| 1 | /* $Id$ $Revision$ */ | 
| 2 | /* vim:set shiftwidth=4 ts=8: */ | 
| 3 |  | 
| 4 | /************************************************************************* | 
| 5 |  * Copyright (c) 2011 AT&T Intellectual Property  | 
| 6 |  * All rights reserved. This program and the accompanying materials | 
| 7 |  * are made available under the terms of the Eclipse Public License v1.0 | 
| 8 |  * which accompanies this distribution, and is available at | 
| 9 |  * http://www.eclipse.org/legal/epl-v10.html | 
| 10 |  * | 
| 11 |  * Contributors: See CVS logs. Details at http://www.graphviz.org/ | 
| 12 |  *************************************************************************/ | 
| 13 |  | 
| 14 | /* geometric functions (e.g. on points and boxes) with application to, but | 
| 15 |  * no specific dependence on graphs */ | 
| 16 |  | 
| 17 | #include "config.h" | 
| 18 |  | 
| 19 | #include "geom.h" | 
| 20 | #include "geomprocs.h" | 
| 21 | #ifdef _WIN32 | 
| 22 | #define inline  | 
| 23 | #endif | 
| 24 |  | 
| 25 | box mkbox(point p, point q) | 
| 26 | { | 
| 27 |     box r; | 
| 28 |  | 
| 29 |     if (p.x < q.x) { | 
| 30 | 	r.LL.x = p.x; | 
| 31 | 	r.UR.x = q.x; | 
| 32 |     } else { | 
| 33 | 	r.LL.x = q.x; | 
| 34 | 	r.UR.x = p.x; | 
| 35 |     } | 
| 36 |     if (p.y < q.y) { | 
| 37 | 	r.LL.y = p.y; | 
| 38 | 	r.UR.y = q.y; | 
| 39 |     } else { | 
| 40 | 	r.LL.y = q.y; | 
| 41 | 	r.UR.y = p.y; | 
| 42 |     } | 
| 43 |     return r; | 
| 44 | } | 
| 45 |  | 
| 46 | boxf mkboxf(pointf p, pointf q) | 
| 47 | { | 
| 48 |     boxf r; | 
| 49 |  | 
| 50 |     if (p.x < q.x) { | 
| 51 | 	r.LL.x = p.x; | 
| 52 | 	r.UR.x = q.x; | 
| 53 |     } else { | 
| 54 | 	r.LL.x = q.x; | 
| 55 | 	r.UR.x = p.x; | 
| 56 |     } | 
| 57 |     if (p.y < q.y) { | 
| 58 | 	r.LL.y = p.y; | 
| 59 | 	r.UR.y = q.y; | 
| 60 |     } else { | 
| 61 | 	r.LL.y = q.y; | 
| 62 | 	r.UR.y = p.y; | 
| 63 |     } | 
| 64 |     return r; | 
| 65 | } | 
| 66 |  | 
| 67 | /* | 
| 68 |  *-------------------------------------------------------------- | 
| 69 |  * | 
| 70 |  * lineToBox -- | 
| 71 |  * | 
| 72 |  *      Determine whether a line lies entirely inside, entirely | 
| 73 |  *      outside, or overlapping a given rectangular area. | 
| 74 |  * | 
| 75 |  * Results: | 
| 76 |  *      -1 is returned if the line given by p and q | 
| 77 |  *      is entirely outside the rectangle given by b. | 
| 78 |  * 	0 is returned if the polygon overlaps the rectangle, and | 
| 79 |  *	1 is returned if the polygon is entirely inside the rectangle. | 
| 80 |  * | 
| 81 |  * Side effects: | 
| 82 |  *      None. | 
| 83 |  * | 
| 84 |  *-------------------------------------------------------------- | 
| 85 |  */ | 
| 86 |  | 
| 87 | /* This code steals liberally from algorithms in tk/generic/tkTrig.c -- jce */ | 
| 88 |  | 
| 89 | int lineToBox(pointf p, pointf q, boxf b) | 
| 90 | { | 
| 91 |     int inside1, inside2; | 
| 92 |  | 
| 93 |     /* | 
| 94 |      * First check the two points individually to see whether they | 
| 95 |      * are inside the rectangle or not. | 
| 96 |      */ | 
| 97 |  | 
| 98 |     inside1 = (p.x >= b.LL.x) && (p.x <= b.UR.x) | 
| 99 |             && (p.y >= b.LL.y) && (p.y <= b.UR.y); | 
| 100 |     inside2 = (q.x >= b.LL.x) && (q.x <= b.UR.x) | 
| 101 |             && (q.y >= b.LL.y) && (q.y <= b.UR.y); | 
| 102 |     if (inside1 != inside2) { | 
| 103 |         return 0; | 
| 104 |     } | 
| 105 |     if (inside1 & inside2) { | 
| 106 |         return 1; | 
| 107 |     } | 
| 108 |  | 
| 109 |     /* | 
| 110 |      * Both points are outside the rectangle, but still need to check | 
| 111 |      * for intersections between the line and the rectangle.  Horizontal | 
| 112 |      * and vertical lines are particularly easy, so handle them | 
| 113 |      * separately. | 
| 114 |      */ | 
| 115 |  | 
| 116 |     if (p.x == q.x) { | 
| 117 |         /* | 
| 118 |          * Vertical line. | 
| 119 |          */ | 
| 120 |  | 
| 121 |         if (((p.y >= b.LL.y) ^ (q.y >= b.LL.y)) | 
| 122 |                 && (p.x >= b.LL.x) | 
| 123 |                 && (p.x <= b.UR.x)) { | 
| 124 |             return 0; | 
| 125 |         } | 
| 126 |     } else if (p.y == q.y) { | 
| 127 |         /* | 
| 128 |          * Horizontal line. | 
| 129 |          */ | 
| 130 |         if (((p.x >= b.LL.x) ^ (q.x >= b.LL.x)) | 
| 131 |                 && (p.y >= b.LL.y) | 
| 132 |                 && (p.y <= b.UR.y)) { | 
| 133 |             return 0; | 
| 134 |         } | 
| 135 |     } else { | 
| 136 |         double m, x, y, low, high; | 
| 137 |  | 
| 138 |         /* | 
| 139 |          * Diagonal line.  Compute slope of line and use | 
| 140 |          * for intersection checks against each of the | 
| 141 |          * sides of the rectangle: left, right, bottom, top. | 
| 142 |          */ | 
| 143 |  | 
| 144 |         m = (q.y - p.y)/(q.x - p.x); | 
| 145 |         if (p.x < q.x) { | 
| 146 |             low = p.x;  high = q.x; | 
| 147 |         } else { | 
| 148 |             low = q.x; high = p.x; | 
| 149 |         } | 
| 150 |  | 
| 151 |         /* | 
| 152 |          * Left edge. | 
| 153 |          */ | 
| 154 |  | 
| 155 |         y = p.y + (b.LL.x - p.x)*m; | 
| 156 |         if ((b.LL.x >= low) && (b.LL.x <= high) | 
| 157 |                 && (y >= b.LL.y) && (y <= b.UR.y)) { | 
| 158 |             return 0; | 
| 159 |         } | 
| 160 |  | 
| 161 |         /* | 
| 162 |          * Right edge. | 
| 163 |          */ | 
| 164 |  | 
| 165 |         y += (b.UR.x - b.LL.x)*m; | 
| 166 |         if ((y >= b.LL.y) && (y <= b.UR.y) | 
| 167 |                 && (b.UR.x >= low) && (b.UR.x <= high)) { | 
| 168 |             return 0; | 
| 169 |         } | 
| 170 |  | 
| 171 |         /* | 
| 172 |          * Bottom edge. | 
| 173 |          */ | 
| 174 |  | 
| 175 |         if (p.y < q.y) { | 
| 176 |             low = p.y;  high = q.y; | 
| 177 |         } else { | 
| 178 |             low = q.y; high = p.y; | 
| 179 |         } | 
| 180 |         x = p.x + (b.LL.y - p.y)/m; | 
| 181 |         if ((x >= b.LL.x) && (x <= b.UR.x) | 
| 182 |                 && (b.LL.y >= low) && (b.LL.y <= high)) { | 
| 183 |             return 0; | 
| 184 |         } | 
| 185 |  | 
| 186 |         /* | 
| 187 |          * Top edge. | 
| 188 |          */ | 
| 189 |  | 
| 190 |         x += (b.UR.y - b.LL.y)/m; | 
| 191 |         if ((x >= b.LL.x) && (x <= b.UR.x) | 
| 192 |                 && (b.UR.y >= low) && (b.UR.y <= high)) { | 
| 193 |             return 0; | 
| 194 |         } | 
| 195 |     } | 
| 196 |     return -1; | 
| 197 | } | 
| 198 | #ifdef WIN32_STATIC | 
| 199 | #define inline | 
| 200 | #endif | 
| 201 | void rect2poly(pointf *p) | 
| 202 | { | 
| 203 |     p[3].x = p[2].x = p[1].x; | 
| 204 |     p[2].y = p[1].y; | 
| 205 |     p[3].y = p[0].y; | 
| 206 |     p[1].x = p[0].x; | 
| 207 | } | 
| 208 |  | 
| 209 | static pointf rotatepf(pointf p, int cwrot) | 
| 210 | { | 
| 211 |     static double sina, cosa; | 
| 212 |     static int last_cwrot; | 
| 213 |     pointf P; | 
| 214 |  | 
| 215 |     /* cosa is initially wrong for a cwrot of 0 | 
| 216 |      * this caching only works because we are never called for 0 rotations */ | 
| 217 |     if (cwrot != last_cwrot) { | 
| 218 | 	sincos(cwrot / (2 * M_PI), &sina, &cosa); | 
| 219 | 	last_cwrot = cwrot; | 
| 220 |     } | 
| 221 |     P.x = p.x * cosa - p.y * sina; | 
| 222 |     P.y = p.y * cosa + p.x * sina; | 
| 223 |     return P; | 
| 224 | } | 
| 225 |  | 
| 226 | static point rotatep(point p, int cwrot) | 
| 227 | { | 
| 228 |     pointf pf; | 
| 229 |  | 
| 230 |     P2PF(p, pf); | 
| 231 |     pf = rotatepf(pf, cwrot); | 
| 232 |     PF2P(pf, p); | 
| 233 |     return p; | 
| 234 | } | 
| 235 |  | 
| 236 | point cwrotatep(point p, int cwrot) | 
| 237 | { | 
| 238 |     int x = p.x, y = p.y; | 
| 239 |     switch (cwrot) { | 
| 240 |     case 0: | 
| 241 | 	break; | 
| 242 |     case 90: | 
| 243 | 	p.x = y; | 
| 244 | 	p.y = -x; | 
| 245 | 	break; | 
| 246 |     case 180: | 
| 247 | 	p.x = x; | 
| 248 | 	p.y = -y; | 
| 249 | 	break; | 
| 250 |     case 270: | 
| 251 | 	p.x = y; | 
| 252 | 	p.y = x; | 
| 253 | 	break; | 
| 254 |     default: | 
| 255 | 	if (cwrot < 0) | 
| 256 | 	    return ccwrotatep(p, -cwrot); | 
| 257 |         if (cwrot > 360) | 
| 258 | 	    return cwrotatep(p, cwrot%360); | 
| 259 | 	return rotatep(p, cwrot); | 
| 260 |     } | 
| 261 |     return p; | 
| 262 | } | 
| 263 |  | 
| 264 | pointf cwrotatepf(pointf p, int cwrot) | 
| 265 | { | 
| 266 |     double x = p.x, y = p.y; | 
| 267 |     switch (cwrot) { | 
| 268 |     case 0: | 
| 269 | 	break; | 
| 270 |     case 90: | 
| 271 | 	p.x = y; | 
| 272 | 	p.y = -x; | 
| 273 | 	break; | 
| 274 |     case 180: | 
| 275 | 	p.x = x; | 
| 276 | 	p.y = -y; | 
| 277 | 	break; | 
| 278 |     case 270: | 
| 279 | 	p.x = y; | 
| 280 | 	p.y = x; | 
| 281 | 	break; | 
| 282 |     default: | 
| 283 | 	if (cwrot < 0) | 
| 284 | 	    return ccwrotatepf(p, -cwrot); | 
| 285 |         if (cwrot > 360) | 
| 286 | 	    return cwrotatepf(p, cwrot%360); | 
| 287 | 	return rotatepf(p, cwrot); | 
| 288 |     } | 
| 289 |     return p; | 
| 290 | } | 
| 291 |  | 
| 292 | point ccwrotatep(point p, int ccwrot) | 
| 293 | { | 
| 294 |     int x = p.x, y = p.y; | 
| 295 |     switch (ccwrot) { | 
| 296 |     case 0: | 
| 297 | 	break; | 
| 298 |     case 90: | 
| 299 | 	p.x = -y; | 
| 300 | 	p.y = x; | 
| 301 | 	break; | 
| 302 |     case 180: | 
| 303 | 	p.x = x; | 
| 304 | 	p.y = -y; | 
| 305 | 	break; | 
| 306 |     case 270: | 
| 307 | 	p.x = y; | 
| 308 | 	p.y = x; | 
| 309 | 	break; | 
| 310 |     default: | 
| 311 | 	if (ccwrot < 0) | 
| 312 | 	    return cwrotatep(p, -ccwrot); | 
| 313 |         if (ccwrot > 360) | 
| 314 | 	    return ccwrotatep(p, ccwrot%360); | 
| 315 | 	return rotatep(p, 360-ccwrot); | 
| 316 |     } | 
| 317 |     return p; | 
| 318 | } | 
| 319 |  | 
| 320 | pointf ccwrotatepf(pointf p, int ccwrot) | 
| 321 | { | 
| 322 |     double x = p.x, y = p.y; | 
| 323 |     switch (ccwrot) { | 
| 324 |     case 0: | 
| 325 | 	break; | 
| 326 |     case 90: | 
| 327 | 	p.x = -y; | 
| 328 | 	p.y = x; | 
| 329 | 	break; | 
| 330 |     case 180: | 
| 331 | 	p.x = x; | 
| 332 | 	p.y = -y; | 
| 333 | 	break; | 
| 334 |     case 270: | 
| 335 | 	p.x = y; | 
| 336 | 	p.y = x; | 
| 337 | 	break; | 
| 338 |     default: | 
| 339 | 	if (ccwrot < 0) | 
| 340 | 	    return cwrotatepf(p, -ccwrot); | 
| 341 |         if (ccwrot > 360) | 
| 342 | 	    return ccwrotatepf(p, ccwrot%360); | 
| 343 | 	return rotatepf(p, 360-ccwrot); | 
| 344 |     } | 
| 345 |     return p; | 
| 346 | } | 
| 347 |  | 
| 348 | inline box flip_rec_box(box b, point p) | 
| 349 | { | 
| 350 |     box r; | 
| 351 |     /* flip box */ | 
| 352 |     r.UR.x = b.UR.y; | 
| 353 |     r.UR.y = b.UR.x; | 
| 354 |     r.LL.x = b.LL.y; | 
| 355 |     r.LL.y = b.LL.x; | 
| 356 |     /* move box */ | 
| 357 |     r.LL.x += p.x; | 
| 358 |     r.LL.y += p.y; | 
| 359 |     r.UR.x += p.x; | 
| 360 |     r.UR.y += p.y; | 
| 361 |     return r; | 
| 362 | } | 
| 363 |  | 
| 364 | boxf flip_rec_boxf(boxf b, pointf p) | 
| 365 | { | 
| 366 |     boxf r; | 
| 367 |     /* flip box */ | 
| 368 |     r.UR.x = b.UR.y; | 
| 369 |     r.UR.y = b.UR.x; | 
| 370 |     r.LL.x = b.LL.y; | 
| 371 |     r.LL.y = b.LL.x; | 
| 372 |     /* move box */ | 
| 373 |     r.LL.x += p.x; | 
| 374 |     r.LL.y += p.y; | 
| 375 |     r.UR.x += p.x; | 
| 376 |     r.UR.y += p.y; | 
| 377 |     return r; | 
| 378 | } | 
| 379 |  | 
| 380 | #ifdef WIN32_STATIC | 
| 381 | #undef inline | 
| 382 | #endif | 
| 383 |  | 
| 384 |  | 
| 385 | #define SMALL 0.0000000001 | 
| 386 |  | 
| 387 | /* ptToLine2: | 
| 388 |  * Return distance from point p to line a-b squared. | 
| 389 |  */ | 
| 390 | double ptToLine2 (pointf a, pointf b, pointf p) | 
| 391 | { | 
| 392 |   double dx = b.x-a.x; | 
| 393 |   double dy = b.y-a.y; | 
| 394 |   double a2 = (p.y-a.y)*dx - (p.x-a.x)*dy; | 
| 395 |   a2 *= a2;   /* square - ensures that it is positive */ | 
| 396 |   if (a2 < SMALL) return 0.;  /* avoid 0/0 problems */ | 
| 397 |   return a2 / (dx*dx + dy*dy); | 
| 398 | } | 
| 399 |  | 
| 400 | #define dot(v,w) (v.x*w.x+v.y*w.y) | 
| 401 |  | 
| 402 | /* line_intersect: | 
| 403 |  * Computes intersection of lines a-b and c-d, returning intersection | 
| 404 |  * point in *p. | 
| 405 |  * Returns 0 if no intersection (lines parallel), 1 otherwise. | 
| 406 |  */ | 
| 407 | int line_intersect (pointf a, pointf b, pointf c, pointf d, pointf* p) | 
| 408 | { | 
| 409 |  | 
| 410 |     pointf mv = sub_pointf(b,a); | 
| 411 |     pointf lv = sub_pointf(d,c); | 
| 412 |     pointf ln = perp (lv); | 
| 413 |     double lc = -dot(ln,c); | 
| 414 |     double dt = dot(ln,mv); | 
| 415 |  | 
| 416 |     if (fabs(dt) < SMALL) return 0; | 
| 417 |  | 
| 418 |     *p = sub_pointf(a,scale((dot(ln,a)+lc)/dt,mv)); | 
| 419 |     return 1; | 
| 420 | } | 
| 421 |  | 
| 422 |  |