 560 | two = list->first; |
| 561 | else |
| 562 | two = one->next; |
| 563 | |
| 564 | if (NEIGHBOR(one->curr) && NEIGHBOR(two->curr)) { |
| 565 | appendNodelist(list, one, n); |
| 566 | placed = 1; |
| 567 | break; |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /* Find any neighbor on list */ |
| 573 | if (!placed && sizeNodelist(neighbors) > 0) { |
| 574 | for (one = list->first; one; one = one->next) { |
| 575 | if (NEIGHBOR(one->curr)) { |
| 576 | appendNodelist(list, one, n); |
| 577 | placed = 1; |
| 578 | break; |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | if (!placed) |
| 584 | appendNodelist(list, NULL, n); |
| 585 | |
| 586 | for (one = neighbors->first; one; one = one->next) |
| 587 | UNSET_NEIGHBOR(one->curr); |
| 588 | freeNodelist(neighbors); |
| 589 | } |
| 590 | |
| 591 | /* place_residual_nodes: |
| 592 | * Add nodes not in list to list. |
| 593 | */ |
| 594 | static void place_residual_nodes(Agraph_t * g, nodelist_t * list) |
| 595 | { |
| 596 | Agnode_t *n; |
| 597 | |
| 598 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 599 | if (!ONPATH(n)) |
| 600 | place_node(g, n, list); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | nodelist_t *layout_block(Agraph_t * g, block_t * sn, double min_dist) |
| 605 | { |
| 606 | Agnode_t *n; |
| 607 | Agraph_t *copyG, *tree, *subg; |
| 608 | nodelist_t *longest_path; |
| 609 | nodelistitem_t *item; |
| 610 | int N, k; |
| 611 | double theta, radius, largest_node; |
| 612 | largest_node = 0; |
| 613 | |
| 614 | subg = sn->sub_graph; |
| 615 | block_graph(g, sn); /* add induced edges */ |
| 616 | |
| 617 | copyG = remove_pair_edges(subg); |
| 618 | |
| 619 | tree = spanning_tree(copyG); |
| 620 | longest_path = find_longest_path(tree); |
| 621 | place_residual_nodes(subg, longest_path); |
| 622 | /* at this point, longest_path is a list of all nodes in the block */ |
| 623 | |
| 624 | /* apply crossing reduction algorithms here */ |
| 625 | longest_path = reduce_edge_crossings(longest_path, subg); |
| 626 | |
| 627 | N = sizeNodelist(longest_path); |
| 628 | largest_node = largest_nodesize(longest_path); |
| 629 | /* N*(min_dist+largest_node) is roughly circumference of required circle */ |
| 630 | if (N == 1) |
| 631 | radius = 0; |
| 632 | else |
| 633 | radius = (N * (min_dist + largest_node)) / (2 * M_PI); |
| 634 | |
| 635 | for (item = longest_path->first; item; item = item->next) { |
| 636 | n = item->curr; |
| 637 | if (ISPARENT(n)) { |
| 638 | /* QUESTION: Why is only one parent realigned? */ |
| 639 | realignNodelist(longest_path, item); |
| 640 | break; |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | k = 0; |
| 645 | for (item = longest_path->first; item; item = item->next) { |
| 646 | n = item->curr; |
| 647 | POSITION(n) = k; |
| 648 | PSI(n) = 0.0; |
| 649 | theta = k * ((2.0 * M_PI) / N); |
| 650 | |
| 651 | ND_pos(n)[0] = radius * cos(theta); |
| 652 | ND_pos(n)[1] = radius * sin(theta); |
| 653 | |
| 654 | k++; |
| 655 | } |
| 656 | |
| 657 | if (N == 1) |
| 658 | sn->radius = largest_node / 2; |
| 659 | else |
| 660 | sn->radius = radius; |
| 661 | sn->rad0 = sn->radius; |
| 662 | |
| 663 | /* initialize parent pos */ |
| 664 | sn->parent_pos = -1; |
| 665 | |
| 666 | agclose(copyG); |
| 667 | return longest_path; |
| 668 | } |
| 669 | |
| 670 | #ifdef DEBUG |
| 671 | void prTree(Agraph_t * g) |
| 672 | { |
| 673 | Agnode_t *n; |
| 674 | |
| 675 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 676 | if (TPARENT(n)) { |
| 677 | fprintf(stderr, "%s " , agnameof(n)); |
| 678 | fprintf(stderr, "-> %s\n" , agnameof(TPARENT(n))); |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | #endif |
| 683 | |