1 | /* $id: shapes.c,v 1.82 2007/12/24 04:50:36 ellson Exp $ $Revision$ */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2012 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | /* This code is derived from the Java implementation by Luc Maisonobe */ |
15 | /* Copyright (c) 2003-2004, Luc Maisonobe |
16 | * All rights reserved. |
17 | * |
18 | * Redistribution and use in source and binary forms, with |
19 | * or without modification, are permitted provided that |
20 | * the following conditions are met: |
21 | * |
22 | * Redistributions of source code must retain the |
23 | * above copyright notice, this list of conditions and |
24 | * the following disclaimer. |
25 | * Redistributions in binary form must reproduce the |
26 | * above copyright notice, this list of conditions and |
27 | * the following disclaimer in the documentation |
28 | * and/or other materials provided with the |
29 | * distribution. |
30 | * Neither the names of spaceroots.org, spaceroots.com |
31 | * nor the names of their contributors may be used to |
32 | * endorse or promote products derived from this |
33 | * software without specific prior written permission. |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
36 | * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED |
37 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
38 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
39 | * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
40 | * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY |
41 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
42 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
43 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
44 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
45 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER |
46 | * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
47 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
48 | * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
49 | * POSSIBILITY OF SUCH DAMAGE. |
50 | */ |
51 | |
52 | #if STANDALONE |
53 | #include <limits.h> |
54 | #include <math.h> |
55 | #include <stdlib.h> |
56 | #include <stdio.h> |
57 | |
58 | #define MAX(a,b) ((a)>(b)?(a):(b)) |
59 | #define MIN(a,b) ((a)<(b)?(a):(b)) |
60 | |
61 | #define NEW(t) ((t*)calloc(1,sizeof(t))) |
62 | #define N_NEW(n,t) ((t*)calloc(n,sizeof(t))) |
63 | |
64 | #define PI 3.14159265358979323846 |
65 | |
66 | #define TRUE 1 |
67 | #define FALSE 0 |
68 | typedef unsigned char boolean; |
69 | |
70 | typedef struct pointf_s { |
71 | double x, y; |
72 | } pointf; |
73 | typedef struct Ppoly_t { |
74 | pointf *ps; |
75 | int pn; |
76 | } Ppoly_t; |
77 | |
78 | typedef Ppoly_t Ppolyline_t; |
79 | #else |
80 | #include "render.h" |
81 | #include "pathplan.h" |
82 | #endif |
83 | |
84 | #define TWOPI (2*M_PI) |
85 | |
86 | typedef struct { |
87 | double cx, cy; /* center */ |
88 | double a, b; /* semi-major and -minor axes */ |
89 | |
90 | /* Orientation of the major axis with respect to the x axis. */ |
91 | double theta, cosTheta, sinTheta; |
92 | |
93 | /* Start and end angles of the arc. */ |
94 | double eta1, eta2; |
95 | |
96 | /* Position of the start and end points. */ |
97 | double x1, y1, x2, y2; |
98 | |
99 | /* Position of the foci. */ |
100 | double xF1, yF1, xF2, yF2; |
101 | |
102 | /* x of the leftmost point of the arc. */ |
103 | double xLeft; |
104 | |
105 | /* y of the highest point of the arc. */ |
106 | double yUp; |
107 | |
108 | /* Horizontal width and vertical height of the arc. */ |
109 | double width, height; |
110 | |
111 | double f, e2, g, g2; |
112 | } ellipse_t; |
113 | |
114 | static void computeFoci(ellipse_t * ep) |
115 | { |
116 | double d = sqrt(ep->a * ep->a - ep->b * ep->b); |
117 | double dx = d * ep->cosTheta; |
118 | double dy = d * ep->sinTheta; |
119 | |
120 | ep->xF1 = ep->cx - dx; |
121 | ep->yF1 = ep->cy - dy; |
122 | ep->xF2 = ep->cx + dx; |
123 | ep->yF2 = ep->cy + dy; |
124 | } |
125 | |
126 | /* Compute the locations of the endpoints. */ |
127 | static void computeEndPoints(ellipse_t * ep) |
128 | { |
129 | double aCosEta1 = ep->a * cos(ep->eta1); |
130 | double bSinEta1 = ep->b * sin(ep->eta1); |
131 | double aCosEta2 = ep->a * cos(ep->eta2); |
132 | double bSinEta2 = ep->b * sin(ep->eta2); |
133 | |
134 | // start point |
135 | ep->x1 = ep->cx + aCosEta1 * ep->cosTheta - bSinEta1 * ep->sinTheta; |
136 | ep->y1 = ep->cy + aCosEta1 * ep->sinTheta + bSinEta1 * ep->cosTheta; |
137 | |
138 | // end point |
139 | ep->x2 = ep->cx + aCosEta2 * ep->cosTheta - bSinEta2 * ep->sinTheta; |
140 | ep->y2 = ep->cy + aCosEta2 * ep->sinTheta + bSinEta2 * ep->cosTheta; |
141 | } |
142 | |
143 | /* Compute the bounding box. */ |
144 | static void computeBounds(ellipse_t * ep) |
145 | { |
146 | double bOnA = ep->b / ep->a; |
147 | double etaXMin, etaXMax, etaYMin, etaYMax; |
148 | |
149 | if (fabs(ep->sinTheta) < 0.1) { |
150 | double tanTheta = ep->sinTheta / ep->cosTheta; |
151 | if (ep->cosTheta < 0) { |
152 | etaXMin = -atan(tanTheta * bOnA); |
153 | etaXMax = etaXMin + M_PI; |
154 | etaYMin = 0.5 * M_PI - atan(tanTheta / bOnA); |
155 | etaYMax = etaYMin + M_PI; |
156 | } else { |
157 | etaXMax = -atan(tanTheta * bOnA); |
158 | etaXMin = etaXMax - M_PI; |
159 | etaYMax = 0.5 * M_PI - atan(tanTheta / bOnA); |
160 | etaYMin = etaYMax - M_PI; |
161 | } |
162 | } else { |
163 | double invTanTheta = ep->cosTheta / ep->sinTheta; |
164 | if (ep->sinTheta < 0) { |
165 | etaXMax = 0.5 * M_PI + atan(invTanTheta / bOnA); |
166 | etaXMin = etaXMax - M_PI; |
167 | etaYMin = atan(invTanTheta * bOnA); |
168 | etaYMax = etaYMin + M_PI; |
169 | } else { |
170 | etaXMin = 0.5 * M_PI + atan(invTanTheta / bOnA); |
171 | etaXMax = etaXMin + M_PI; |
172 | etaYMax = atan(invTanTheta * bOnA); |
173 | etaYMin = etaYMax - M_PI; |
174 | } |
175 | } |
176 | |
177 | etaXMin -= (TWOPI * floor((etaXMin - ep->eta1) / TWOPI)); |
178 | etaYMin -= (TWOPI * floor((etaYMin - ep->eta1) / TWOPI)); |
179 | etaXMax -= (TWOPI * floor((etaXMax - ep->eta1) / TWOPI)); |
180 | etaYMax -= (TWOPI * floor((etaYMax - ep->eta1) / TWOPI)); |
181 | |
182 | ep->xLeft = (etaXMin <= ep->eta2) |
183 | ? (ep->cx + ep->a * cos(etaXMin) * ep->cosTheta - |
184 | ep->b * sin(etaXMin) * ep->sinTheta) |
185 | : MIN(ep->x1, ep->x2); |
186 | ep->yUp = (etaYMin <= ep->eta2) |
187 | ? (ep->cy + ep->a * cos(etaYMin) * ep->sinTheta + |
188 | ep->b * sin(etaYMin) * ep->cosTheta) |
189 | : MIN(ep->y1, ep->y2); |
190 | ep->width = ((etaXMax <= ep->eta2) |
191 | ? (ep->cx + ep->a * cos(etaXMax) * ep->cosTheta - |
192 | ep->b * sin(etaXMax) * ep->sinTheta) |
193 | : MAX(ep->x1, ep->x2)) - ep->xLeft; |
194 | ep->height = ((etaYMax <= ep->eta2) |
195 | ? (ep->cy + ep->a * cos(etaYMax) * ep->sinTheta + |
196 | ep->b * sin(etaYMax) * ep->cosTheta) |
197 | : MAX(ep->y1, ep->y2)) - ep->yUp; |
198 | |
199 | } |
200 | |
201 | static void |
202 | initEllipse(ellipse_t * ep, double cx, double cy, double a, double b, |
203 | double theta, double lambda1, double lambda2) |
204 | { |
205 | ep->cx = cx; |
206 | ep->cy = cy; |
207 | ep->a = a; |
208 | ep->b = b; |
209 | ep->theta = theta; |
210 | |
211 | ep->eta1 = atan2(sin(lambda1) / b, cos(lambda1) / a); |
212 | ep->eta2 = atan2(sin(lambda2) / b, cos(lambda2) / a); |
213 | ep->cosTheta = cos(theta); |
214 | ep->sinTheta = sin(theta); |
215 | |
216 | // make sure we have eta1 <= eta2 <= eta1 + 2*PI |
217 | ep->eta2 -= TWOPI * floor((ep->eta2 - ep->eta1) / TWOPI); |
218 | |
219 | // the preceding correction fails if we have exactly eta2 - eta1 = 2*PI |
220 | // it reduces the interval to zero length |
221 | if ((lambda2 - lambda1 > M_PI) && (ep->eta2 - ep->eta1 < M_PI)) { |
222 | ep->eta2 += TWOPI; |
223 | } |
224 | |
225 | computeFoci(ep); |
226 | computeEndPoints(ep); |
227 | computeBounds(ep); |
228 | |
229 | /* Flatness parameters */ |
230 | ep->f = (ep->a - ep->b) / ep->a; |
231 | ep->e2 = ep->f * (2.0 - ep->f); |
232 | ep->g = 1.0 - ep->f; |
233 | ep->g2 = ep->g * ep->g; |
234 | } |
235 | |
236 | typedef double erray_t[2][4][4]; |
237 | |
238 | // coefficients for error estimation |
239 | // while using quadratic Bezier curves for approximation |
240 | // 0 < b/a < 1/4 |
241 | static erray_t coeffs2Low = { |
242 | { |
243 | {3.92478, -13.5822, -0.233377, 0.0128206}, |
244 | {-1.08814, 0.859987, 0.000362265, 0.000229036}, |
245 | {-0.942512, 0.390456, 0.0080909, 0.00723895}, |
246 | {-0.736228, 0.20998, 0.0129867, 0.0103456} |
247 | }, |
248 | { |
249 | {-0.395018, 6.82464, 0.0995293, 0.0122198}, |
250 | {-0.545608, 0.0774863, 0.0267327, 0.0132482}, |
251 | {0.0534754, -0.0884167, 0.012595, 0.0343396}, |
252 | {0.209052, -0.0599987, -0.00723897, 0.00789976} |
253 | } |
254 | }; |
255 | |
256 | // coefficients for error estimation |
257 | // while using quadratic Bezier curves for approximation |
258 | // 1/4 <= b/a <= 1 |
259 | static erray_t coeffs2High = { |
260 | { |
261 | {0.0863805, -11.5595, -2.68765, 0.181224}, |
262 | {0.242856, -1.81073, 1.56876, 1.68544}, |
263 | {0.233337, -0.455621, 0.222856, 0.403469}, |
264 | {0.0612978, -0.104879, 0.0446799, 0.00867312} |
265 | }, |
266 | { |
267 | {0.028973, 6.68407, 0.171472, 0.0211706}, |
268 | {0.0307674, -0.0517815, 0.0216803, -0.0749348}, |
269 | {-0.0471179, 0.1288, -0.0781702, 2.0}, |
270 | {-0.0309683, 0.0531557, -0.0227191, 0.0434511} |
271 | } |
272 | }; |
273 | |
274 | // safety factor to convert the "best" error approximation |
275 | // into a "max bound" error |
276 | static double safety2[] = { |
277 | 0.02, 2.83, 0.125, 0.01 |
278 | }; |
279 | |
280 | // coefficients for error estimation |
281 | // while using cubic Bezier curves for approximation |
282 | // 0 < b/a < 1/4 |
283 | static erray_t coeffs3Low = { |
284 | { |
285 | {3.85268, -21.229, -0.330434, 0.0127842}, |
286 | {-1.61486, 0.706564, 0.225945, 0.263682}, |
287 | {-0.910164, 0.388383, 0.00551445, 0.00671814}, |
288 | {-0.630184, 0.192402, 0.0098871, 0.0102527} |
289 | }, |
290 | { |
291 | {-0.162211, 9.94329, 0.13723, 0.0124084}, |
292 | {-0.253135, 0.00187735, 0.0230286, 0.01264}, |
293 | {-0.0695069, -0.0437594, 0.0120636, 0.0163087}, |
294 | {-0.0328856, -0.00926032, -0.00173573, 0.00527385} |
295 | } |
296 | }; |
297 | |
298 | // coefficients for error estimation |
299 | // while using cubic Bezier curves for approximation |
300 | // 1/4 <= b/a <= 1 |
301 | static erray_t coeffs3High = { |
302 | { |
303 | {0.0899116, -19.2349, -4.11711, 0.183362}, |
304 | {0.138148, -1.45804, 1.32044, 1.38474}, |
305 | {0.230903, -0.450262, 0.219963, 0.414038}, |
306 | {0.0590565, -0.101062, 0.0430592, 0.0204699} |
307 | }, |
308 | { |
309 | {0.0164649, 9.89394, 0.0919496, 0.00760802}, |
310 | {0.0191603, -0.0322058, 0.0134667, -0.0825018}, |
311 | {0.0156192, -0.017535, 0.00326508, -0.228157}, |
312 | {-0.0236752, 0.0405821, -0.0173086, 0.176187} |
313 | } |
314 | }; |
315 | |
316 | // safety factor to convert the "best" error approximation |
317 | // into a "max bound" error |
318 | static double safety3[] = { |
319 | 0.001, 4.98, 0.207, 0.0067 |
320 | }; |
321 | |
322 | /* Compute the value of a rational function. |
323 | * This method handles rational functions where the numerator is |
324 | * quadratic and the denominator is linear |
325 | */ |
326 | #define RationalFunction(x,c) ((x * (x * c[0] + c[1]) + c[2]) / (x + c[3])) |
327 | |
328 | /* Estimate the approximation error for a sub-arc of the instance. |
329 | * degree specifies degree of the Bezier curve to use (1, 2 or 3) |
330 | * tA and tB give the start and end angle of the subarc |
331 | * Returns upper bound of the approximation error between the Bezier |
332 | * curve and the real ellipse |
333 | */ |
334 | static double |
335 | estimateError(ellipse_t * ep, int degree, double etaA, double etaB) |
336 | { |
337 | double c0, c1, eta = 0.5 * (etaA + etaB); |
338 | |
339 | if (degree < 2) { |
340 | |
341 | // start point |
342 | double aCosEtaA = ep->a * cos(etaA); |
343 | double bSinEtaA = ep->b * sin(etaA); |
344 | double xA = |
345 | ep->cx + aCosEtaA * ep->cosTheta - bSinEtaA * ep->sinTheta; |
346 | double yA = |
347 | ep->cy + aCosEtaA * ep->sinTheta + bSinEtaA * ep->cosTheta; |
348 | |
349 | // end point |
350 | double aCosEtaB = ep->a * cos(etaB); |
351 | double bSinEtaB = ep->b * sin(etaB); |
352 | double xB = |
353 | ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta; |
354 | double yB = |
355 | ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta; |
356 | |
357 | // maximal error point |
358 | double aCosEta = ep->a * cos(eta); |
359 | double bSinEta = ep->b * sin(eta); |
360 | double x = |
361 | ep->cx + aCosEta * ep->cosTheta - bSinEta * ep->sinTheta; |
362 | double y = |
363 | ep->cy + aCosEta * ep->sinTheta + bSinEta * ep->cosTheta; |
364 | |
365 | double dx = xB - xA; |
366 | double dy = yB - yA; |
367 | |
368 | return fabs(x * dy - y * dx + xB * yA - xA * yB) |
369 | / sqrt(dx * dx + dy * dy); |
370 | |
371 | } else { |
372 | |
373 | double x = ep->b / ep->a; |
374 | double dEta = etaB - etaA; |
375 | double cos2 = cos(2 * eta); |
376 | double cos4 = cos(4 * eta); |
377 | double cos6 = cos(6 * eta); |
378 | |
379 | // select the right coefficient's set according to degree and b/a |
380 | double (*coeffs)[4][4]; |
381 | double *safety; |
382 | if (degree == 2) { |
383 | coeffs = (x < 0.25) ? coeffs2Low : coeffs2High; |
384 | safety = safety2; |
385 | } else { |
386 | coeffs = (x < 0.25) ? coeffs3Low : coeffs3High; |
387 | safety = safety3; |
388 | } |
389 | |
390 | c0 = RationalFunction(x, coeffs[0][0]) |
391 | + cos2 * RationalFunction(x, coeffs[0][1]) |
392 | + cos4 * RationalFunction(x, coeffs[0][2]) |
393 | + cos6 * RationalFunction(x, coeffs[0][3]); |
394 | |
395 | c1 = RationalFunction(x, coeffs[1][0]) |
396 | + cos2 * RationalFunction(x, coeffs[1][1]) |
397 | + cos4 * RationalFunction(x, coeffs[1][2]) |
398 | + cos6 * RationalFunction(x, coeffs[1][3]); |
399 | |
400 | return RationalFunction(x, safety) * ep->a * exp(c0 + c1 * dEta); |
401 | } |
402 | } |
403 | |
404 | /* Non-reentrant code to append points to a Bezier path |
405 | * Assume initial call to moveTo to initialize, followed by |
406 | * calls to curveTo and lineTo, and finished with endPath. |
407 | */ |
408 | static int bufsize; |
409 | |
410 | static void moveTo(Ppolyline_t * path, double x, double y) |
411 | { |
412 | bufsize = 100; |
413 | path->ps = N_NEW(bufsize, pointf); |
414 | path->ps[0].x = x; |
415 | path->ps[0].y = y; |
416 | path->pn = 1; |
417 | } |
418 | |
419 | static void |
420 | curveTo(Ppolyline_t * path, double x1, double y1, |
421 | double x2, double y2, double x3, double y3) |
422 | { |
423 | if (path->pn + 3 >= bufsize) { |
424 | bufsize *= 2; |
425 | path->ps = realloc(path->ps, bufsize * sizeof(pointf)); |
426 | } |
427 | path->ps[path->pn].x = x1; |
428 | path->ps[path->pn++].y = y1; |
429 | path->ps[path->pn].x = x2; |
430 | path->ps[path->pn++].y = y2; |
431 | path->ps[path->pn].x = x3; |
432 | path->ps[path->pn++].y = y3; |
433 | } |
434 | |
435 | static void lineTo(Ppolyline_t * path, double x, double y) |
436 | { |
437 | pointf curp = path->ps[path->pn - 1]; |
438 | curveTo(path, curp.x, curp.y, x, y, x, y); |
439 | } |
440 | |
441 | static void endPath(Ppolyline_t * path, boolean close) |
442 | { |
443 | if (close) { |
444 | pointf p0 = path->ps[0]; |
445 | lineTo(path, p0.x, p0.y); |
446 | } |
447 | |
448 | path->ps = realloc(path->ps, path->pn * sizeof(pointf)); |
449 | bufsize = 0; |
450 | } |
451 | |
452 | /* genEllipticPath: |
453 | * Approximate an elliptical arc via Beziers of given degree |
454 | * threshold indicates quality of approximation |
455 | * if isSlice is true, the path begins and ends with line segments |
456 | * to the center of the ellipse. |
457 | * Returned path must be freed by the caller. |
458 | */ |
459 | static Ppolyline_t *genEllipticPath(ellipse_t * ep, int degree, |
460 | double threshold, boolean isSlice) |
461 | { |
462 | double dEta; |
463 | double etaB; |
464 | double cosEtaB; |
465 | double sinEtaB; |
466 | double aCosEtaB; |
467 | double bSinEtaB; |
468 | double aSinEtaB; |
469 | double bCosEtaB; |
470 | double xB; |
471 | double yB; |
472 | double xBDot; |
473 | double yBDot; |
474 | double t; |
475 | double alpha; |
476 | Ppolyline_t *path = NEW(Ppolyline_t); |
477 | |
478 | // find the number of Bezier curves needed |
479 | boolean found = FALSE; |
480 | int i, n = 1; |
481 | while ((!found) && (n < 1024)) { |
482 | double dEta = (ep->eta2 - ep->eta1) / n; |
483 | if (dEta <= 0.5 * M_PI) { |
484 | double etaB = ep->eta1; |
485 | found = TRUE; |
486 | for (i = 0; found && (i < n); ++i) { |
487 | double etaA = etaB; |
488 | etaB += dEta; |
489 | found = |
490 | (estimateError(ep, degree, etaA, etaB) <= threshold); |
491 | } |
492 | } |
493 | n = n << 1; |
494 | } |
495 | |
496 | dEta = (ep->eta2 - ep->eta1) / n; |
497 | etaB = ep->eta1; |
498 | |
499 | cosEtaB = cos(etaB); |
500 | sinEtaB = sin(etaB); |
501 | aCosEtaB = ep->a * cosEtaB; |
502 | bSinEtaB = ep->b * sinEtaB; |
503 | aSinEtaB = ep->a * sinEtaB; |
504 | bCosEtaB = ep->b * cosEtaB; |
505 | xB = ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta; |
506 | yB = ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta; |
507 | xBDot = -aSinEtaB * ep->cosTheta - bCosEtaB * ep->sinTheta; |
508 | yBDot = -aSinEtaB * ep->sinTheta + bCosEtaB * ep->cosTheta; |
509 | |
510 | if (isSlice) { |
511 | moveTo(path, ep->cx, ep->cy); |
512 | lineTo(path, xB, yB); |
513 | } else { |
514 | moveTo(path, xB, yB); |
515 | } |
516 | |
517 | t = tan(0.5 * dEta); |
518 | alpha = sin(dEta) * (sqrt(4 + 3 * t * t) - 1) / 3; |
519 | |
520 | for (i = 0; i < n; ++i) { |
521 | |
522 | double xA = xB; |
523 | double yA = yB; |
524 | double xADot = xBDot; |
525 | double yADot = yBDot; |
526 | |
527 | etaB += dEta; |
528 | cosEtaB = cos(etaB); |
529 | sinEtaB = sin(etaB); |
530 | aCosEtaB = ep->a * cosEtaB; |
531 | bSinEtaB = ep->b * sinEtaB; |
532 | aSinEtaB = ep->a * sinEtaB; |
533 | bCosEtaB = ep->b * cosEtaB; |
534 | xB = ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta; |
535 | yB = ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta; |
536 | xBDot = -aSinEtaB * ep->cosTheta - bCosEtaB * ep->sinTheta; |
537 | yBDot = -aSinEtaB * ep->sinTheta + bCosEtaB * ep->cosTheta; |
538 | |
539 | if (degree == 1) { |
540 | lineTo(path, xB, yB); |
541 | #if DO_QUAD |
542 | } else if (degree == 2) { |
543 | double k = (yBDot * (xB - xA) - xBDot * (yB - yA)) |
544 | / (xADot * yBDot - yADot * xBDot); |
545 | quadTo(path, (xA + k * xADot), (yA + k * yADot), xB, yB); |
546 | #endif |
547 | } else { |
548 | curveTo(path, (xA + alpha * xADot), (yA + alpha * yADot), |
549 | (xB - alpha * xBDot), (yB - alpha * yBDot), xB, yB); |
550 | } |
551 | |
552 | } |
553 | |
554 | endPath(path, isSlice); |
555 | |
556 | return path; |
557 | } |
558 | |
559 | /* ellipticWedge: |
560 | * Return a cubic Bezier for an elliptical wedge, with center ctr, x and y |
561 | * semi-axes xsemi and ysemi, start angle angle0 and end angle angle1. |
562 | * This includes beginning and ending line segments to the ellipse center. |
563 | * Calling function must free storage of returned path. |
564 | */ |
565 | Ppolyline_t *ellipticWedge(pointf ctr, double xsemi, double ysemi, |
566 | double angle0, double angle1) |
567 | { |
568 | ellipse_t ell; |
569 | Ppolyline_t *pp; |
570 | |
571 | initEllipse(&ell, ctr.x, ctr.y, xsemi, ysemi, 0, angle0, angle1); |
572 | pp = genEllipticPath(&ell, 3, 0.00001, 1); |
573 | return pp; |
574 | } |
575 | |
576 | #ifdef STANDALONE |
577 | main() |
578 | { |
579 | ellipse_t ell; |
580 | Ppolyline_t *pp; |
581 | int i; |
582 | |
583 | initEllipse(&ell, 200, 200, 100, 50, 0, M_PI / 4, 3 * M_PI / 2); |
584 | pp = genEllipticPath(&ell, 3, 0.00001, 1); |
585 | |
586 | printf("newpath %.02lf %.02lf moveto\n" , pp->ps[0].x, pp->ps[0].y); |
587 | for (i = 1; i < pp->pn; i += 3) { |
588 | printf("%.02lf %.02lf %.02lf %.02lf %.02lf %.02lf curveto\n" , |
589 | pp->ps[i].x, pp->ps[i].y, |
590 | pp->ps[i + 1].x, pp->ps[i + 1].y, |
591 | pp->ps[i + 2].x, pp->ps[i + 2].y); |
592 | } |
593 | printf("stroke showpage\n" ); |
594 | |
595 | } |
596 | #endif |
597 | |