| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "config.h" |
| 15 | |
| 16 | #include "render.h" |
| 17 | #include "pathplan.h" |
| 18 | #include <setjmp.h> |
| 19 | |
| 20 | #ifdef UNUSED |
| 21 | static box *bs = NULL; |
| 22 | static int bn; |
| 23 | static int maxbn = 0; |
| 24 | #define BINC 300 |
| 25 | #endif |
| 26 | |
| 27 | #define PINC 300 |
| 28 | |
| 29 | #ifdef NOTNOW |
| 30 | static edge_t *origedge; |
| 31 | #endif |
| 32 | |
| 33 | static int nedges, nboxes; /* total no. of edges and boxes used in routing */ |
| 34 | |
| 35 | static int routeinit; |
| 36 | /* static data used across multiple edges */ |
| 37 | static pointf *ps; /* final spline points */ |
| 38 | static int maxpn; /* size of ps[] */ |
| 39 | static Ppoint_t *polypoints; /* vertices of polygon defined by boxes */ |
| 40 | static int polypointn; /* size of polypoints[] */ |
| 41 | static Pedge_t *edges; /* polygon edges passed to Proutespline */ |
| 42 | static int edgen; /* size of edges[] */ |
| 43 | |
| 44 | static int checkpath(int, boxf*, path*); |
| 45 | static int mkspacep(int size); |
| 46 | static void printpath(path * pp); |
| 47 | #ifdef DEBUG |
| 48 | static void printboxes(int boxn, boxf* boxes) |
| 49 | { |
| 50 | pointf ll, ur; |
| 51 | int bi; |
| 52 | char buf[BUFSIZ]; |
| 53 | int newcnt = Show_cnt + boxn; |
| 54 | |
| 55 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 56 | for (bi = 0; bi < boxn; bi++) { |
| 57 | ll = boxes[bi].LL, ur = boxes[bi].UR; |
| 58 | sprintf(buf, "%d %d %d %d pathbox" , (int)ll.x, (int)ll.y, (int)ur.x, (int)ur.y); |
| 59 | Show_boxes[bi+1+Show_cnt] = strdup (buf); |
| 60 | } |
| 61 | Show_cnt = newcnt; |
| 62 | Show_boxes[Show_cnt+1] = NULL; |
| 63 | } |
| 64 | |
| 65 | #if DEBUG > 1 |
| 66 | static void psprintpolypts(Ppoint_t * p, int sz) |
| 67 | { |
| 68 | int i; |
| 69 | |
| 70 | fprintf(stderr, "%%!\n" ); |
| 71 | fprintf(stderr, "%% constraint poly\n" ); |
| 72 | fprintf(stderr, "newpath\n" ); |
| 73 | for (i = 0; i < sz; i++) |
| 74 | fprintf(stderr, "%f %f %s\n" , p[i].x, p[i].y, |
| 75 | (i == 0 ? "moveto" : "lineto" )); |
| 76 | fprintf(stderr, "closepath stroke\n" ); |
| 77 | } |
| 78 | static void psprintpoint(point p) |
| 79 | { |
| 80 | fprintf(stderr, "gsave\n" ); |
| 81 | fprintf(stderr, |
| 82 | "newpath %d %d moveto %d %d 2 0 360 arc closepath fill stroke\n" , |
| 83 | p.x, p.y, p.x, p.y); |
| 84 | fprintf(stderr, "/Times-Roman findfont 4 scalefont setfont\n" ); |
| 85 | fprintf(stderr, "%d %d moveto (\\(%d,%d\\)) show\n" , p.x + 5, p.y + 5, |
| 86 | p.x, p.y); |
| 87 | fprintf(stderr, "grestore\n" ); |
| 88 | } |
| 89 | static void psprintpointf(pointf p) |
| 90 | { |
| 91 | fprintf(stderr, "gsave\n" ); |
| 92 | fprintf(stderr, |
| 93 | "newpath %.5g %.5g moveto %.5g %.5g 2 0 360 arc closepath fill stroke\n" , |
| 94 | p.x, p.y, p.x, p.y); |
| 95 | fprintf(stderr, "/Times-Roman findfont 4 scalefont setfont\n" ); |
| 96 | fprintf(stderr, "%.5g %.5g moveto (\\(%.5g,%.5g\\)) show\n" , p.x + 5, p.y + 5, |
| 97 | p.x, p.y); |
| 98 | fprintf(stderr, "grestore\n" ); |
| 99 | } |
| 100 | #endif |
| 101 | |
| 102 | static void psprintspline(Ppolyline_t spl) |
| 103 | { |
| 104 | char buf[BUFSIZ]; |
| 105 | int newcnt = Show_cnt + spl.pn + 4; |
| 106 | int li, i; |
| 107 | |
| 108 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 109 | li = Show_cnt+1; |
| 110 | Show_boxes[li++] = strdup ("%%!" ); |
| 111 | Show_boxes[li++] = strdup ("%% spline" ); |
| 112 | Show_boxes[li++] = strdup ("gsave 1 0 0 setrgbcolor newpath" ); |
| 113 | for (i = 0; i < spl.pn; i++) { |
| 114 | sprintf(buf, "%f %f %s" , spl.ps[i].x, spl.ps[i].y, |
| 115 | (i == 0) ? "moveto" : ((i % 3 == 0) ? "curveto" : "" )); |
| 116 | Show_boxes[li++] = strdup (buf); |
| 117 | } |
| 118 | Show_boxes[li++] = strdup ("stroke grestore" ); |
| 119 | Show_cnt = newcnt; |
| 120 | Show_boxes[Show_cnt+1] = NULL; |
| 121 | } |
| 122 | |
| 123 | static void psprintline(Ppolyline_t pl) |
| 124 | { |
| 125 | char buf[BUFSIZ]; |
| 126 | int newcnt = Show_cnt + pl.pn + 4; |
| 127 | int i, li; |
| 128 | |
| 129 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 130 | li = Show_cnt+1; |
| 131 | Show_boxes[li++] = strdup ("%%!" ); |
| 132 | Show_boxes[li++] = strdup ("%% line" ); |
| 133 | Show_boxes[li++] = strdup ("gsave 0 0 1 setrgbcolor newpath" ); |
| 134 | for (i = 0; i < pl.pn; i++) { |
| 135 | sprintf(buf, "%f %f %s" , pl.ps[i].x, pl.ps[i].y, |
| 136 | (i == 0 ? "moveto" : "lineto" )); |
| 137 | Show_boxes[li++] = strdup (buf); |
| 138 | } |
| 139 | Show_boxes[li++] = strdup ("stroke grestore" ); |
| 140 | Show_cnt = newcnt; |
| 141 | Show_boxes[Show_cnt+1] = NULL; |
| 142 | } |
| 143 | |
| 144 | static void psprintpoly(Ppoly_t p) |
| 145 | { |
| 146 | char buf[BUFSIZ]; |
| 147 | int newcnt = Show_cnt + p.pn + 3; |
| 148 | point tl, hd; |
| 149 | int bi, li; |
| 150 | char* pfx; |
| 151 | |
| 152 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 153 | li = Show_cnt+1; |
| 154 | Show_boxes[li++] = strdup ("%% poly list" ); |
| 155 | Show_boxes[li++] = strdup ("gsave 0 1 0 setrgbcolor" ); |
| 156 | for (bi = 0; bi < p.pn; bi++) { |
| 157 | tl.x = (int)p.ps[bi].x; |
| 158 | tl.y = (int)p.ps[bi].y; |
| 159 | hd.x = (int)p.ps[(bi+1) % p.pn].x; |
| 160 | hd.y = (int)p.ps[(bi+1) % p.pn].y; |
| 161 | if ((tl.x == hd.x) && (tl.y == hd.y)) pfx = "%%" ; |
| 162 | else pfx ="" ; |
| 163 | sprintf(buf, "%s%d %d %d %d makevec" , pfx, tl.x, tl.y, hd.x, hd.y); |
| 164 | Show_boxes[li++] = strdup (buf); |
| 165 | } |
| 166 | Show_boxes[li++] = strdup ("grestore" ); |
| 167 | |
| 168 | Show_cnt = newcnt; |
| 169 | Show_boxes[Show_cnt+1] = NULL; |
| 170 | } |
| 171 | |
| 172 | static void psprintboxes(int boxn, boxf* boxes) |
| 173 | { |
| 174 | char buf[BUFSIZ]; |
| 175 | int newcnt = Show_cnt + 5*boxn + 3; |
| 176 | pointf ll, ur; |
| 177 | int bi, li; |
| 178 | |
| 179 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 180 | li = Show_cnt+1; |
| 181 | Show_boxes[li++] = strdup ("%% box list" ); |
| 182 | Show_boxes[li++] = strdup ("gsave 0 1 0 setrgbcolor" ); |
| 183 | for (bi = 0; bi < boxn; bi++) { |
| 184 | ll = boxes[bi].LL, ur = boxes[bi].UR; |
| 185 | sprintf(buf, "newpath\n%d %d moveto" , (int)ll.x, (int)ll.y); |
| 186 | Show_boxes[li++] = strdup (buf); |
| 187 | sprintf(buf, "%d %d lineto" , (int)ll.x, (int)ur.y); |
| 188 | Show_boxes[li++] = strdup (buf); |
| 189 | sprintf(buf, "%d %d lineto" , (int)ur.x, (int)ur.y); |
| 190 | Show_boxes[li++] = strdup (buf); |
| 191 | sprintf(buf, "%d %d lineto" , (int)ur.x, (int)ll.y); |
| 192 | Show_boxes[li++] = strdup (buf); |
| 193 | Show_boxes[li++] = strdup ("closepath stroke" ); |
| 194 | } |
| 195 | Show_boxes[li++] = strdup ("grestore" ); |
| 196 | |
| 197 | Show_cnt = newcnt; |
| 198 | Show_boxes[Show_cnt+1] = NULL; |
| 199 | } |
| 200 | |
| 201 | static void psprintinit (int begin) |
| 202 | { |
| 203 | int newcnt = Show_cnt + 1; |
| 204 | |
| 205 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 206 | if (begin) |
| 207 | Show_boxes[1+Show_cnt] = strdup ("dbgstart" ); |
| 208 | else |
| 209 | Show_boxes[1+Show_cnt] = strdup ("grestore" ); |
| 210 | Show_cnt = newcnt; |
| 211 | Show_boxes[Show_cnt+1] = NULL; |
| 212 | } |
| 213 | |
| 214 | static int debugleveln(edge_t* realedge, int i) |
| 215 | { |
| 216 | return (GD_showboxes(agraphof(aghead(realedge))) == i || |
| 217 | GD_showboxes(agraphof(agtail(realedge))) == i || |
| 218 | ED_showboxes(realedge) == i || |
| 219 | ND_showboxes(aghead(realedge)) == i || |
| 220 | ND_showboxes(agtail(realedge)) == i); |
| 221 | } |
| 222 | #endif /* DEBUG */ |
| 223 | |
| 224 | |
| 225 | |
| 226 | /* simpleSplineRoute: |
| 227 | * Given a simple (ccw) polygon, route an edge from tp to hp. |
| 228 | */ |
| 229 | pointf* |
| 230 | simpleSplineRoute (pointf tp, pointf hp, Ppoly_t poly, int* n_spl_pts, |
| 231 | int polyline) |
| 232 | { |
| 233 | Ppolyline_t pl, spl; |
| 234 | Ppoint_t eps[2]; |
| 235 | Pvector_t evs[2]; |
| 236 | int i; |
| 237 | |
| 238 | eps[0].x = tp.x; |
| 239 | eps[0].y = tp.y; |
| 240 | eps[1].x = hp.x; |
| 241 | eps[1].y = hp.y; |
| 242 | if (Pshortestpath(&poly, eps, &pl) < 0) |
| 243 | return NULL; |
| 244 | |
| 245 | if (polyline) |
| 246 | make_polyline (pl, &spl); |
| 247 | else { |
| 248 | if (poly.pn > edgen) { |
| 249 | edges = ALLOC(poly.pn, edges, Pedge_t); |
| 250 | edgen = poly.pn; |
| 251 | } |
| 252 | for (i = 0; i < poly.pn; i++) { |
| 253 | edges[i].a = poly.ps[i]; |
| 254 | edges[i].b = poly.ps[(i + 1) % poly.pn]; |
| 255 | } |
| 256 | #if 0 |
| 257 | if (pp->start.constrained) { |
| 258 | evs[0].x = cos(pp->start.theta); |
| 259 | evs[0].y = sin(pp->start.theta); |
| 260 | } else |
| 261 | #endif |
| 262 | evs[0].x = evs[0].y = 0; |
| 263 | #if 0 |
| 264 | if (pp->end.constrained) { |
| 265 | evs[1].x = -cos(pp->end.theta); |
| 266 | evs[1].y = -sin(pp->end.theta); |
| 267 | } else |
| 268 | #endif |
| 269 | evs[1].x = evs[1].y = 0; |
| 270 | if (Proutespline(edges, poly.pn, pl, evs, &spl) < 0) |
| 271 | return NULL; |
| 272 | } |
| 273 | |
| 274 | if (mkspacep(spl.pn)) |
| 275 | return NULL; |
| 276 | for (i = 0; i < spl.pn; i++) { |
| 277 | ps[i] = spl.ps[i]; |
| 278 | } |
| 279 | *n_spl_pts = spl.pn; |
| 280 | return ps; |
| 281 | } |
| 282 | |
| 283 | /* routesplinesinit: |
| 284 | * Data initialized once until matching call to routeplineterm |
| 285 | * Allows recursive calls to dot |
| 286 | */ |
| 287 | int |
| 288 | routesplinesinit() |
| 289 | { |
| 290 | if (++routeinit > 1) return 0; |
| 291 | if (!(ps = N_GNEW(PINC, pointf))) { |
| 292 | agerr(AGERR, "routesplinesinit: cannot allocate ps\n" ); |
| 293 | return 1; |
| 294 | } |
| 295 | maxpn = PINC; |
| 296 | #ifdef DEBUG |
| 297 | if (Show_boxes) { |
| 298 | int i; |
| 299 | for (i = 0; Show_boxes[i]; i++) |
| 300 | free (Show_boxes[i]); |
| 301 | free (Show_boxes); |
| 302 | Show_boxes = NULL; |
| 303 | Show_cnt = 0; |
| 304 | } |
| 305 | #endif |
| 306 | nedges = 0; |
| 307 | nboxes = 0; |
| 308 | if (Verbose) |
| 309 | start_timer(); |
| 310 | return 0; |
| 311 | } |
| 312 | |
| 313 | void routesplinesterm() |
| 314 | { |
| 315 | if (--routeinit > 0) return; |
| 316 | free(ps); |
| 317 | #ifdef UNUSED |
| 318 | free(bs), bs = NULL /*, maxbn = bn = 0 */ ; |
| 319 | #endif |
| 320 | if (Verbose) |
| 321 | fprintf(stderr, |
| 322 | "routesplines: %d edges, %d boxes %.2f sec\n" , |
| 323 | nedges, nboxes, elapsed_sec()); |
| 324 | } |
| 325 | |
| 326 | static void |
| 327 | limitBoxes (boxf* boxes, int boxn, pointf *pps, int pn, int delta) |
| 328 | { |
| 329 | int bi, si, splinepi; |
| 330 | double t; |
| 331 | pointf sp[4]; |
| 332 | int num_div = delta * boxn; |
| 333 | |
| 334 | for (splinepi = 0; splinepi + 3 < pn; splinepi += 3) { |
| 335 | for (si = 0; si <= num_div; si++) { |
| 336 | t = si / (double)num_div; |
| 337 | sp[0] = pps[splinepi]; |
| 338 | sp[1] = pps[splinepi + 1]; |
| 339 | sp[2] = pps[splinepi + 2]; |
| 340 | sp[3] = pps[splinepi + 3]; |
| 341 | sp[0].x = sp[0].x + t * (sp[1].x - sp[0].x); |
| 342 | sp[0].y = sp[0].y + t * (sp[1].y - sp[0].y); |
| 343 | sp[1].x = sp[1].x + t * (sp[2].x - sp[1].x); |
| 344 | sp[1].y = sp[1].y + t * (sp[2].y - sp[1].y); |
| 345 | sp[2].x = sp[2].x + t * (sp[3].x - sp[2].x); |
| 346 | sp[2].y = sp[2].y + t * (sp[3].y - sp[2].y); |
| 347 | sp[0].x = sp[0].x + t * (sp[1].x - sp[0].x); |
| 348 | sp[0].y = sp[0].y + t * (sp[1].y - sp[0].y); |
| 349 | sp[1].x = sp[1].x + t * (sp[2].x - sp[1].x); |
| 350 | sp[1].y = sp[1].y + t * (sp[2].y - sp[1].y); |
| 351 | sp[0].x = sp[0].x + t * (sp[1].x - sp[0].x); |
| 352 | sp[0].y = sp[0].y + t * (sp[1].y - sp[0].y); |
| 353 | for (bi = 0; bi < boxn; bi++) { |
| 354 | /* this tested ok on 64bit machines, but on 32bit we need this FUDGE |
| 355 | * or graphs/directed/records.gv fails */ |
| 356 | #define FUDGE .0001 |
| 357 | if (sp[0].y <= boxes[bi].UR.y+FUDGE && sp[0].y >= boxes[bi].LL.y-FUDGE) { |
| 358 | if (boxes[bi].LL.x > sp[0].x) |
| 359 | boxes[bi].LL.x = sp[0].x; |
| 360 | if (boxes[bi].UR.x < sp[0].x) |
| 361 | boxes[bi].UR.x = sp[0].x; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | #define INIT_DELTA 10 |
| 369 | #define LOOP_TRIES 15 /* number of times to try to limiting boxes to regain space, using smaller divisions */ |
| 370 | |
| 371 | /* routesplines: |
| 372 | * Route a path using the path info in pp. This includes start and end points |
| 373 | * plus a collection of contiguous boxes contain the terminal points. The boxes |
| 374 | * are converted into a containing polygon. A shortest path is constructed within |
| 375 | * the polygon from between the terminal points. If polyline is true, this path |
| 376 | * is converted to a spline representation. Otherwise, we call the path planner to |
| 377 | * convert the polyline into a smooth spline staying within the polygon. In both |
| 378 | * cases, the function returns an array of the computed control points. The number |
| 379 | * of these points is given in npoints. |
| 380 | * |
| 381 | * Note that the returned points are stored in a single array, so the points must be |
| 382 | * used before another call to this function. |
| 383 | * |
| 384 | * During cleanup, the function determines the x-extent of the spline in the box, so |
| 385 | * the box can be shrunk to the minimum width. The extra space can then be used by other |
| 386 | * edges. |
| 387 | * |
| 388 | * If a catastrophic error, return NULL and npoints is 0. |
| 389 | */ |
| 390 | static pointf *_routesplines(path * pp, int *npoints, int polyline) |
| 391 | { |
| 392 | Ppoly_t poly; |
| 393 | Ppolyline_t pl, spl; |
| 394 | int splinepi; |
| 395 | Ppoint_t eps[2]; |
| 396 | Pvector_t evs[2]; |
| 397 | int edgei, prev, next; |
| 398 | int pi, bi; |
| 399 | boxf *boxes; |
| 400 | int boxn; |
| 401 | edge_t* realedge; |
| 402 | int flip; |
| 403 | int loopcnt, delta = INIT_DELTA; |
| 404 | boolean unbounded; |
| 405 | |
| 406 | *npoints = 0; |
| 407 | nedges++; |
| 408 | nboxes += pp->nbox; |
| 409 | |
| 410 | for (realedge = (edge_t *) pp->data; |
| 411 | #ifdef NOTNOW |
| 412 | origedge = realedge; |
| 413 | #endif |
| 414 | realedge && ED_edge_type(realedge) != NORMAL; |
| 415 | realedge = ED_to_orig(realedge)); |
| 416 | if (!realedge) { |
| 417 | agerr(AGERR, "in routesplines, cannot find NORMAL edge\n" ); |
| 418 | return NULL; |
| 419 | } |
| 420 | |
| 421 | boxes = pp->boxes; |
| 422 | boxn = pp->nbox; |
| 423 | |
| 424 | if (checkpath(boxn, boxes, pp)) |
| 425 | return NULL; |
| 426 | |
| 427 | #ifdef DEBUG |
| 428 | if (debugleveln(realedge, 1)) |
| 429 | printboxes(boxn, boxes); |
| 430 | if (debugleveln(realedge, 3)) { |
| 431 | psprintinit(1); |
| 432 | psprintboxes(boxn, boxes); |
| 433 | } |
| 434 | #endif |
| 435 | |
| 436 | if (boxn * 8 > polypointn) { |
| 437 | polypoints = ALLOC(boxn * 8, polypoints, Ppoint_t); |
| 438 | polypointn = boxn * 8; |
| 439 | } |
| 440 | |
| 441 | if ((boxn > 1) && (boxes[0].LL.y > boxes[1].LL.y)) { |
| 442 | flip = 1; |
| 443 | for (bi = 0; bi < boxn; bi++) { |
| 444 | double v = boxes[bi].UR.y; |
| 445 | boxes[bi].UR.y = -1*boxes[bi].LL.y; |
| 446 | boxes[bi].LL.y = -v; |
| 447 | } |
| 448 | } |
| 449 | else flip = 0; |
| 450 | |
| 451 | if (agtail(realedge) != aghead(realedge)) { |
| 452 | /* I assume that the path goes either down only or |
| 453 | up - right - down */ |
| 454 | for (bi = 0, pi = 0; bi < boxn; bi++) { |
| 455 | next = prev = 0; |
| 456 | if (bi > 0) |
| 457 | prev = (boxes[bi].LL.y > boxes[bi - 1].LL.y) ? -1 : 1; |
| 458 | if (bi < boxn - 1) |
| 459 | next = (boxes[bi + 1].LL.y > boxes[bi].LL.y) ? 1 : -1; |
| 460 | if (prev != next) { |
| 461 | if (next == -1 || prev == 1) { |
| 462 | polypoints[pi].x = boxes[bi].LL.x; |
| 463 | polypoints[pi++].y = boxes[bi].UR.y; |
| 464 | polypoints[pi].x = boxes[bi].LL.x; |
| 465 | polypoints[pi++].y = boxes[bi].LL.y; |
| 466 | } else { |
| 467 | polypoints[pi].x = boxes[bi].UR.x; |
| 468 | polypoints[pi++].y = boxes[bi].LL.y; |
| 469 | polypoints[pi].x = boxes[bi].UR.x; |
| 470 | polypoints[pi++].y = boxes[bi].UR.y; |
| 471 | } |
| 472 | } |
| 473 | else if (prev == 0) { /* single box */ |
| 474 | polypoints[pi].x = boxes[bi].LL.x; |
| 475 | polypoints[pi++].y = boxes[bi].UR.y; |
| 476 | polypoints[pi].x = boxes[bi].LL.x; |
| 477 | polypoints[pi++].y = boxes[bi].LL.y; |
| 478 | } |
| 479 | else { |
| 480 | if (!(prev == -1 && next == -1)) { |
| 481 | agerr(AGERR, "in routesplines, illegal values of prev %d and next %d, line %d\n" , prev, next, __LINE__); |
| 482 | return NULL; |
| 483 | } |
| 484 | } |
| 485 | } |
| 486 | for (bi = boxn - 1; bi >= 0; bi--) { |
| 487 | next = prev = 0; |
| 488 | if (bi < boxn - 1) |
| 489 | prev = (boxes[bi].LL.y > boxes[bi + 1].LL.y) ? -1 : 1; |
| 490 | if (bi > 0) |
| 491 | next = (boxes[bi - 1].LL.y > boxes[bi].LL.y) ? 1 : -1; |
| 492 | if (prev != next) { |
| 493 | if (next == -1 || prev == 1 ) { |
| 494 | polypoints[pi].x = boxes[bi].LL.x; |
| 495 | polypoints[pi++].y = boxes[bi].UR.y; |
| 496 | polypoints[pi].x = boxes[bi].LL.x; |
| 497 | polypoints[pi++].y = boxes[bi].LL.y; |
| 498 | } else { |
| 499 | polypoints[pi].x = boxes[bi].UR.x; |
| 500 | polypoints[pi++].y = boxes[bi].LL.y; |
| 501 | polypoints[pi].x = boxes[bi].UR.x; |
| 502 | polypoints[pi++].y = boxes[bi].UR.y; |
| 503 | } |
| 504 | } |
| 505 | else if (prev == 0) { /* single box */ |
| 506 | polypoints[pi].x = boxes[bi].UR.x; |
| 507 | polypoints[pi++].y = boxes[bi].LL.y; |
| 508 | polypoints[pi].x = boxes[bi].UR.x; |
| 509 | polypoints[pi++].y = boxes[bi].UR.y; |
| 510 | } |
| 511 | else { |
| 512 | if (!(prev == -1 && next == -1)) { |
| 513 | /* it went badly, e.g. degenerate box in boxlist */ |
| 514 | agerr(AGERR, "in routesplines, illegal values of prev %d and next %d, line %d\n" , prev, next, __LINE__); |
| 515 | return NULL; /* for correctness sake, it's best to just stop */ |
| 516 | } |
| 517 | polypoints[pi].x = boxes[bi].UR.x; |
| 518 | polypoints[pi++].y = boxes[bi].LL.y; |
| 519 | polypoints[pi].x = boxes[bi].UR.x; |
| 520 | polypoints[pi++].y = boxes[bi].UR.y; |
| 521 | polypoints[pi].x = boxes[bi].LL.x; |
| 522 | polypoints[pi++].y = boxes[bi].UR.y; |
| 523 | polypoints[pi].x = boxes[bi].LL.x; |
| 524 | polypoints[pi++].y = boxes[bi].LL.y; |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | else { |
| 529 | agerr(AGERR, "in routesplines, edge is a loop at %s\n" , agnameof(aghead(realedge))); |
| 530 | return NULL; |
| 531 | } |
| 532 | |
| 533 | if (flip) { |
| 534 | int i; |
| 535 | for (bi = 0; bi < boxn; bi++) { |
| 536 | double v = boxes[bi].UR.y; |
| 537 | boxes[bi].UR.y = -1*boxes[bi].LL.y; |
| 538 | boxes[bi].LL.y = -v; |
| 539 | } |
| 540 | for (i = 0; i < pi; i++) |
| 541 | polypoints[i].y *= -1; |
| 542 | } |
| 543 | |
| 544 | for (bi = 0; bi < boxn; bi++) |
| 545 | boxes[bi].LL.x = INT_MAX, boxes[bi].UR.x = INT_MIN; |
| 546 | poly.ps = polypoints, poly.pn = pi; |
| 547 | eps[0].x = pp->start.p.x, eps[0].y = pp->start.p.y; |
| 548 | eps[1].x = pp->end.p.x, eps[1].y = pp->end.p.y; |
| 549 | if (Pshortestpath(&poly, eps, &pl) < 0) { |
| 550 | agerr(AGERR, "in routesplines, Pshortestpath failed\n" ); |
| 551 | return NULL; |
| 552 | } |
| 553 | #ifdef DEBUG |
| 554 | if (debugleveln(realedge, 3)) { |
| 555 | psprintpoly(poly); |
| 556 | psprintline(pl); |
| 557 | } |
| 558 | #endif |
| 559 | |
| 560 | if (polyline) { |
| 561 | make_polyline (pl, &spl); |
| 562 | } |
| 563 | else { |
| 564 | if (poly.pn > edgen) { |
| 565 | edges = ALLOC(poly.pn, edges, Pedge_t); |
| 566 | edgen = poly.pn; |
| 567 | } |
| 568 | for (edgei = 0; edgei < poly.pn; edgei++) { |
| 569 | edges[edgei].a = polypoints[edgei]; |
| 570 | edges[edgei].b = polypoints[(edgei + 1) % poly.pn]; |
| 571 | } |
| 572 | if (pp->start.constrained) { |
| 573 | evs[0].x = cos(pp->start.theta); |
| 574 | evs[0].y = sin(pp->start.theta); |
| 575 | } else |
| 576 | evs[0].x = evs[0].y = 0; |
| 577 | if (pp->end.constrained) { |
| 578 | evs[1].x = -cos(pp->end.theta); |
| 579 | evs[1].y = -sin(pp->end.theta); |
| 580 | } else |
| 581 | evs[1].x = evs[1].y = 0; |
| 582 | |
| 583 | if (Proutespline(edges, poly.pn, pl, evs, &spl) < 0) { |
| 584 | agerr(AGERR, "in routesplines, Proutespline failed\n" ); |
| 585 | return NULL; |
| 586 | } |
| 587 | #ifdef DEBUG |
| 588 | if (debugleveln(realedge, 3)) { |
| 589 | psprintspline(spl); |
| 590 | psprintinit(0); |
| 591 | } |
| 592 | #endif |
| 593 | } |
| 594 | if (mkspacep(spl.pn)) |
| 595 | return NULL; /* Bailout if no memory left */ |
| 596 | |
| 597 | for (bi = 0; bi < boxn; bi++) { |
| 598 | boxes[bi].LL.x = INT_MAX; |
| 599 | boxes[bi].UR.x = INT_MIN; |
| 600 | } |
| 601 | unbounded = TRUE; |
| 602 | for (splinepi = 0; splinepi < spl.pn; splinepi++) { |
| 603 | ps[splinepi] = spl.ps[splinepi]; |
| 604 | } |
| 605 | |
| 606 | for (loopcnt = 0; unbounded && (loopcnt < LOOP_TRIES); loopcnt++) { |
| 607 | limitBoxes (boxes, boxn, ps, spl.pn, delta); |
| 608 | |
| 609 | /* The following check is necessary because if a box is not very |
| 610 | * high, it is possible that the sampling above might miss it. |
| 611 | * Therefore, we make the sample finer until all boxes have |
| 612 | * valid values. cf. bug 456. Would making sp[] pointfs help? |
| 613 | */ |
| 614 | for (bi = 0; bi < boxn; bi++) { |
| 615 | /* these fp equality tests are used only to detect if the |
| 616 | * values have been changed since initialization - ok */ |
| 617 | if ((boxes[bi].LL.x == INT_MAX) || (boxes[bi].UR.x == INT_MIN)) { |
| 618 | delta *= 2; /* try again with a finer interval */ |
| 619 | if (delta > INT_MAX/boxn) /* in limitBoxes, boxn*delta must fit in an int, so give up */ |
| 620 | loopcnt = LOOP_TRIES; |
| 621 | break; |
| 622 | } |
| 623 | } |
| 624 | if (bi == boxn) |
| 625 | unbounded = FALSE; |
| 626 | } |
| 627 | if (unbounded) { |
| 628 | /* Either an extremely short, even degenerate, box, or some failure with the path |
| 629 | * planner causing the spline to miss some boxes. In any case, use the shortest path |
| 630 | * to bound the boxes. This will probably mean a bad edge, but we avoid an infinite |
| 631 | * loop and we can see the bad edge, and even use the showboxes scaffolding. |
| 632 | */ |
| 633 | Ppolyline_t polyspl; |
| 634 | agerr(AGWARN, "Unable to reclaim box space in spline routing for edge \"%s\" -> \"%s\". Something is probably seriously wrong.\n" , agnameof(agtail(realedge)), agnameof(aghead(realedge))); |
| 635 | make_polyline (pl, &polyspl); |
| 636 | limitBoxes (boxes, boxn, polyspl.ps, polyspl.pn, INIT_DELTA); |
| 637 | } |
| 638 | |
| 639 | *npoints = spl.pn; |
| 640 | |
| 641 | #ifdef DEBUG |
| 642 | if (GD_showboxes(agraphof(aghead(realedge))) == 2 || |
| 643 | GD_showboxes(agraphof(agtail(realedge))) == 2 || |
| 644 | ED_showboxes(realedge) == 2 || |
| 645 | ND_showboxes(aghead(realedge)) == 2 || |
| 646 | ND_showboxes(agtail(realedge)) == 2) |
| 647 | printboxes(boxn, boxes); |
| 648 | #endif |
| 649 | |
| 650 | return ps; |
| 651 | } |
| 652 | |
| 653 | pointf *routesplines(path * pp, int *npoints) |
| 654 | { |
| 655 | return _routesplines (pp, npoints, 0); |
| 656 | } |
| 657 | |
| 658 | pointf *routepolylines(path * pp, int *npoints) |
| 659 | { |
| 660 | return _routesplines (pp, npoints, 1); |
| 661 | } |
| 662 | |
| 663 | static int overlap(int i0, int i1, int j0, int j1) |
| 664 | { |
| 665 | /* i'll bet there's an elegant way to do this */ |
| 666 | if (i1 <= j0) |
| 667 | return 0; |
| 668 | if (i0 >= j1) |
| 669 | return 0; |
| 670 | if ((j0 <= i0) && (i0 <= j1)) |
| 671 | return (j1 - i0); |
| 672 | if ((j0 <= i1) && (i1 <= j1)) |
| 673 | return (i1 - j0); |
| 674 | return MIN(i1 - i0, j1 - j0); |
| 675 | } |
| 676 | |
| 677 | |
| 678 | /* |
| 679 | * repairs minor errors in the boxpath, such as boxes not joining |
| 680 | * or slightly intersecting. it's sort of the equivalent of the |
| 681 | * audit process in the 5E control program - if you've given up on |
| 682 | * fixing all the bugs, at least try to engineer around them! |
| 683 | * in postmodern CS, we could call this "self-healing code." |
| 684 | * |
| 685 | * Return 1 on failure; 0 on success. |
| 686 | */ |
| 687 | static int checkpath(int boxn, boxf* boxes, path* thepath) |
| 688 | { |
| 689 | boxf *ba, *bb; |
| 690 | int bi, i, errs, l, r, d, u; |
| 691 | int xoverlap, yoverlap; |
| 692 | |
| 693 | #ifndef DONTFIXPATH |
| 694 | /* remove degenerate boxes. */ |
| 695 | i = 0; |
| 696 | for (bi = 0; bi < boxn; bi++) { |
| 697 | if (ABS(boxes[bi].LL.y - boxes[bi].UR.y) < .01) |
| 698 | continue; |
| 699 | if (ABS(boxes[bi].LL.x - boxes[bi].UR.x) < .01) |
| 700 | continue; |
| 701 | if (i != bi) |
| 702 | boxes[i] = boxes[bi]; |
| 703 | i++; |
| 704 | } |
| 705 | boxn = i; |
| 706 | #endif /* DONTFIXPATH */ |
| 707 | |
| 708 | ba = &boxes[0]; |
| 709 | if (ba->LL.x > ba->UR.x || ba->LL.y > ba->UR.y) { |
| 710 | agerr(AGERR, "in checkpath, box 0 has LL coord > UR coord\n" ); |
| 711 | printpath(thepath); |
| 712 | return 1; |
| 713 | } |
| 714 | for (bi = 0; bi < boxn - 1; bi++) { |
| 715 | ba = &boxes[bi], bb = &boxes[bi + 1]; |
| 716 | if (bb->LL.x > bb->UR.x || bb->LL.y > bb->UR.y) { |
| 717 | agerr(AGERR, "in checkpath, box %d has LL coord > UR coord\n" , |
| 718 | bi + 1); |
| 719 | printpath(thepath); |
| 720 | return 1; |
| 721 | } |
| 722 | l = (ba->UR.x < bb->LL.x) ? 1 : 0; |
| 723 | r = (ba->LL.x > bb->UR.x) ? 1 : 0; |
| 724 | d = (ba->UR.y < bb->LL.y) ? 1 : 0; |
| 725 | u = (ba->LL.y > bb->UR.y) ? 1 : 0; |
| 726 | errs = l + r + d + u; |
| 727 | if (errs > 0 && Verbose) { |
| 728 | fprintf(stderr, "in checkpath, boxes %d and %d don't touch\n" , |
| 729 | bi, bi + 1); |
| 730 | printpath(thepath); |
| 731 | } |
| 732 | #ifndef DONTFIXPATH |
| 733 | if (errs > 0) { |
| 734 | int xy; |
| 735 | |
| 736 | if (l == 1) |
| 737 | xy = ba->UR.x, ba->UR.x = bb->LL.x, bb->LL.x = xy, l = 0; |
| 738 | else if (r == 1) |
| 739 | xy = ba->LL.x, ba->LL.x = bb->UR.x, bb->UR.x = xy, r = 0; |
| 740 | else if (d == 1) |
| 741 | xy = ba->UR.y, ba->UR.y = bb->LL.y, bb->LL.y = xy, d = 0; |
| 742 | else if (u == 1) |
| 743 | xy = ba->LL.y, ba->LL.y = bb->UR.y, bb->UR.y = xy, u = 0; |
| 744 | for (i = 0; i < errs - 1; i++) { |
| 745 | if (l == 1) |
| 746 | xy = (ba->UR.x + bb->LL.x) / 2.0 + 0.5, ba->UR.x = |
| 747 | bb->LL.x = xy, l = 0; |
| 748 | else if (r == 1) |
| 749 | xy = (ba->LL.x + bb->UR.x) / 2.0 + 0.5, ba->LL.x = |
| 750 | bb->UR.x = xy, r = 0; |
| 751 | else if (d == 1) |
| 752 | xy = (ba->UR.y + bb->LL.y) / 2.0 + 0.5, ba->UR.y = |
| 753 | bb->LL.y = xy, d = 0; |
| 754 | else if (u == 1) |
| 755 | xy = (ba->LL.y + bb->UR.y) / 2.0 + 0.5, ba->LL.y = |
| 756 | bb->UR.y = xy, u = 0; |
| 757 | } |
| 758 | } |
| 759 | #else |
| 760 | abort(); |
| 761 | #endif |
| 762 | #ifndef DONTFIXPATH |
| 763 | /* check for overlapping boxes */ |
| 764 | xoverlap = overlap(ba->LL.x, ba->UR.x, bb->LL.x, bb->UR.x); |
| 765 | yoverlap = overlap(ba->LL.y, ba->UR.y, bb->LL.y, bb->UR.y); |
| 766 | if (xoverlap && yoverlap) { |
| 767 | if (xoverlap < yoverlap) { |
| 768 | if (ba->UR.x - ba->LL.x > bb->UR.x - bb->LL.x) { |
| 769 | /* take space from ba */ |
| 770 | if (ba->UR.x < bb->UR.x) |
| 771 | ba->UR.x = bb->LL.x; |
| 772 | else |
| 773 | ba->LL.x = bb->UR.x; |
| 774 | } else { |
| 775 | /* take space from bb */ |
| 776 | if (ba->UR.x < bb->UR.x) |
| 777 | bb->LL.x = ba->UR.x; |
| 778 | else |
| 779 | bb->UR.x = ba->LL.x; |
| 780 | } |
| 781 | } else { /* symmetric for y coords */ |
| 782 | if (ba->UR.y - ba->LL.y > bb->UR.y - bb->LL.y) { |
| 783 | /* take space from ba */ |
| 784 | if (ba->UR.y < bb->UR.y) |
| 785 | ba->UR.y = bb->LL.y; |
| 786 | else |
| 787 | ba->LL.y = bb->UR.y; |
| 788 | } else { |
| 789 | /* take space from bb */ |
| 790 | if (ba->UR.y < bb->UR.y) |
| 791 | bb->LL.y = ba->UR.y; |
| 792 | else |
| 793 | bb->UR.y = ba->LL.y; |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | #endif /* DONTFIXPATH */ |
| 799 | |
| 800 | if (thepath->start.p.x < boxes[0].LL.x |
| 801 | || thepath->start.p.x > boxes[0].UR.x |
| 802 | || thepath->start.p.y < boxes[0].LL.y |
| 803 | || thepath->start.p.y > boxes[0].UR.y) { |
| 804 | if (Verbose) { |
| 805 | fprintf(stderr, "in checkpath, start port not in first box\n" ); |
| 806 | printpath(thepath); |
| 807 | } |
| 808 | #ifndef DONTFIXPATH |
| 809 | if (thepath->start.p.x < boxes[0].LL.x) |
| 810 | thepath->start.p.x = boxes[0].LL.x; |
| 811 | if (thepath->start.p.x > boxes[0].UR.x) |
| 812 | thepath->start.p.x = boxes[0].UR.x; |
| 813 | if (thepath->start.p.y < boxes[0].LL.y) |
| 814 | thepath->start.p.y = boxes[0].LL.y; |
| 815 | if (thepath->start.p.y > boxes[0].UR.y) |
| 816 | thepath->start.p.y = boxes[0].UR.y; |
| 817 | #else |
| 818 | abort(); |
| 819 | #endif |
| 820 | } |
| 821 | if (thepath->end.p.x < boxes[boxn - 1].LL.x |
| 822 | || thepath->end.p.x > boxes[boxn - 1].UR.x |
| 823 | || thepath->end.p.y < boxes[boxn - 1].LL.y |
| 824 | || thepath->end.p.y > boxes[boxn - 1].UR.y) { |
| 825 | if (Verbose) { |
| 826 | fprintf(stderr, "in checkpath, end port not in last box\n" ); |
| 827 | printpath(thepath); |
| 828 | } |
| 829 | #ifndef DONTFIXPATH |
| 830 | if (thepath->end.p.x < boxes[boxn - 1].LL.x) |
| 831 | thepath->end.p.x = boxes[boxn - 1].LL.x; |
| 832 | if (thepath->end.p.x > boxes[boxn - 1].UR.x) |
| 833 | thepath->end.p.x = boxes[boxn - 1].UR.x; |
| 834 | if (thepath->end.p.y < boxes[boxn - 1].LL.y) |
| 835 | thepath->end.p.y = boxes[boxn - 1].LL.y; |
| 836 | if (thepath->end.p.y > boxes[boxn - 1].UR.y) |
| 837 | thepath->end.p.y = boxes[boxn - 1].UR.y; |
| 838 | #else |
| 839 | abort(); |
| 840 | #endif |
| 841 | } |
| 842 | return 0; |
| 843 | } |
| 844 | |
| 845 | static int mkspacep(int size) |
| 846 | { |
| 847 | if (size > maxpn) { |
| 848 | int newmax = maxpn + (size / PINC + 1) * PINC; |
| 849 | ps = RALLOC(newmax, ps, pointf); |
| 850 | if (!ps) { |
| 851 | agerr(AGERR, "cannot re-allocate ps\n" ); |
| 852 | return 1; |
| 853 | } |
| 854 | maxpn = newmax; |
| 855 | } |
| 856 | return 0; |
| 857 | } |
| 858 | |
| 859 | static void printpath(path * pp) |
| 860 | { |
| 861 | int bi; |
| 862 | |
| 863 | #ifdef NOTNOW |
| 864 | fprintf(stderr, "edge %d from %s to %s\n" , nedges, |
| 865 | realedge->tail->name, realedge->head->name); |
| 866 | if (ED_count(origedge) > 1) |
| 867 | fprintf(stderr, " (it's part of a concentrator edge)\n" ); |
| 868 | #endif |
| 869 | fprintf(stderr, "%d boxes:\n" , pp->nbox); |
| 870 | for (bi = 0; bi < pp->nbox; bi++) |
| 871 | fprintf(stderr, "%d (%.5g, %.5g), (%.5g, %.5g)\n" , bi, |
| 872 | pp->boxes[bi].LL.x, pp->boxes[bi].LL.y, |
| 873 | pp->boxes[bi].UR.x, pp->boxes[bi].UR.y); |
| 874 | fprintf(stderr, "start port: (%.5g, %.5g), tangent angle: %.5g, %s\n" , |
| 875 | pp->start.p.x, pp->start.p.y, pp->start.theta, |
| 876 | pp->start.constrained ? "constrained" : "not constrained" ); |
| 877 | fprintf(stderr, "end port: (%.5g, %.5g), tangent angle: %.5g, %s\n" , |
| 878 | pp->end.p.x, pp->end.p.y, pp->end.theta, |
| 879 | pp->end.constrained ? "constrained" : "not constrained" ); |
| 880 | } |
| 881 | |
| 882 | static pointf get_centroid(Agraph_t *g) |
| 883 | { |
| 884 | int cnt = 0; |
| 885 | static pointf sum = {0.0, 0.0}; |
| 886 | static Agraph_t *save; |
| 887 | Agnode_t *n; |
| 888 | |
| 889 | sum.x = (GD_bb(g).LL.x + GD_bb(g).UR.x) / 2.0; |
| 890 | sum.y = (GD_bb(g).LL.y + GD_bb(g).UR.y) / 2.0; |
| 891 | return sum; |
| 892 | |
| 893 | if (save == g) return sum; |
| 894 | save = g; |
| 895 | for (n = agfstnode(g); n; n = agnxtnode(g,n)) { |
| 896 | sum.x += ND_pos(n)[0]; |
| 897 | sum.y += ND_pos(n)[1]; |
| 898 | cnt++; |
| 899 | } |
| 900 | sum.x = sum.x / cnt; |
| 901 | sum.y = sum.y / cnt; |
| 902 | return sum; |
| 903 | } |
| 904 | |
| 905 | #define __CYCLE_CENTROID |
| 906 | #ifdef __CYCLE_CENTROID |
| 907 | //generic vector structure |
| 908 | typedef struct _tag_vec |
| 909 | { |
| 910 | void** _mem; |
| 911 | size_t _elems; |
| 912 | size_t _capelems; |
| 913 | } vec; |
| 914 | |
| 915 | static vec* vec_new() |
| 916 | { |
| 917 | vec* pvec = (vec*)malloc(sizeof(vec)); |
| 918 | pvec->_capelems = 10; |
| 919 | pvec->_elems = 0; |
| 920 | pvec->_mem = (void**)malloc(pvec->_capelems * sizeof(void*)); |
| 921 | return pvec; |
| 922 | } |
| 923 | |
| 924 | static void vec_delete(vec* pvec) |
| 925 | { |
| 926 | free(pvec->_mem); |
| 927 | free(pvec); |
| 928 | } |
| 929 | |
| 930 | static void vec_push_back(vec* pvec, void* data) |
| 931 | { |
| 932 | if (pvec->_elems == pvec->_capelems) { |
| 933 | pvec->_capelems += 10; |
| 934 | pvec->_mem = (void**)realloc(pvec->_mem, pvec->_capelems * sizeof(void*)); |
| 935 | } |
| 936 | pvec->_mem[pvec->_elems++] = data; |
| 937 | } |
| 938 | |
| 939 | static size_t vec_length(vec* pvec) |
| 940 | { |
| 941 | return pvec->_elems; |
| 942 | } |
| 943 | |
| 944 | static void* vec_get(vec* pvec, size_t index) |
| 945 | { |
| 946 | assert(index < pvec->_elems); |
| 947 | return pvec->_mem[index]; |
| 948 | } |
| 949 | |
| 950 | static void* vec_pop(vec* pvec) |
| 951 | { |
| 952 | if (pvec->_elems > 0) |
| 953 | return pvec->_mem[--pvec->_elems]; |
| 954 | return NULL; |
| 955 | } |
| 956 | |
| 957 | static boolean vec_contains(vec* pvec, void* item) |
| 958 | { |
| 959 | size_t i; |
| 960 | |
| 961 | for (i=0; i < pvec->_elems; ++i) { |
| 962 | if (pvec->_mem[i] == item) |
| 963 | return TRUE; |
| 964 | } |
| 965 | |
| 966 | return FALSE; |
| 967 | } |
| 968 | |
| 969 | static vec* vec_copy(vec* pvec) |
| 970 | { |
| 971 | vec* nvec = (vec*)malloc(sizeof(vec)); |
| 972 | nvec->_capelems = pvec->_capelems; |
| 973 | nvec->_elems = pvec->_elems; |
| 974 | nvec->_mem = (void**)malloc(pvec->_capelems * sizeof(void*)); |
| 975 | memcpy(nvec->_mem, pvec->_mem, pvec->_elems * sizeof(void*)); |
| 976 | return nvec; |
| 977 | } |
| 978 | //end generic vector structure |
| 979 | |
| 980 | static boolean cycle_contains_edge(vec* cycle, edge_t* edge) |
| 981 | { |
| 982 | node_t* start = agtail(edge); |
| 983 | node_t* end = aghead(edge); |
| 984 | node_t* c_start; |
| 985 | node_t* c_end; |
| 986 | |
| 987 | size_t cycle_len = vec_length(cycle); |
| 988 | size_t i; |
| 989 | |
| 990 | for (i=0; i < cycle_len; ++i) { |
| 991 | if (i == 0) { |
| 992 | c_start = (node_t*)vec_get(cycle, cycle_len-1); |
| 993 | } else { |
| 994 | c_start = (node_t*)vec_get(cycle, i-1); |
| 995 | } |
| 996 | |
| 997 | c_end = (node_t*)vec_get(cycle, i); |
| 998 | |
| 999 | if (c_start == start && c_end == end) |
| 1000 | return TRUE; |
| 1001 | } |
| 1002 | |
| 1003 | |
| 1004 | return FALSE; |
| 1005 | } |
| 1006 | |
| 1007 | static boolean is_cycle_unique(vec* cycles, vec* cycle) |
| 1008 | { |
| 1009 | size_t cycle_len = vec_length(cycle); |
| 1010 | size_t n_cycles = vec_length(cycles); |
| 1011 | size_t c; //cycles counter |
| 1012 | size_t i; //node counter |
| 1013 | |
| 1014 | vec* cur_cycle; |
| 1015 | size_t cur_cycle_len; |
| 1016 | void* cur_cycle_item; |
| 1017 | boolean all_items_match; |
| 1018 | |
| 1019 | for (c=0; c < n_cycles; ++c) { |
| 1020 | cur_cycle = (vec*)vec_get(cycles, c); |
| 1021 | cur_cycle_len = vec_length(cur_cycle); |
| 1022 | |
| 1023 | //if all the items match in equal length cycles then we're not unique |
| 1024 | if (cur_cycle_len == cycle_len) { |
| 1025 | all_items_match = TRUE; |
| 1026 | for (i=0; i < cur_cycle_len; ++i) { |
| 1027 | cur_cycle_item = vec_get(cur_cycle, i); |
| 1028 | if (!vec_contains(cycle, cur_cycle_item)) { |
| 1029 | all_items_match = FALSE; |
| 1030 | break; |
| 1031 | } |
| 1032 | } |
| 1033 | if (all_items_match) |
| 1034 | return FALSE; |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | return TRUE; |
| 1039 | } |
| 1040 | |
| 1041 | static void dfs(graph_t *g, node_t* search, vec* visited, node_t* end, vec* cycles) |
| 1042 | { |
| 1043 | edge_t* e; |
| 1044 | node_t* n; |
| 1045 | |
| 1046 | if (vec_contains(visited, search)) { |
| 1047 | if (search == end) { |
| 1048 | if (is_cycle_unique(cycles, visited)) { |
| 1049 | vec* cycle = vec_copy(visited); |
| 1050 | vec_push_back(cycles, cycle); |
| 1051 | } |
| 1052 | } |
| 1053 | } else { |
| 1054 | vec_push_back(visited, search); |
| 1055 | for (e = agfstout(g, search); e; e = agnxtout(g, e)) { |
| 1056 | n = aghead(e); |
| 1057 | dfs(g, n, visited, end, cycles); |
| 1058 | } |
| 1059 | vec_pop(visited); |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | static vec* find_all_cycles(graph_t *g) |
| 1064 | { |
| 1065 | node_t *n; |
| 1066 | |
| 1067 | vec* alloced_cycles = vec_new(); //vector of vectors of nodes -- AKA cycles to delete |
| 1068 | vec* cycles = vec_new(); //vector of vectors of nodes AKA a vector of cycles |
| 1069 | vec* cycle; |
| 1070 | |
| 1071 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1072 | cycle = vec_new(); |
| 1073 | vec_push_back(alloced_cycles, cycle); //keep track of all items we allocate to clean up at the end of this function |
| 1074 | |
| 1075 | dfs(g, n, cycle, n, cycles); |
| 1076 | } |
| 1077 | |
| 1078 | vec_delete(alloced_cycles); //cycles contains copied vecs |
| 1079 | return cycles; |
| 1080 | } |
| 1081 | |
| 1082 | static vec* find_shortest_cycle_with_edge(vec* cycles, edge_t* edge, size_t min_size) |
| 1083 | { |
| 1084 | size_t c; //cycle counter |
| 1085 | size_t cycles_len = vec_length(cycles); |
| 1086 | vec* cycle; |
| 1087 | size_t cycle_len; |
| 1088 | vec* shortest = 0; |
| 1089 | |
| 1090 | for (c=0; c < cycles_len; ++c) { |
| 1091 | cycle = (vec*)vec_get(cycles, c); |
| 1092 | cycle_len = vec_length(cycle); |
| 1093 | |
| 1094 | if (cycle_len < min_size) |
| 1095 | continue; |
| 1096 | |
| 1097 | if (!shortest || vec_length(shortest) > cycle_len) { |
| 1098 | if (cycle_contains_edge(cycle, edge)) { |
| 1099 | shortest = cycle; |
| 1100 | } |
| 1101 | } |
| 1102 | } |
| 1103 | return shortest; |
| 1104 | } |
| 1105 | |
| 1106 | static pointf get_cycle_centroid(graph_t *g, edge_t* edge) |
| 1107 | { |
| 1108 | static vec* cycles = 0; |
| 1109 | static graph_t* ref_g = 0; |
| 1110 | |
| 1111 | if (cycles == 0 || ref_g != g) { |
| 1112 | //free the memory we're using to hold the previous cycles |
| 1113 | if (cycles != 0) { |
| 1114 | size_t i; |
| 1115 | for (i=0; i < vec_length(cycles); ++i) { |
| 1116 | vec_delete(vec_get(cycles, i)); |
| 1117 | } |
| 1118 | vec_delete(cycles); |
| 1119 | } |
| 1120 | cycles = find_all_cycles(g); |
| 1121 | ref_g = g; |
| 1122 | } |
| 1123 | |
| 1124 | //find the center of the shortest cycle containing this edge |
| 1125 | //cycles of length 2 do their own thing, we want 3 or |
| 1126 | vec* cycle = find_shortest_cycle_with_edge(cycles, edge, 3); |
| 1127 | size_t cycle_len; |
| 1128 | size_t cnt = 0; |
| 1129 | pointf sum = {0.0, 0.0}; |
| 1130 | size_t idx; //edge index |
| 1131 | node_t *n; |
| 1132 | |
| 1133 | if (!cycle) |
| 1134 | return get_centroid(g); |
| 1135 | |
| 1136 | cycle_len = vec_length(cycle); |
| 1137 | |
| 1138 | for (idx=0; idx < cycle_len; ++idx) { |
| 1139 | n = (node_t*)vec_get(cycle, idx); |
| 1140 | sum.x += ND_coord(n).x; |
| 1141 | sum.y += ND_coord(n).y; |
| 1142 | cnt++; |
| 1143 | } |
| 1144 | |
| 1145 | sum.x = sum.x / cnt; |
| 1146 | sum.y = sum.y / cnt; |
| 1147 | return sum; |
| 1148 | } |
| 1149 | #endif |
| 1150 | |
| 1151 | static void bend(pointf spl[4], pointf centroid) |
| 1152 | { |
| 1153 | pointf midpt,a; |
| 1154 | double r; |
| 1155 | double dist,dx,dy; |
| 1156 | |
| 1157 | midpt.x = (spl[0].x + spl[3].x)/2.0; |
| 1158 | midpt.y = (spl[0].y + spl[3].y)/2.0; |
| 1159 | dx = (spl[3].x - spl[0].x); |
| 1160 | dy = (spl[3].y - spl[0].y); |
| 1161 | dist = sqrt(dx*dx + dy*dy); |
| 1162 | r = dist/5.0; |
| 1163 | { |
| 1164 | double vX = centroid.x - midpt.x; |
| 1165 | double vY = centroid.y - midpt.y; |
| 1166 | double magV = sqrt(vX*vX + vY*vY); |
| 1167 | if (magV == 0) return; /* if midpoint == centroid, don't divide by zero */ |
| 1168 | a.x = midpt.x - vX / magV * r; /* + would be closest point */ |
| 1169 | a.y = midpt.y - vY / magV * r; |
| 1170 | } |
| 1171 | /* this can be improved */ |
| 1172 | spl[1].x = spl[2].x = a.x; |
| 1173 | spl[1].y = spl[2].y = a.y; |
| 1174 | } |
| 1175 | |
| 1176 | /* makeStraightEdge: |
| 1177 | * |
| 1178 | * FIX: handle ports on boundary? |
| 1179 | */ |
| 1180 | #define MAX_EDGE 20 |
| 1181 | void |
| 1182 | makeStraightEdge(graph_t * g, edge_t * e, int et, splineInfo* sinfo) |
| 1183 | { |
| 1184 | edge_t *e0; |
| 1185 | edge_t** edges; |
| 1186 | edge_t* elist[MAX_EDGE]; |
| 1187 | int i, e_cnt; |
| 1188 | |
| 1189 | e_cnt = 1; |
| 1190 | e0 = e; |
| 1191 | while ((e0 != ED_to_virt(e0)) && (e0 = ED_to_virt(e0))) e_cnt++; |
| 1192 | |
| 1193 | if (e_cnt <= MAX_EDGE) |
| 1194 | edges = elist; |
| 1195 | else |
| 1196 | edges = N_NEW(e_cnt,edge_t*); |
| 1197 | e0 = e; |
| 1198 | for (i = 0; i < e_cnt; i++) { |
| 1199 | edges[i] = e0; |
| 1200 | e0 = ED_to_virt(e0); |
| 1201 | } |
| 1202 | makeStraightEdges (g, edges, e_cnt, et, sinfo); |
| 1203 | if (e_cnt > MAX_EDGE) free (edges); |
| 1204 | |
| 1205 | } |
| 1206 | |
| 1207 | void |
| 1208 | makeStraightEdges(graph_t * g, edge_t** edges, int e_cnt, int et, splineInfo* sinfo) |
| 1209 | { |
| 1210 | pointf dumb[4]; |
| 1211 | node_t *n; |
| 1212 | node_t *head; |
| 1213 | int curved = (et == ET_CURVED); |
| 1214 | pointf perp; |
| 1215 | pointf del; |
| 1216 | edge_t *e0; |
| 1217 | edge_t *e; |
| 1218 | int i, j, xstep, dx; |
| 1219 | double l_perp; |
| 1220 | pointf dumber[4]; |
| 1221 | pointf p, q; |
| 1222 | |
| 1223 | e = edges[0]; |
| 1224 | n = agtail(e); |
| 1225 | head = aghead(e); |
| 1226 | p = dumb[1] = dumb[0] = add_pointf(ND_coord(n), ED_tail_port(e).p); |
| 1227 | q = dumb[2] = dumb[3] = add_pointf(ND_coord(head), ED_head_port(e).p); |
| 1228 | if ((e_cnt == 1) || Concentrate) { |
| 1229 | #ifndef __CYCLE_CENTROID |
| 1230 | if (curved) bend(dumb,get_centroid(g)); |
| 1231 | #else |
| 1232 | if (curved) bend(dumb,get_cycle_centroid(g, edges[0])); |
| 1233 | #endif |
| 1234 | clip_and_install(e, aghead(e), dumb, 4, sinfo); |
| 1235 | addEdgeLabels(g, e, p, q); |
| 1236 | return; |
| 1237 | } |
| 1238 | |
| 1239 | e0 = e; |
| 1240 | if (APPROXEQPT(dumb[0], dumb[3], MILLIPOINT)) { |
| 1241 | /* degenerate case */ |
| 1242 | dumb[1] = dumb[0]; |
| 1243 | dumb[2] = dumb[3]; |
| 1244 | del.x = 0; |
| 1245 | del.y = 0; |
| 1246 | } |
| 1247 | else { |
| 1248 | perp.x = dumb[0].y - dumb[3].y; |
| 1249 | perp.y = dumb[3].x - dumb[0].x; |
| 1250 | l_perp = LEN(perp.x, perp.y); |
| 1251 | xstep = GD_nodesep(g->root); |
| 1252 | dx = xstep * (e_cnt - 1) / 2; |
| 1253 | dumb[1].x = dumb[0].x + (dx * perp.x) / l_perp; |
| 1254 | dumb[1].y = dumb[0].y + (dx * perp.y) / l_perp; |
| 1255 | dumb[2].x = dumb[3].x + (dx * perp.x) / l_perp; |
| 1256 | dumb[2].y = dumb[3].y + (dx * perp.y) / l_perp; |
| 1257 | del.x = -xstep * perp.x / l_perp; |
| 1258 | del.y = -xstep * perp.y / l_perp; |
| 1259 | } |
| 1260 | |
| 1261 | for (i = 0; i < e_cnt; i++) { |
| 1262 | e0 = edges[i]; |
| 1263 | if (aghead(e0) == head) { |
| 1264 | p = dumb[0]; |
| 1265 | q = dumb[3]; |
| 1266 | for (j = 0; j < 4; j++) { |
| 1267 | dumber[j] = dumb[j]; |
| 1268 | } |
| 1269 | } else { |
| 1270 | p = dumb[3]; |
| 1271 | q = dumb[0]; |
| 1272 | for (j = 0; j < 4; j++) { |
| 1273 | dumber[3 - j] = dumb[j]; |
| 1274 | } |
| 1275 | } |
| 1276 | if (et == ET_PLINE) { |
| 1277 | Ppoint_t pts[4]; |
| 1278 | Ppolyline_t spl, line; |
| 1279 | |
| 1280 | line.pn = 4; |
| 1281 | line.ps = pts; |
| 1282 | for (j=0; j < 4; j++) { |
| 1283 | pts[j] = dumber[j]; |
| 1284 | } |
| 1285 | make_polyline (line, &spl); |
| 1286 | clip_and_install(e0, aghead(e0), spl.ps, spl.pn, sinfo); |
| 1287 | } |
| 1288 | else |
| 1289 | clip_and_install(e0, aghead(e0), dumber, 4, sinfo); |
| 1290 | |
| 1291 | addEdgeLabels(g, e0, p, q); |
| 1292 | dumb[1].x += del.x; |
| 1293 | dumb[1].y += del.y; |
| 1294 | dumb[2].x += del.x; |
| 1295 | dumb[2].y += del.y; |
| 1296 | } |
| 1297 | } |
| 1298 | |