1 | /* $Id$ $Revision$ */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | |
15 | /* Functions related to creating a spline and attaching it to |
16 | * an edge, starting from a list of control points. |
17 | */ |
18 | |
19 | #include "render.h" |
20 | |
21 | #ifdef DEBUG |
22 | static int debugleveln(edge_t* e, int i) |
23 | { |
24 | return (GD_showboxes(agraphof(aghead(e))) == i || |
25 | GD_showboxes(agraphof(agtail(e))) == i || |
26 | ED_showboxes(e) == i || |
27 | ND_showboxes(aghead(e)) == i || |
28 | ND_showboxes(agtail(e)) == i); |
29 | } |
30 | |
31 | static void showPoints(pointf ps[], int pn) |
32 | { |
33 | char buf[BUFSIZ]; |
34 | int newcnt = Show_cnt + pn + 3; |
35 | int bi, li; |
36 | |
37 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
38 | li = Show_cnt+1; |
39 | Show_boxes[li++] = strdup ("%% self list" ); |
40 | Show_boxes[li++] = strdup ("dbgstart" ); |
41 | for (bi = 0; bi < pn; bi++) { |
42 | sprintf(buf, "%.5g %.5g point" , ps[bi].x, ps[bi].y); |
43 | Show_boxes[li++] = strdup (buf); |
44 | } |
45 | Show_boxes[li++] = strdup ("grestore" ); |
46 | |
47 | Show_cnt = newcnt; |
48 | Show_boxes[Show_cnt+1] = NULL; |
49 | } |
50 | #endif |
51 | |
52 | /* arrow_clip: |
53 | * Clip arrow to node boundary. |
54 | * The real work is done elsewhere. Here we get the real edge, |
55 | * check that the edge has arrowheads, and that an endpoint |
56 | * isn't a merge point where several parts of an edge meet. |
57 | * (e.g., with edge concentrators). |
58 | */ |
59 | static void |
60 | arrow_clip(edge_t * fe, node_t * hn, |
61 | pointf * ps, int *startp, int *endp, |
62 | bezier * spl, splineInfo * info) |
63 | { |
64 | edge_t *e; |
65 | int i, j, sflag, eflag; |
66 | |
67 | for (e = fe; ED_to_orig(e); e = ED_to_orig(e)); |
68 | |
69 | if (info->ignoreSwap) |
70 | j = 0; |
71 | else |
72 | j = info->swapEnds(e); |
73 | arrow_flags(e, &sflag, &eflag); |
74 | if (info->splineMerge(hn)) |
75 | eflag = ARR_NONE; |
76 | if (info->splineMerge(agtail(fe))) |
77 | sflag = ARR_NONE; |
78 | /* swap the two ends */ |
79 | if (j) { |
80 | i = sflag; |
81 | sflag = eflag; |
82 | eflag = i; |
83 | } |
84 | if (info->isOrtho) { |
85 | if (eflag || sflag) |
86 | arrowOrthoClip(e, ps, *startp, *endp, spl, sflag, eflag); |
87 | } |
88 | else { |
89 | if (sflag) |
90 | *startp = |
91 | arrowStartClip(e, ps, *startp, *endp, spl, sflag); |
92 | if (eflag) |
93 | *endp = |
94 | arrowEndClip(e, ps, *startp, *endp, spl, eflag); |
95 | } |
96 | } |
97 | |
98 | /* bezier_clip |
99 | * Clip bezier to shape using binary search. |
100 | * The details of the shape are passed in the inside_context; |
101 | * The function providing the inside test is passed as a parameter. |
102 | * left_inside specifies that sp[0] is inside the node, |
103 | * else sp[3] is taken as inside. |
104 | * The points p are in node coordinates. |
105 | */ |
106 | void bezier_clip(inside_t * inside_context, |
107 | boolean(*inside) (inside_t * inside_context, pointf p), |
108 | pointf * sp, boolean left_inside) |
109 | { |
110 | pointf seg[4], best[4], pt, opt, *left, *right; |
111 | double low, high, t, *idir, *odir; |
112 | boolean found; |
113 | int i; |
114 | |
115 | if (left_inside) { |
116 | left = NULL; |
117 | right = seg; |
118 | pt = sp[0]; |
119 | idir = &low; |
120 | odir = &high; |
121 | } else { |
122 | left = seg; |
123 | right = NULL; |
124 | pt = sp[3]; |
125 | idir = &high; |
126 | odir = &low; |
127 | } |
128 | found = FALSE; |
129 | low = 0.0; |
130 | high = 1.0; |
131 | do { |
132 | opt = pt; |
133 | t = (high + low) / 2.0; |
134 | pt = Bezier(sp, 3, t, left, right); |
135 | if (inside(inside_context, pt)) { |
136 | *idir = t; |
137 | } else { |
138 | for (i = 0; i < 4; i++) |
139 | best[i] = seg[i]; |
140 | found = TRUE; |
141 | *odir = t; |
142 | } |
143 | } while (ABS(opt.x - pt.x) > .5 || ABS(opt.y - pt.y) > .5); |
144 | if (found) |
145 | for (i = 0; i < 4; i++) |
146 | sp[i] = best[i]; |
147 | else |
148 | for (i = 0; i < 4; i++) |
149 | sp[i] = seg[i]; |
150 | } |
151 | |
152 | /* shape_clip0: |
153 | * Clip Bezier to node shape using binary search. |
154 | * left_inside specifies that curve[0] is inside the node, else |
155 | * curve[3] is taken as inside. |
156 | * Assumes ND_shape(n) and ND_shape(n)->fns->insidefn are non-NULL. |
157 | * See note on shape_clip. |
158 | */ |
159 | static void |
160 | shape_clip0(inside_t * inside_context, node_t * n, pointf curve[4], |
161 | boolean left_inside) |
162 | { |
163 | int i; |
164 | double save_real_size; |
165 | pointf c[4]; |
166 | |
167 | save_real_size = ND_rw(n); |
168 | for (i = 0; i < 4; i++) { |
169 | c[i].x = curve[i].x - ND_coord(n).x; |
170 | c[i].y = curve[i].y - ND_coord(n).y; |
171 | } |
172 | |
173 | bezier_clip(inside_context, ND_shape(n)->fns->insidefn, c, |
174 | left_inside); |
175 | |
176 | for (i = 0; i < 4; i++) { |
177 | curve[i].x = c[i].x + ND_coord(n).x; |
178 | curve[i].y = c[i].y + ND_coord(n).y; |
179 | } |
180 | ND_rw(n) = save_real_size; |
181 | } |
182 | |
183 | /* shape_clip: |
184 | * Clip Bezier to node shape |
185 | * Uses curve[0] to determine which which side is inside the node. |
186 | * NOTE: This test is bad. It is possible for previous call to |
187 | * shape_clip to produce a Bezier with curve[0] moved to the boundary |
188 | * for which insidefn(curve[0]) is true. Thus, if the new Bezier is |
189 | * fed back to shape_clip, it will again assume left_inside is true. |
190 | * To be safe, shape_clip0 should guarantee that the computed boundary |
191 | * point fails insidefn. |
192 | * The edge e is used to provide a port box. If NULL, the spline is |
193 | * clipped to the node shape. |
194 | */ |
195 | void shape_clip(node_t * n, pointf curve[4]) |
196 | { |
197 | double save_real_size; |
198 | boolean left_inside; |
199 | pointf c; |
200 | inside_t inside_context; |
201 | |
202 | if (ND_shape(n) == NULL || ND_shape(n)->fns->insidefn == NULL) |
203 | return; |
204 | |
205 | inside_context.s.n = n; |
206 | inside_context.s.bp = NULL; |
207 | save_real_size = ND_rw(n); |
208 | c.x = curve[0].x - ND_coord(n).x; |
209 | c.y = curve[0].y - ND_coord(n).y; |
210 | left_inside = ND_shape(n)->fns->insidefn(&inside_context, c); |
211 | ND_rw(n) = save_real_size; |
212 | shape_clip0(&inside_context, n, curve, left_inside); |
213 | } |
214 | |
215 | /* new_spline: |
216 | * Create and attach a new bezier of size sz to the edge d |
217 | */ |
218 | bezier *new_spline(edge_t * e, int sz) |
219 | { |
220 | bezier *rv; |
221 | while (ED_edge_type(e) != NORMAL) |
222 | e = ED_to_orig(e); |
223 | if (ED_spl(e) == NULL) |
224 | ED_spl(e) = NEW(splines); |
225 | ED_spl(e)->list = ALLOC(ED_spl(e)->size + 1, ED_spl(e)->list, bezier); |
226 | rv = &(ED_spl(e)->list[ED_spl(e)->size++]); |
227 | rv->list = N_NEW(sz, pointf); |
228 | rv->size = sz; |
229 | rv->sflag = rv->eflag = FALSE; |
230 | rv->sp.x = rv->sp.y = rv->ep.x = rv->ep.y = 0; |
231 | return rv; |
232 | } |
233 | |
234 | /* clip_and_install: |
235 | * Given a raw spline (pn control points in ps), representing |
236 | * a path from edge agtail(fe) ending in node hn, clip the ends to |
237 | * the node boundaries and attach the resulting spline to the |
238 | * edge. |
239 | */ |
240 | void |
241 | clip_and_install(edge_t * fe, node_t * hn, pointf * ps, int pn, |
242 | splineInfo * info) |
243 | { |
244 | pointf p2; |
245 | bezier *newspl; |
246 | node_t *tn; |
247 | int start, end, i, clipTail, clipHead; |
248 | graph_t *g; |
249 | edge_t *orig; |
250 | boxf *tbox, *hbox; |
251 | inside_t inside_context; |
252 | |
253 | tn = agtail(fe); |
254 | g = agraphof(tn); |
255 | newspl = new_spline(fe, pn); |
256 | |
257 | for (orig = fe; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
258 | |
259 | /* may be a reversed flat edge */ |
260 | if (!info->ignoreSwap && (ND_rank(tn) == ND_rank(hn)) && (ND_order(tn) > ND_order(hn))) { |
261 | node_t *tmp; |
262 | tmp = hn; |
263 | hn = tn; |
264 | tn = tmp; |
265 | } |
266 | if (tn == agtail(orig)) { |
267 | clipTail = ED_tail_port(orig).clip; |
268 | clipHead = ED_head_port(orig).clip; |
269 | tbox = ED_tail_port(orig).bp; |
270 | hbox = ED_head_port(orig).bp; |
271 | } |
272 | else { /* fe and orig are reversed */ |
273 | clipTail = ED_head_port(orig).clip; |
274 | clipHead = ED_tail_port(orig).clip; |
275 | hbox = ED_tail_port(orig).bp; |
276 | tbox = ED_head_port(orig).bp; |
277 | } |
278 | |
279 | /* spline may be interior to node */ |
280 | if(clipTail && ND_shape(tn) && ND_shape(tn)->fns->insidefn) { |
281 | inside_context.s.n = tn; |
282 | inside_context.s.bp = tbox; |
283 | for (start = 0; start < pn - 4; start += 3) { |
284 | p2.x = ps[start + 3].x - ND_coord(tn).x; |
285 | p2.y = ps[start + 3].y - ND_coord(tn).y; |
286 | if (ND_shape(tn)->fns->insidefn(&inside_context, p2) == FALSE) |
287 | break; |
288 | } |
289 | shape_clip0(&inside_context, tn, &ps[start], TRUE); |
290 | } else |
291 | start = 0; |
292 | if(clipHead && ND_shape(hn) && ND_shape(hn)->fns->insidefn) { |
293 | inside_context.s.n = hn; |
294 | inside_context.s.bp = hbox; |
295 | for (end = pn - 4; end > 0; end -= 3) { |
296 | p2.x = ps[end].x - ND_coord(hn).x; |
297 | p2.y = ps[end].y - ND_coord(hn).y; |
298 | if (ND_shape(hn)->fns->insidefn(&inside_context, p2) == FALSE) |
299 | break; |
300 | } |
301 | shape_clip0(&inside_context, hn, &ps[end], FALSE); |
302 | } else |
303 | end = pn - 4; |
304 | for (; start < pn - 4; start += 3) |
305 | if (! APPROXEQPT(ps[start], ps[start + 3], MILLIPOINT)) |
306 | break; |
307 | for (; end > 0; end -= 3) |
308 | if (! APPROXEQPT(ps[end], ps[end + 3], MILLIPOINT)) |
309 | break; |
310 | arrow_clip(fe, hn, ps, &start, &end, newspl, info); |
311 | for (i = start; i < end + 4; ) { |
312 | pointf cp[4]; |
313 | newspl->list[i - start] = ps[i]; |
314 | cp[0] = ps[i]; |
315 | i++; |
316 | if ( i >= end + 4) |
317 | break; |
318 | newspl->list[i - start] = ps[i]; |
319 | cp[1] = ps[i]; |
320 | i++; |
321 | newspl->list[i - start] = ps[i]; |
322 | cp[2] = ps[i]; |
323 | i++; |
324 | cp[3] = ps[i]; |
325 | update_bb_bz(&GD_bb(g), cp); |
326 | } |
327 | newspl->size = end - start + 4; |
328 | } |
329 | |
330 | static double |
331 | conc_slope(node_t* n) |
332 | { |
333 | double s_in, s_out, m_in, m_out; |
334 | int cnt_in, cnt_out; |
335 | pointf p; |
336 | edge_t *e; |
337 | |
338 | s_in = s_out = 0.0; |
339 | for (cnt_in = 0; (e = ND_in(n).list[cnt_in]); cnt_in++) |
340 | s_in += ND_coord(agtail(e)).x; |
341 | for (cnt_out = 0; (e = ND_out(n).list[cnt_out]); cnt_out++) |
342 | s_out += ND_coord(aghead(e)).x; |
343 | p.x = ND_coord(n).x - (s_in / cnt_in); |
344 | p.y = ND_coord(n).y - ND_coord(agtail(ND_in(n).list[0])).y; |
345 | m_in = atan2(p.y, p.x); |
346 | p.x = (s_out / cnt_out) - ND_coord(n).x; |
347 | p.y = ND_coord(aghead(ND_out(n).list[0])).y - ND_coord(n).y; |
348 | m_out = atan2(p.y, p.x); |
349 | return ((m_in + m_out) / 2.0); |
350 | } |
351 | |
352 | void add_box(path * P, boxf b) |
353 | { |
354 | if (b.LL.x < b.UR.x && b.LL.y < b.UR.y) |
355 | P->boxes[P->nbox++] = b; |
356 | } |
357 | |
358 | /* beginpath: |
359 | * Set up boxes near the tail node. |
360 | * For regular nodes, the result should be a list of contiguous rectangles |
361 | * such that the last one has the smallest LL.y and its LL.y is above |
362 | * the bottom of the rank (rank.ht1). |
363 | * |
364 | * For flat edges, we assume endp->sidemask has been set. For regular |
365 | * edges, we set this, but it doesn't appear to be needed any more. |
366 | * |
367 | * In many cases, we tweak the x or y coordinate of P->start.p by 1. |
368 | * This is because of a problem in the path routing code. If the starting |
369 | * point actually lies on the polygon, in some cases, the router gets |
370 | * confused and routes the path outside the polygon. So, the offset ensures |
371 | * the starting point is in the polygon. |
372 | * |
373 | * FIX: Creating the initial boxes only really works for rankdir=TB and |
374 | * rankdir=LR. For the others, we rely on compassPort flipping the side |
375 | * and then assume that the node shape has top-bottom symmetry. Since we |
376 | * at present only put compass points on the bounding box, this works. |
377 | * If we attempt to implement compass points on actual node perimeters, |
378 | * something major will probably be necessary. Doing the coordinate |
379 | * flip (postprocess) before spline routing will be too disruptive. The |
380 | * correct solution is probably to have beginpath/endpath create the |
381 | * boxes assuming an inverted node. Note that compassPort already does |
382 | * some flipping. Even better would be to allow the *_path function |
383 | * to provide a polygon. |
384 | * |
385 | * The extra space provided by FUDGE-2 prevents the edge from getting |
386 | * too close the side of the node. |
387 | * |
388 | */ |
389 | #define FUDGE 2 |
390 | #define HT2(n) (ND_ht(n)/2) |
391 | |
392 | void |
393 | beginpath(path * P, edge_t * e, int et, pathend_t * endp, boolean merge) |
394 | { |
395 | int side, mask; |
396 | node_t *n; |
397 | int (*pboxfn) (node_t*, port*, int, boxf*, int*); |
398 | |
399 | n = agtail(e); |
400 | |
401 | if (ED_tail_port(e).dyna) |
402 | ED_tail_port(e) = resolvePort(agtail(e), aghead(e), &ED_tail_port(e)); |
403 | if (ND_shape(n)) |
404 | pboxfn = ND_shape(n)->fns->pboxfn; |
405 | else |
406 | pboxfn = NULL; |
407 | P->start.p = add_pointf(ND_coord(n), ED_tail_port(e).p); |
408 | if (merge) { |
409 | /*P->start.theta = - M_PI / 2; */ |
410 | P->start.theta = conc_slope(agtail(e)); |
411 | P->start.constrained = TRUE; |
412 | } else { |
413 | if (ED_tail_port(e).constrained) { |
414 | P->start.theta = ED_tail_port(e).theta; |
415 | P->start.constrained = TRUE; |
416 | } else |
417 | P->start.constrained = FALSE; |
418 | } |
419 | P->nbox = 0; |
420 | P->data = (void *) e; |
421 | endp->np = P->start.p; |
422 | if ((et == REGULAREDGE) && (ND_node_type(n) == NORMAL) && ((side = ED_tail_port(e).side))) { |
423 | edge_t* orig; |
424 | boxf b0, b = endp->nb; |
425 | if (side & TOP) { |
426 | endp->sidemask = TOP; |
427 | if (P->start.p.x < ND_coord(n).x) { /* go left */ |
428 | b0.LL.x = b.LL.x - 1; |
429 | /* b0.LL.y = ND_coord(n).y + HT2(n); */ |
430 | b0.LL.y = P->start.p.y; |
431 | b0.UR.x = b.UR.x; |
432 | b0.UR.y = ND_coord(n).y + HT2(n) + GD_ranksep(agraphof(n))/2; |
433 | b.UR.x = ND_coord(n).x - ND_lw(n) - (FUDGE-2); |
434 | b.UR.y = b0.LL.y; |
435 | b.LL.y = ND_coord(n).y - HT2(n); |
436 | b.LL.x -= 1; |
437 | endp->boxes[0] = b0; |
438 | endp->boxes[1] = b; |
439 | } |
440 | else { |
441 | b0.LL.x = b.LL.x; |
442 | b0.LL.y = P->start.p.y; |
443 | /* b0.LL.y = ND_coord(n).y + HT2(n); */ |
444 | b0.UR.x = b.UR.x+1; |
445 | b0.UR.y = ND_coord(n).y + HT2(n) + GD_ranksep(agraphof(n))/2; |
446 | b.LL.x = ND_coord(n).x + ND_rw(n) + (FUDGE-2); |
447 | b.UR.y = b0.LL.y; |
448 | b.LL.y = ND_coord(n).y - HT2(n); |
449 | b.UR.x += 1; |
450 | endp->boxes[0] = b0; |
451 | endp->boxes[1] = b; |
452 | } |
453 | P->start.p.y += 1; |
454 | endp->boxn = 2; |
455 | } |
456 | else if (side & BOTTOM) { |
457 | endp->sidemask = BOTTOM; |
458 | b.UR.y = MAX(b.UR.y,P->start.p.y); |
459 | endp->boxes[0] = b; |
460 | endp->boxn = 1; |
461 | P->start.p.y -= 1; |
462 | } |
463 | else if (side & LEFT) { |
464 | endp->sidemask = LEFT; |
465 | b.UR.x = P->start.p.x; |
466 | b.LL.y = ND_coord(n).y - HT2(n); |
467 | b.UR.y = P->start.p.y; |
468 | endp->boxes[0] = b; |
469 | endp->boxn = 1; |
470 | P->start.p.x -= 1; |
471 | } |
472 | else { |
473 | endp->sidemask = RIGHT; |
474 | b.LL.x = P->start.p.x; |
475 | b.LL.y = ND_coord(n).y - HT2(n); |
476 | b.UR.y = P->start.p.y; |
477 | endp->boxes[0] = b; |
478 | endp->boxn = 1; |
479 | P->start.p.x += 1; |
480 | } |
481 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
482 | if (n == agtail(orig)) |
483 | ED_tail_port(orig).clip = FALSE; |
484 | else |
485 | ED_head_port(orig).clip = FALSE; |
486 | return; |
487 | } |
488 | if ((et == FLATEDGE) && ((side = ED_tail_port(e).side))) { |
489 | boxf b0, b = endp->nb; |
490 | edge_t* orig; |
491 | if (side & TOP) { |
492 | b.LL.y = MIN(b.LL.y,P->start.p.y); |
493 | endp->boxes[0] = b; |
494 | endp->boxn = 1; |
495 | P->start.p.y += 1; |
496 | } |
497 | else if (side & BOTTOM) { |
498 | if (endp->sidemask == TOP) { |
499 | b0.UR.y = ND_coord(n).y - HT2(n); |
500 | b0.UR.x = b.UR.x+1; |
501 | b0.LL.x = P->start.p.x; |
502 | b0.LL.y = b0.UR.y - GD_ranksep(agraphof(n))/2; |
503 | b.LL.x = ND_coord(n).x + ND_rw(n) + (FUDGE-2); |
504 | b.LL.y = b0.UR.y; |
505 | b.UR.y = ND_coord(n).y + HT2(n); |
506 | b.UR.x += 1; |
507 | endp->boxes[0] = b0; |
508 | endp->boxes[1] = b; |
509 | endp->boxn = 2; |
510 | } |
511 | else { |
512 | b.UR.y = MAX(b.UR.y,P->start.p.y); |
513 | endp->boxes[0] = b; |
514 | endp->boxn = 1; |
515 | } |
516 | P->start.p.y -= 1; |
517 | } |
518 | else if (side & LEFT) { |
519 | b.UR.x = P->start.p.x+1; |
520 | if (endp->sidemask == TOP) { |
521 | b.UR.y = ND_coord(n).y + HT2(n); |
522 | b.LL.y = P->start.p.y-1; |
523 | } |
524 | else { |
525 | b.LL.y = ND_coord(n).y - HT2(n); |
526 | b.UR.y = P->start.p.y+1; |
527 | } |
528 | endp->boxes[0] = b; |
529 | endp->boxn = 1; |
530 | P->start.p.x -= 1; |
531 | } |
532 | else { |
533 | b.LL.x = P->start.p.x; |
534 | if (endp->sidemask == TOP) { |
535 | b.UR.y = ND_coord(n).y + HT2(n); |
536 | b.LL.y = P->start.p.y; |
537 | } |
538 | else { |
539 | b.LL.y = ND_coord(n).y - HT2(n); |
540 | b.UR.y = P->start.p.y+1; |
541 | } |
542 | endp->boxes[0] = b; |
543 | endp->boxn = 1; |
544 | P->start.p.x += 1; |
545 | } |
546 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
547 | if (n == agtail(orig)) |
548 | ED_tail_port(orig).clip = FALSE; |
549 | else |
550 | ED_head_port(orig).clip = FALSE; |
551 | endp->sidemask = side; |
552 | return; |
553 | } |
554 | |
555 | if (et == REGULAREDGE) side = BOTTOM; |
556 | else side = endp->sidemask; /* for flat edges */ |
557 | if (pboxfn |
558 | && (mask = (*pboxfn) (n, &ED_tail_port(e), side, &endp->boxes[0], &endp->boxn))) |
559 | endp->sidemask = mask; |
560 | else { |
561 | endp->boxes[0] = endp->nb; |
562 | endp->boxn = 1; |
563 | |
564 | switch (et) { |
565 | case SELFEDGE: |
566 | /* moving the box UR.y by + 1 avoids colinearity between |
567 | port point and box that confuses Proutespline(). it's |
568 | a bug in Proutespline() but this is the easiest fix. */ |
569 | assert(0); /* at present, we don't use beginpath for selfedges */ |
570 | endp->boxes[0].UR.y = P->start.p.y - 1; |
571 | endp->sidemask = BOTTOM; |
572 | break; |
573 | case FLATEDGE: |
574 | if (endp->sidemask == TOP) |
575 | endp->boxes[0].LL.y = P->start.p.y; |
576 | else |
577 | endp->boxes[0].UR.y = P->start.p.y; |
578 | break; |
579 | case REGULAREDGE: |
580 | endp->boxes[0].UR.y = P->start.p.y; |
581 | endp->sidemask = BOTTOM; |
582 | P->start.p.y -= 1; |
583 | break; |
584 | } |
585 | } |
586 | } |
587 | |
588 | void endpath(path * P, edge_t * e, int et, pathend_t * endp, boolean merge) |
589 | { |
590 | int side, mask; |
591 | node_t *n; |
592 | int (*pboxfn) (node_t* n, port*, int, boxf*, int*); |
593 | |
594 | n = aghead(e); |
595 | |
596 | if (ED_head_port(e).dyna) |
597 | ED_head_port(e) = resolvePort(aghead(e), agtail(e), &ED_head_port(e)); |
598 | if (ND_shape(n)) |
599 | pboxfn = ND_shape(n)->fns->pboxfn; |
600 | else |
601 | pboxfn = NULL; |
602 | P->end.p = add_pointf(ND_coord(n), ED_head_port(e).p); |
603 | if (merge) { |
604 | /*P->end.theta = M_PI / 2; */ |
605 | P->end.theta = conc_slope(aghead(e)) + M_PI; |
606 | assert(P->end.theta < 2 * M_PI); |
607 | P->end.constrained = TRUE; |
608 | } else { |
609 | if (ED_head_port(e).constrained) { |
610 | P->end.theta = ED_head_port(e).theta; |
611 | P->end.constrained = TRUE; |
612 | } else |
613 | P->end.constrained = FALSE; |
614 | } |
615 | endp->np = P->end.p; |
616 | if ((et == REGULAREDGE) && (ND_node_type(n) == NORMAL) && ((side = ED_head_port(e).side))) { |
617 | edge_t* orig; |
618 | boxf b0, b = endp->nb; |
619 | if (side & TOP) { |
620 | endp->sidemask = TOP; |
621 | b.LL.y = MIN(b.LL.y,P->end.p.y); |
622 | endp->boxes[0] = b; |
623 | endp->boxn = 1; |
624 | P->end.p.y += 1; |
625 | } |
626 | else if (side & BOTTOM) { |
627 | endp->sidemask = BOTTOM; |
628 | if (P->end.p.x < ND_coord(n).x) { /* go left */ |
629 | b0.LL.x = b.LL.x-1; |
630 | /* b0.UR.y = ND_coord(n).y - HT2(n); */ |
631 | b0.UR.y = P->end.p.y; |
632 | b0.UR.x = b.UR.x; |
633 | b0.LL.y = ND_coord(n).y - HT2(n) - GD_ranksep(agraphof(n))/2; |
634 | b.UR.x = ND_coord(n).x - ND_lw(n) - (FUDGE-2); |
635 | b.LL.y = b0.UR.y; |
636 | b.UR.y = ND_coord(n).y + HT2(n); |
637 | b.LL.x -= 1; |
638 | endp->boxes[0] = b0; |
639 | endp->boxes[1] = b; |
640 | } |
641 | else { |
642 | b0.LL.x = b.LL.x; |
643 | b0.UR.y = P->end.p.y; |
644 | /* b0.UR.y = ND_coord(n).y - HT2(n); */ |
645 | b0.UR.x = b.UR.x+1; |
646 | b0.LL.y = ND_coord(n).y - HT2(n) - GD_ranksep(agraphof(n))/2; |
647 | b.LL.x = ND_coord(n).x + ND_rw(n) + (FUDGE-2); |
648 | b.LL.y = b0.UR.y; |
649 | b.UR.y = ND_coord(n).y + HT2(n); |
650 | b.UR.x += 1; |
651 | endp->boxes[0] = b0; |
652 | endp->boxes[1] = b; |
653 | } |
654 | endp->boxn = 2; |
655 | P->end.p.y -= 1; |
656 | } |
657 | else if (side & LEFT) { |
658 | endp->sidemask = LEFT; |
659 | b.UR.x = P->end.p.x; |
660 | b.UR.y = ND_coord(n).y + HT2(n); |
661 | b.LL.y = P->end.p.y; |
662 | endp->boxes[0] = b; |
663 | endp->boxn = 1; |
664 | P->end.p.x -= 1; |
665 | } |
666 | else { |
667 | endp->sidemask = RIGHT; |
668 | b.LL.x = P->end.p.x; |
669 | b.UR.y = ND_coord(n).y + HT2(n); |
670 | b.LL.y = P->end.p.y; |
671 | endp->boxes[0] = b; |
672 | endp->boxn = 1; |
673 | P->end.p.x += 1; |
674 | } |
675 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
676 | if (n == aghead(orig)) |
677 | ED_head_port(orig).clip = FALSE; |
678 | else |
679 | ED_tail_port(orig).clip = FALSE; |
680 | endp->sidemask = side; |
681 | return; |
682 | } |
683 | |
684 | if ((et == FLATEDGE) && ((side = ED_head_port(e).side))) { |
685 | boxf b0, b = endp->nb; |
686 | edge_t* orig; |
687 | if (side & TOP) { |
688 | b.LL.y = MIN(b.LL.y,P->end.p.y); |
689 | endp->boxes[0] = b; |
690 | endp->boxn = 1; |
691 | P->end.p.y += 1; |
692 | } |
693 | else if (side & BOTTOM) { |
694 | if (endp->sidemask == TOP) { |
695 | b0.LL.x = b.LL.x-1; |
696 | b0.UR.y = ND_coord(n).y - HT2(n); |
697 | b0.UR.x = P->end.p.x; |
698 | b0.LL.y = b0.UR.y - GD_ranksep(agraphof(n))/2; |
699 | b.UR.x = ND_coord(n).x - ND_lw(n) - 2; |
700 | b.LL.y = b0.UR.y; |
701 | b.UR.y = ND_coord(n).y + HT2(n); |
702 | b.LL.x -= 1; |
703 | endp->boxes[0] = b0; |
704 | endp->boxes[1] = b; |
705 | endp->boxn = 2; |
706 | } |
707 | else { |
708 | b.UR.y = MAX(b.UR.y,P->start.p.y); |
709 | endp->boxes[0] = b; |
710 | endp->boxn = 1; |
711 | } |
712 | P->end.p.y -= 1; |
713 | } |
714 | else if (side & LEFT) { |
715 | b.UR.x = P->end.p.x+1; |
716 | if (endp->sidemask == TOP) { |
717 | b.UR.y = ND_coord(n).y + HT2(n); |
718 | b.LL.y = P->end.p.y-1; |
719 | } |
720 | else { |
721 | b.LL.y = ND_coord(n).y - HT2(n); |
722 | b.UR.y = P->end.p.y+1; |
723 | } |
724 | endp->boxes[0] = b; |
725 | endp->boxn = 1; |
726 | P->end.p.x -= 1; |
727 | } |
728 | else { |
729 | b.LL.x = P->end.p.x-1; |
730 | if (endp->sidemask == TOP) { |
731 | b.UR.y = ND_coord(n).y + HT2(n); |
732 | b.LL.y = P->end.p.y-1; |
733 | } |
734 | else { |
735 | b.LL.y = ND_coord(n).y - HT2(n); |
736 | b.UR.y = P->end.p.y; |
737 | } |
738 | endp->boxes[0] = b; |
739 | endp->boxn = 1; |
740 | P->end.p.x += 1; |
741 | } |
742 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
743 | if (n == aghead(orig)) |
744 | ED_head_port(orig).clip = FALSE; |
745 | else |
746 | ED_tail_port(orig).clip = FALSE; |
747 | endp->sidemask = side; |
748 | return; |
749 | } |
750 | |
751 | if (et == REGULAREDGE) side = TOP; |
752 | else side = endp->sidemask; /* for flat edges */ |
753 | if (pboxfn |
754 | && (mask = (*pboxfn) (n, &ED_head_port(e), side, &endp->boxes[0], &endp->boxn))) |
755 | endp->sidemask = mask; |
756 | else { |
757 | endp->boxes[0] = endp->nb; |
758 | endp->boxn = 1; |
759 | |
760 | switch (et) { |
761 | case SELFEDGE: |
762 | /* offset of -1 is symmetric w.r.t. beginpath() |
763 | * FIXME: is any of this right? what if self-edge |
764 | * doesn't connect from BOTTOM to TOP??? */ |
765 | assert(0); /* at present, we don't use endpath for selfedges */ |
766 | endp->boxes[0].LL.y = P->end.p.y + 1; |
767 | endp->sidemask = TOP; |
768 | break; |
769 | case FLATEDGE: |
770 | if (endp->sidemask == TOP) |
771 | endp->boxes[0].LL.y = P->end.p.y; |
772 | else |
773 | endp->boxes[0].UR.y = P->end.p.y; |
774 | break; |
775 | case REGULAREDGE: |
776 | endp->boxes[0].LL.y = P->end.p.y; |
777 | endp->sidemask = TOP; |
778 | P->end.p.y += 1; |
779 | break; |
780 | } |
781 | } |
782 | } |
783 | |
784 | |
785 | static int convert_sides_to_points(int tail_side, int head_side) |
786 | { |
787 | int vertices[] = {12,4,6,2,3,1,9,8}; //the cumulative side value of each node point |
788 | int i, tail_i, head_i; |
789 | int pair_a[8][8] = { //array of possible node point pairs |
790 | {11,12,13,14,15,16,17,18}, |
791 | {21,22,23,24,25,26,27,28}, |
792 | {31,32,33,34,35,36,37,38}, |
793 | {41,42,43,44,45,46,47,48}, |
794 | {51,52,53,54,55,56,57,58}, |
795 | {61,62,63,64,65,66,67,68}, |
796 | {71,72,73,74,75,76,77,78}, |
797 | {81,82,83,84,85,86,87,88} |
798 | }; |
799 | |
800 | tail_i = head_i = -1; |
801 | for(i=0;i< 8; i++){ |
802 | if(head_side == vertices[i]){ |
803 | head_i = i; |
804 | break; |
805 | } |
806 | } |
807 | for(i=0;i< 8; i++){ |
808 | if(tail_side == vertices[i]){ |
809 | tail_i = i; |
810 | break; |
811 | } |
812 | } |
813 | |
814 | if( tail_i < 0 || head_i < 0) |
815 | return 0; |
816 | else |
817 | return pair_a[tail_i][head_i]; |
818 | } |
819 | |
820 | |
821 | static void selfBottom (edge_t* edges[], int ind, int cnt, |
822 | double sizex, double stepy, splineInfo* sinfo) |
823 | { |
824 | pointf tp, hp, np; |
825 | node_t *n; |
826 | edge_t *e; |
827 | int i, sgn, point_pair; |
828 | double hy, ty, stepx, dx, dy, width, height; |
829 | pointf points[1000]; |
830 | int pointn; |
831 | |
832 | e = edges[ind]; |
833 | n = agtail(e); |
834 | |
835 | stepx = (sizex / 2.) / cnt; |
836 | stepx = MAX(stepx,2.); |
837 | pointn = 0; |
838 | np = ND_coord(n); |
839 | tp = ED_tail_port(e).p; |
840 | tp.x += np.x; |
841 | tp.y += np.y; |
842 | hp = ED_head_port(e).p; |
843 | hp.x += np.x; |
844 | hp.y += np.y; |
845 | if (tp.x >= hp.x) sgn = 1; |
846 | else sgn = -1; |
847 | dy = ND_ht(n)/2., dx = 0.; |
848 | // certain adjustments are required for some point_pairs in order to improve the |
849 | // display of the edge path between them |
850 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
851 | switch(point_pair){ |
852 | case 67: sgn = -sgn; |
853 | break; |
854 | default: |
855 | break; |
856 | } |
857 | ty = MIN(dy, 3*(tp.y + dy - np.y)); |
858 | hy = MIN(dy, 3*(hp.y + dy - np.y)); |
859 | for (i = 0; i < cnt; i++) { |
860 | e = edges[ind++]; |
861 | dy += stepy, ty += stepy, hy += stepy, dx += sgn*stepx; |
862 | pointn = 0; |
863 | points[pointn++] = tp; |
864 | points[pointn++] = pointfof(tp.x + dx, tp.y - ty / 3); |
865 | points[pointn++] = pointfof(tp.x + dx, np.y - dy); |
866 | points[pointn++] = pointfof((tp.x+hp.x)/2, np.y - dy); |
867 | points[pointn++] = pointfof(hp.x - dx, np.y - dy); |
868 | points[pointn++] = pointfof(hp.x - dx, hp.y - hy / 3); |
869 | points[pointn++] = hp; |
870 | if (ED_label(e)) { |
871 | if (GD_flip(agraphof(agtail(e)))) { |
872 | width = ED_label(e)->dimen.y; |
873 | height = ED_label(e)->dimen.x; |
874 | } else { |
875 | width = ED_label(e)->dimen.x; |
876 | height = ED_label(e)->dimen.y; |
877 | } |
878 | ED_label(e)->pos.y = ND_coord(n).y - dy - height / 2.0; |
879 | ED_label(e)->pos.x = ND_coord(n).x; |
880 | ED_label(e)->set = TRUE; |
881 | if (height > stepy) |
882 | dy += height - stepy; |
883 | } |
884 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
885 | #ifdef DEBUG |
886 | if (debugleveln(e,1)) |
887 | showPoints (points, pointn); |
888 | #endif |
889 | } |
890 | } |
891 | |
892 | |
893 | static void |
894 | selfTop (edge_t* edges[], int ind, int cnt, double sizex, double stepy, |
895 | splineInfo* sinfo) |
896 | { |
897 | int i, sgn, point_pair; |
898 | double hy, ty, stepx, dx, dy, width, height; |
899 | pointf tp, hp, np; |
900 | node_t *n; |
901 | edge_t *e; |
902 | pointf points[1000]; |
903 | int pointn; |
904 | |
905 | e = edges[ind]; |
906 | n = agtail(e); |
907 | |
908 | stepx = (sizex / 2.) / cnt; |
909 | stepx = MAX(stepx, 2.); |
910 | pointn = 0; |
911 | np = ND_coord(n); |
912 | tp = ED_tail_port(e).p; |
913 | tp.x += np.x; |
914 | tp.y += np.y; |
915 | hp = ED_head_port(e).p; |
916 | hp.x += np.x; |
917 | hp.y += np.y; |
918 | if (tp.x >= hp.x) sgn = 1; |
919 | else sgn = -1; |
920 | dy = ND_ht(n)/2., dx = 0.; |
921 | // certain adjustments are required for some point_pairs in order to improve the |
922 | // display of the edge path between them |
923 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
924 | switch(point_pair){ |
925 | case 15: |
926 | dx = sgn*(ND_rw(n) - (hp.x-np.x) + stepx); |
927 | break; |
928 | |
929 | case 38: |
930 | dx = sgn*(ND_lw(n)-(np.x-hp.x) + stepx); |
931 | break; |
932 | case 41: |
933 | dx = sgn*(ND_rw(n)-(tp.x-np.x) + stepx); |
934 | break; |
935 | case 48: |
936 | dx = sgn*(ND_rw(n)-(tp.x-np.x) + stepx); |
937 | break; |
938 | |
939 | case 14: |
940 | case 37: |
941 | case 47: |
942 | case 51: |
943 | case 57: |
944 | case 58: |
945 | dx = sgn*((((ND_lw(n)-(np.x-tp.x)) + (ND_rw(n)-(hp.x-np.x)))/3.)); |
946 | break; |
947 | case 73: |
948 | dx = sgn*(ND_lw(n)-(np.x-tp.x) + stepx); |
949 | break; |
950 | case 83: |
951 | dx = sgn*(ND_lw(n)-(np.x-tp.x)); |
952 | break; |
953 | case 84: |
954 | dx = sgn*((((ND_lw(n)-(np.x-tp.x)) + (ND_rw(n)-(hp.x-np.x)))/2.) + stepx); |
955 | break; |
956 | case 74: |
957 | case 75: |
958 | case 85: |
959 | dx = sgn*((((ND_lw(n)-(np.x-tp.x)) + (ND_rw(n)-(hp.x-np.x)))/2.) + 2*stepx); |
960 | break; |
961 | default: |
962 | break; |
963 | } |
964 | ty = MIN(dy, 3*(np.y + dy - tp.y)); |
965 | hy = MIN(dy, 3*(np.y + dy - hp.y)); |
966 | for (i = 0; i < cnt; i++) { |
967 | e = edges[ind++]; |
968 | dy += stepy, ty += stepy, hy += stepy, dx += sgn*stepx; |
969 | pointn = 0; |
970 | points[pointn++] = tp; |
971 | points[pointn++] = pointfof(tp.x + dx, tp.y + ty / 3); |
972 | points[pointn++] = pointfof(tp.x + dx, np.y + dy); |
973 | points[pointn++] = pointfof((tp.x+hp.x)/2, np.y + dy); |
974 | points[pointn++] = pointfof(hp.x - dx, np.y + dy); |
975 | points[pointn++] = pointfof(hp.x - dx, hp.y + hy / 3); |
976 | points[pointn++] = hp; |
977 | if (ED_label(e)) { |
978 | if (GD_flip(agraphof(agtail(e)))) { |
979 | width = ED_label(e)->dimen.y; |
980 | height = ED_label(e)->dimen.x; |
981 | } else { |
982 | width = ED_label(e)->dimen.x; |
983 | height = ED_label(e)->dimen.y; |
984 | } |
985 | ED_label(e)->pos.y = ND_coord(n).y + dy + height / 2.0; |
986 | ED_label(e)->pos.x = ND_coord(n).x; |
987 | ED_label(e)->set = TRUE; |
988 | if (height > stepy) |
989 | dy += height - stepy; |
990 | } |
991 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
992 | #ifdef DEBUG |
993 | if (debugleveln(e,1)) |
994 | showPoints (points, pointn); |
995 | #endif |
996 | } |
997 | return; |
998 | } |
999 | |
1000 | static void |
1001 | selfRight (edge_t* edges[], int ind, int cnt, double stepx, double sizey, |
1002 | splineInfo* sinfo) |
1003 | { |
1004 | int i, sgn, point_pair; |
1005 | double hx, tx, stepy, dx, dy, width, height; |
1006 | pointf tp, hp, np; |
1007 | node_t *n; |
1008 | edge_t *e; |
1009 | pointf points[1000]; |
1010 | int pointn; |
1011 | |
1012 | e = edges[ind]; |
1013 | n = agtail(e); |
1014 | |
1015 | stepy = (sizey / 2.) / cnt; |
1016 | stepy = MAX(stepy, 2.); |
1017 | pointn = 0; |
1018 | np = ND_coord(n); |
1019 | tp = ED_tail_port(e).p; |
1020 | tp.x += np.x; |
1021 | tp.y += np.y; |
1022 | hp = ED_head_port(e).p; |
1023 | hp.x += np.x; |
1024 | hp.y += np.y; |
1025 | if (tp.y >= hp.y) sgn = 1; |
1026 | else sgn = -1; |
1027 | dx = ND_rw(n), dy = 0; |
1028 | // certain adjustments are required for some point_pairs in order to improve the |
1029 | // display of the edge path between them |
1030 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
1031 | switch(point_pair){ |
1032 | case 32: |
1033 | case 65: if(tp.y == hp.y) |
1034 | sgn = -sgn; |
1035 | break; |
1036 | default: |
1037 | break; |
1038 | } |
1039 | tx = MIN(dx, 3*(np.x + dx - tp.x)); |
1040 | hx = MIN(dx, 3*(np.x + dx - hp.x)); |
1041 | for (i = 0; i < cnt; i++) { |
1042 | e = edges[ind++]; |
1043 | dx += stepx, tx += stepx, hx += stepx, dy += sgn*stepy; |
1044 | pointn = 0; |
1045 | points[pointn++] = tp; |
1046 | points[pointn++] = pointfof(tp.x + tx / 3, tp.y + dy); |
1047 | points[pointn++] = pointfof(np.x + dx, tp.y + dy); |
1048 | points[pointn++] = pointfof(np.x + dx, (tp.y+hp.y)/2); |
1049 | points[pointn++] = pointfof(np.x + dx, hp.y - dy); |
1050 | points[pointn++] = pointfof(hp.x + hx / 3, hp.y - dy); |
1051 | points[pointn++] = hp; |
1052 | if (ED_label(e)) { |
1053 | if (GD_flip(agraphof(agtail(e)))) { |
1054 | width = ED_label(e)->dimen.y; |
1055 | height = ED_label(e)->dimen.x; |
1056 | } else { |
1057 | width = ED_label(e)->dimen.x; |
1058 | height = ED_label(e)->dimen.y; |
1059 | } |
1060 | ED_label(e)->pos.x = ND_coord(n).x + dx + width / 2.0; |
1061 | ED_label(e)->pos.y = ND_coord(n).y; |
1062 | ED_label(e)->set = TRUE; |
1063 | if (width > stepx) |
1064 | dx += width - stepx; |
1065 | } |
1066 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
1067 | #ifdef DEBUG |
1068 | if (debugleveln(e,1)) |
1069 | showPoints (points, pointn); |
1070 | #endif |
1071 | } |
1072 | return; |
1073 | } |
1074 | |
1075 | static void |
1076 | selfLeft (edge_t* edges[], int ind, int cnt, double stepx, double sizey, |
1077 | splineInfo* sinfo) |
1078 | { |
1079 | int i, sgn,point_pair; |
1080 | double hx, tx, stepy, dx, dy, width, height; |
1081 | pointf tp, hp, np; |
1082 | node_t *n; |
1083 | edge_t *e; |
1084 | pointf points[1000]; |
1085 | int pointn; |
1086 | |
1087 | e = edges[ind]; |
1088 | n = agtail(e); |
1089 | |
1090 | stepy = (sizey / 2.) / cnt; |
1091 | stepy = MAX(stepy,2.); |
1092 | pointn = 0; |
1093 | np = ND_coord(n); |
1094 | tp = ED_tail_port(e).p; |
1095 | tp.x += np.x; |
1096 | tp.y += np.y; |
1097 | hp = ED_head_port(e).p; |
1098 | hp.x += np.x; |
1099 | hp.y += np.y; |
1100 | |
1101 | |
1102 | if (tp.y >= hp.y) sgn = 1; |
1103 | else sgn = -1; |
1104 | dx = ND_lw(n), dy = 0.; |
1105 | // certain adjustments are required for some point_pairs in order to improve the |
1106 | // display of the edge path between them |
1107 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
1108 | switch(point_pair){ |
1109 | case 12: |
1110 | case 67: |
1111 | if(tp.y == hp.y) |
1112 | sgn = -sgn; |
1113 | break; |
1114 | default: |
1115 | break; |
1116 | } |
1117 | tx = MIN(dx, 3*(tp.x + dx - np.x)); |
1118 | hx = MIN(dx, 3*(hp.x + dx - np.x)); |
1119 | for (i = 0; i < cnt; i++) { |
1120 | e = edges[ind++]; |
1121 | dx += stepx, tx += stepx, hx += stepx, dy += sgn*stepy; |
1122 | pointn = 0; |
1123 | points[pointn++] = tp; |
1124 | points[pointn++] = pointfof(tp.x - tx / 3, tp.y + dy); |
1125 | points[pointn++] = pointfof(np.x - dx, tp.y + dy); |
1126 | points[pointn++] = pointfof(np.x - dx, (tp.y+hp.y)/2); |
1127 | points[pointn++] = pointfof(np.x - dx, hp.y - dy); |
1128 | points[pointn++] = pointfof(hp.x - hx / 3, hp.y - dy); |
1129 | |
1130 | points[pointn++] = hp; |
1131 | if (ED_label(e)) { |
1132 | if (GD_flip(agraphof(agtail(e)))) { |
1133 | width = ED_label(e)->dimen.y; |
1134 | height = ED_label(e)->dimen.x; |
1135 | } else { |
1136 | width = ED_label(e)->dimen.x; |
1137 | height = ED_label(e)->dimen.y; |
1138 | } |
1139 | ED_label(e)->pos.x = ND_coord(n).x - dx - width / 2.0; |
1140 | ED_label(e)->pos.y = ND_coord(n).y; |
1141 | ED_label(e)->set = TRUE; |
1142 | if (width > stepx) |
1143 | dx += width - stepx; |
1144 | } |
1145 | |
1146 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
1147 | #ifdef DEBUG |
1148 | if (debugleveln(e,1)) |
1149 | showPoints (points, pointn); |
1150 | #endif |
1151 | } |
1152 | } |
1153 | |
1154 | /* selfRightSpace: |
1155 | * Assume e is self-edge. |
1156 | * Return extra space necessary on the right for this edge. |
1157 | * If the edge does not go on the right, return 0. |
1158 | * NOTE: the actual space is determined dynamically by GD_nodesep, |
1159 | * so using the constant SELF_EDGE_SIZE is going to be wrong. |
1160 | * Fortunately, the default nodesep is the same as SELF_EDGE_SIZE. |
1161 | */ |
1162 | int |
1163 | selfRightSpace (edge_t* e) |
1164 | { |
1165 | int sw; |
1166 | double label_width; |
1167 | textlabel_t* l = ED_label(e); |
1168 | |
1169 | if (((!ED_tail_port(e).defined) && (!ED_head_port(e).defined)) || |
1170 | (!(ED_tail_port(e).side & LEFT) && |
1171 | !(ED_head_port(e).side & LEFT) && |
1172 | ((ED_tail_port(e).side != ED_head_port(e).side) || |
1173 | (!(ED_tail_port(e).side & (TOP|BOTTOM)))))) { |
1174 | sw = SELF_EDGE_SIZE; |
1175 | if (l) { |
1176 | label_width = GD_flip(agraphof(aghead(e))) ? l->dimen.y : l->dimen.x; |
1177 | sw += label_width; |
1178 | } |
1179 | } |
1180 | else sw = 0; |
1181 | return sw; |
1182 | } |
1183 | |
1184 | /* makeSelfEdge: |
1185 | * The routing is biased towards the right side because this is what |
1186 | * dot supports, and leaves room for. |
1187 | * FIX: With this bias, labels tend to be placed on top of each other. |
1188 | * Perhaps for self-edges, the label should be centered. |
1189 | */ |
1190 | void |
1191 | makeSelfEdge(path * P, edge_t * edges[], int ind, int cnt, double sizex, |
1192 | double sizey, splineInfo * sinfo) |
1193 | { |
1194 | edge_t *e; |
1195 | |
1196 | e = edges[ind]; |
1197 | |
1198 | /* self edge without ports or |
1199 | * self edge with all ports inside, on the right, or at most 1 on top |
1200 | * and at most 1 on bottom |
1201 | */ |
1202 | |
1203 | if (((!ED_tail_port(e).defined) && (!ED_head_port(e).defined)) || |
1204 | (!(ED_tail_port(e).side & LEFT) && |
1205 | !(ED_head_port(e).side & LEFT) && |
1206 | ((ED_tail_port(e).side != ED_head_port(e).side) || |
1207 | (!(ED_tail_port(e).side & (TOP|BOTTOM)))))) { |
1208 | selfRight(edges, ind, cnt, sizex, sizey, sinfo); |
1209 | } |
1210 | |
1211 | /* self edge with port on left side */ |
1212 | else if ((ED_tail_port(e).side & LEFT) || (ED_head_port(e).side & LEFT)) { |
1213 | |
1214 | /* handle L-R specially */ |
1215 | if ((ED_tail_port(e).side & RIGHT) || (ED_head_port(e).side & RIGHT)) { |
1216 | selfTop(edges, ind, cnt, sizex, sizey, sinfo); |
1217 | } |
1218 | else { |
1219 | selfLeft(edges, ind, cnt, sizex, sizey, sinfo); |
1220 | } |
1221 | } |
1222 | |
1223 | /* self edge with both ports on top side */ |
1224 | else if (ED_tail_port(e).side & TOP) { |
1225 | selfTop(edges, ind, cnt, sizex, sizey, sinfo); |
1226 | } |
1227 | else if (ED_tail_port(e).side & BOTTOM) { |
1228 | selfBottom(edges, ind, cnt, sizex, sizey, sinfo); |
1229 | } |
1230 | |
1231 | else assert(0); |
1232 | } |
1233 | |
1234 | /* makePortLabels: |
1235 | * Add head and tail labels if necessary and update bounding box. |
1236 | */ |
1237 | void makePortLabels(edge_t * e) |
1238 | { |
1239 | /* Only use this if labelangle or labeldistance is set for the edge; |
1240 | * otherwise, handle with external labels. |
1241 | */ |
1242 | if (!E_labelangle && !E_labeldistance) return; |
1243 | |
1244 | if (ED_head_label(e) && !ED_head_label(e)->set) { |
1245 | if (place_portlabel(e, TRUE)) |
1246 | updateBB(agraphof(agtail(e)), ED_head_label(e)); |
1247 | } |
1248 | if (ED_tail_label(e) && !ED_tail_label(e)->set) { |
1249 | if (place_portlabel(e, FALSE)) |
1250 | updateBB(agraphof(agtail(e)), ED_tail_label(e)); |
1251 | } |
1252 | } |
1253 | |
1254 | /* endPoints: |
1255 | * Extract the actual end points of the spline, where |
1256 | * they touch the node. |
1257 | */ |
1258 | static void endPoints(splines * spl, pointf * p, pointf * q) |
1259 | { |
1260 | bezier bz; |
1261 | |
1262 | bz = spl->list[0]; |
1263 | if (bz.sflag) { |
1264 | *p = bz.sp; |
1265 | } |
1266 | else { |
1267 | *p = bz.list[0]; |
1268 | } |
1269 | bz = spl->list[spl->size - 1]; |
1270 | if (bz.eflag) { |
1271 | *q = bz.ep; |
1272 | } |
1273 | else { |
1274 | *q = bz.list[bz.size - 1]; |
1275 | } |
1276 | } |
1277 | |
1278 | /* polylineMidpoint; |
1279 | * Find midpoint of polyline. |
1280 | * pp and pq are set to the endpoints of the line segment containing it. |
1281 | */ |
1282 | static pointf |
1283 | polylineMidpoint (splines* spl, pointf* pp, pointf* pq) |
1284 | { |
1285 | bezier bz; |
1286 | int i, j, k; |
1287 | double d, dist = 0; |
1288 | pointf pf, qf, mf; |
1289 | |
1290 | for (i = 0; i < spl->size; i++) { |
1291 | bz = spl->list[i]; |
1292 | for (j = 0, k=3; k < bz.size; j+=3,k+=3) { |
1293 | pf = bz.list[j]; |
1294 | qf = bz.list[k]; |
1295 | dist += DIST(pf, qf); |
1296 | } |
1297 | } |
1298 | dist /= 2; |
1299 | for (i = 0; i < spl->size; i++) { |
1300 | bz = spl->list[i]; |
1301 | for (j = 0, k=3; k < bz.size; j+=3,k+=3) { |
1302 | pf = bz.list[j]; |
1303 | qf = bz.list[k]; |
1304 | d = DIST(pf,qf); |
1305 | if (d >= dist) { |
1306 | *pp = pf; |
1307 | *pq = qf; |
1308 | mf.x = ((qf.x*dist) + (pf.x*(d-dist)))/d; |
1309 | mf.y = ((qf.y*dist) + (pf.y*(d-dist)))/d; |
1310 | return mf; |
1311 | } |
1312 | else |
1313 | dist -= d; |
1314 | } |
1315 | } |
1316 | assert (FALSE); /* should never get here */ |
1317 | return mf; |
1318 | } |
1319 | |
1320 | pointf |
1321 | edgeMidpoint (graph_t* g, edge_t * e) |
1322 | { |
1323 | int et = EDGE_TYPE (g); |
1324 | pointf d, spf, p, q; |
1325 | |
1326 | endPoints(ED_spl(e), &p, &q); |
1327 | if (APPROXEQPT(p, q, MILLIPOINT)) { /* degenerate spline */ |
1328 | spf = p; |
1329 | } |
1330 | else if ((et == ET_SPLINE) || (et == ET_CURVED)) { |
1331 | d.x = (q.x + p.x) / 2.; |
1332 | d.y = (p.y + q.y) / 2.; |
1333 | spf = dotneato_closest(ED_spl(e), d); |
1334 | } |
1335 | else { /* ET_PLINE, ET_ORTHO or ET_LINE */ |
1336 | spf = polylineMidpoint (ED_spl(e), &p, &q); |
1337 | } |
1338 | |
1339 | return spf; |
1340 | } |
1341 | |
1342 | #define LEFTOF(a,b,c) (((a.y - b.y)*(c.x - b.x) - (c.y - b.y)*(a.x - b.x)) > 0) |
1343 | #define MAXLABELWD (POINTS_PER_INCH/2.0) |
1344 | |
1345 | /* addEdgeLabels: |
1346 | * rp and rq are the port points of the tail and head node. |
1347 | * Adds label, headlabel and taillabel. |
1348 | * The use of 2 and 4 in computing ld.x and ld.y are fudge factors, to |
1349 | * introduce a bit of spacing. |
1350 | * Updates bounding box. |
1351 | * We try to use the actual endpoints of the spline, as they may differ |
1352 | * significantly from rp and rq, but if the spline is degenerate (e.g., |
1353 | * the nodes overlap), we use rp and rq. |
1354 | */ |
1355 | void addEdgeLabels(graph_t* g, edge_t * e, pointf rp, pointf rq) |
1356 | { |
1357 | #if 0 |
1358 | int et = EDGE_TYPE (g); |
1359 | pointf p, q; |
1360 | pointf d; /* midpoint of segment p-q */ |
1361 | point ld; |
1362 | point del; |
1363 | pointf spf; |
1364 | double f, ht, wd, dist2; |
1365 | int leftOf; |
1366 | |
1367 | if (ED_label(e) && !ED_label(e)->set) { |
1368 | endPoints(ED_spl(e), &p, &q); |
1369 | if (APPROXEQPT(p, q, MILLIPOINT)) { /* degenerate spline */ |
1370 | p = rp; |
1371 | q = rq; |
1372 | spf = p; |
1373 | } |
1374 | else if (et == ET_SPLINE) { |
1375 | d.x = (q.x + p.x) / 2.; |
1376 | d.y = (p.y + q.y) / 2.; |
1377 | spf = dotneato_closest(ED_spl(e), d); |
1378 | } |
1379 | else { /* ET_PLINE, ET_ORTHO or ET_LINE */ |
1380 | spf = polylineMidpoint (ED_spl(e), &p, &q); |
1381 | } |
1382 | del.x = q.x - p.x; |
1383 | del.y = q.y - p.y; |
1384 | dist2 = del.x*del.x + del.y*del.y; |
1385 | ht = (ED_label(e)->dimen.y + 2)/2.0; |
1386 | if (dist2) { |
1387 | wd = (MIN(ED_label(e)->dimen.x + 2, MAXLABELWD))/2.0; |
1388 | leftOf = LEFTOF(p, q, spf); |
1389 | if ((leftOf && (del.y >= 0)) || (!leftOf && (del.y < 0))) { |
1390 | if (del.x*del.y >= 0) |
1391 | ht *= -1; |
1392 | } |
1393 | else { |
1394 | wd *= -1; |
1395 | if (del.x*del.y < 0) |
1396 | ht *= -1; |
1397 | } |
1398 | f = (del.y*wd - del.x*ht)/dist2; |
1399 | ld.x = -f*del.y; |
1400 | ld.y = f*del.x; |
1401 | } |
1402 | else { /* end points the same */ |
1403 | ld.x = 0; |
1404 | ld.y = -ht; |
1405 | } |
1406 | |
1407 | ED_label(e)->pos.x = spf.x + ld.x; |
1408 | ED_label(e)->pos.y = spf.y + ld.y; |
1409 | ED_label(e)->set = TRUE; |
1410 | updateBB(agraphof(agtail(e)), ED_label(e)); |
1411 | } |
1412 | #endif |
1413 | makePortLabels(e); |
1414 | } |
1415 | |
1416 | #define AGXGET(o,a) agxget(o,a) |
1417 | |
1418 | /* vladimir */ |
1419 | /* place_portlabel: |
1420 | * place the {head,tail}label (depending on HEAD_P) of edge E |
1421 | * N.B. Assume edges are normalized, so tail is at spl->list[0].list[0] |
1422 | * and head is at spl->list[spl->size-l].list[bez->size-1] |
1423 | * Return 1 on success |
1424 | */ |
1425 | int place_portlabel(edge_t * e, boolean head_p) |
1426 | { |
1427 | textlabel_t *l; |
1428 | splines *spl; |
1429 | bezier *bez; |
1430 | double dist, angle; |
1431 | pointf c[4], pe, pf; |
1432 | int i; |
1433 | char* la; |
1434 | char* ld; |
1435 | |
1436 | if (ED_edge_type(e) == IGNORED) |
1437 | return 0; |
1438 | /* add label here only if labelangle or labeldistance is defined; else, use external label */ |
1439 | if ((!E_labelangle || (*(la = AGXGET(e,E_labelangle)) == '\0')) && |
1440 | (!E_labeldistance || (*(ld = AGXGET(e,E_labeldistance)) == '\0'))) { |
1441 | return 0; |
1442 | } |
1443 | |
1444 | l = head_p ? ED_head_label(e) : ED_tail_label(e); |
1445 | if ((spl = getsplinepoints(e)) == NULL) return 0; |
1446 | if (!head_p) { |
1447 | bez = &spl->list[0]; |
1448 | if (bez->sflag) { |
1449 | pe = bez->sp; |
1450 | pf = bez->list[0]; |
1451 | } else { |
1452 | pe = bez->list[0]; |
1453 | for (i = 0; i < 4; i++) |
1454 | c[i] = bez->list[i]; |
1455 | pf = Bezier(c, 3, 0.1, NULL, NULL); |
1456 | } |
1457 | } else { |
1458 | bez = &spl->list[spl->size - 1]; |
1459 | if (bez->eflag) { |
1460 | pe = bez->ep; |
1461 | pf = bez->list[bez->size - 1]; |
1462 | } else { |
1463 | pe = bez->list[bez->size - 1]; |
1464 | for (i = 0; i < 4; i++) |
1465 | c[i] = bez->list[bez->size - 4 + i]; |
1466 | pf = Bezier(c, 3, 0.9, NULL, NULL); |
1467 | } |
1468 | } |
1469 | angle = atan2(pf.y - pe.y, pf.x - pe.x) + |
1470 | RADIANS(late_double(e, E_labelangle, PORT_LABEL_ANGLE, -180.0)); |
1471 | dist = PORT_LABEL_DISTANCE * late_double(e, E_labeldistance, 1.0, 0.0); |
1472 | l->pos.x = pe.x + dist * cos(angle); |
1473 | l->pos.y = pe.y + dist * sin(angle); |
1474 | l->set = TRUE; |
1475 | return 1; |
1476 | } |
1477 | |
1478 | splines *getsplinepoints(edge_t * e) |
1479 | { |
1480 | edge_t *le; |
1481 | splines *sp; |
1482 | |
1483 | for (le = e; !(sp = ED_spl(le)) && ED_edge_type(le) != NORMAL; |
1484 | le = ED_to_orig(le)); |
1485 | if (sp == NULL) |
1486 | agerr (AGERR, "getsplinepoints: no spline points available for edge (%s,%s)\n" , |
1487 | agnameof(agtail(e)), agnameof(aghead(e))); |
1488 | return sp; |
1489 | } |
1490 | |
1491 | |