| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /* Functions related to creating a spline and attaching it to |
| 16 | * an edge, starting from a list of control points. |
| 17 | */ |
| 18 | |
| 19 | #include "render.h" |
| 20 | |
| 21 | #ifdef DEBUG |
| 22 | static int debugleveln(edge_t* e, int i) |
| 23 | { |
| 24 | return (GD_showboxes(agraphof(aghead(e))) == i || |
| 25 | GD_showboxes(agraphof(agtail(e))) == i || |
| 26 | ED_showboxes(e) == i || |
| 27 | ND_showboxes(aghead(e)) == i || |
| 28 | ND_showboxes(agtail(e)) == i); |
| 29 | } |
| 30 | |
| 31 | static void showPoints(pointf ps[], int pn) |
| 32 | { |
| 33 | char buf[BUFSIZ]; |
| 34 | int newcnt = Show_cnt + pn + 3; |
| 35 | int bi, li; |
| 36 | |
| 37 | Show_boxes = ALLOC(newcnt+2,Show_boxes,char*); |
| 38 | li = Show_cnt+1; |
| 39 | Show_boxes[li++] = strdup ("%% self list" ); |
| 40 | Show_boxes[li++] = strdup ("dbgstart" ); |
| 41 | for (bi = 0; bi < pn; bi++) { |
| 42 | sprintf(buf, "%.5g %.5g point" , ps[bi].x, ps[bi].y); |
| 43 | Show_boxes[li++] = strdup (buf); |
| 44 | } |
| 45 | Show_boxes[li++] = strdup ("grestore" ); |
| 46 | |
| 47 | Show_cnt = newcnt; |
| 48 | Show_boxes[Show_cnt+1] = NULL; |
| 49 | } |
| 50 | #endif |
| 51 | |
| 52 | /* arrow_clip: |
| 53 | * Clip arrow to node boundary. |
| 54 | * The real work is done elsewhere. Here we get the real edge, |
| 55 | * check that the edge has arrowheads, and that an endpoint |
| 56 | * isn't a merge point where several parts of an edge meet. |
| 57 | * (e.g., with edge concentrators). |
| 58 | */ |
| 59 | static void |
| 60 | arrow_clip(edge_t * fe, node_t * hn, |
| 61 | pointf * ps, int *startp, int *endp, |
| 62 | bezier * spl, splineInfo * info) |
| 63 | { |
| 64 | edge_t *e; |
| 65 | int i, j, sflag, eflag; |
| 66 | |
| 67 | for (e = fe; ED_to_orig(e); e = ED_to_orig(e)); |
| 68 | |
| 69 | if (info->ignoreSwap) |
| 70 | j = 0; |
| 71 | else |
| 72 | j = info->swapEnds(e); |
| 73 | arrow_flags(e, &sflag, &eflag); |
| 74 | if (info->splineMerge(hn)) |
| 75 | eflag = ARR_NONE; |
| 76 | if (info->splineMerge(agtail(fe))) |
| 77 | sflag = ARR_NONE; |
| 78 | /* swap the two ends */ |
| 79 | if (j) { |
| 80 | i = sflag; |
| 81 | sflag = eflag; |
| 82 | eflag = i; |
| 83 | } |
| 84 | if (info->isOrtho) { |
| 85 | if (eflag || sflag) |
| 86 | arrowOrthoClip(e, ps, *startp, *endp, spl, sflag, eflag); |
| 87 | } |
| 88 | else { |
| 89 | if (sflag) |
| 90 | *startp = |
| 91 | arrowStartClip(e, ps, *startp, *endp, spl, sflag); |
| 92 | if (eflag) |
| 93 | *endp = |
| 94 | arrowEndClip(e, ps, *startp, *endp, spl, eflag); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | /* bezier_clip |
| 99 | * Clip bezier to shape using binary search. |
| 100 | * The details of the shape are passed in the inside_context; |
| 101 | * The function providing the inside test is passed as a parameter. |
| 102 | * left_inside specifies that sp[0] is inside the node, |
| 103 | * else sp[3] is taken as inside. |
| 104 | * The points p are in node coordinates. |
| 105 | */ |
| 106 | void bezier_clip(inside_t * inside_context, |
| 107 | boolean(*inside) (inside_t * inside_context, pointf p), |
| 108 | pointf * sp, boolean left_inside) |
| 109 | { |
| 110 | pointf seg[4], best[4], pt, opt, *left, *right; |
| 111 | double low, high, t, *idir, *odir; |
| 112 | boolean found; |
| 113 | int i; |
| 114 | |
| 115 | if (left_inside) { |
| 116 | left = NULL; |
| 117 | right = seg; |
| 118 | pt = sp[0]; |
| 119 | idir = &low; |
| 120 | odir = &high; |
| 121 | } else { |
| 122 | left = seg; |
| 123 | right = NULL; |
| 124 | pt = sp[3]; |
| 125 | idir = &high; |
| 126 | odir = &low; |
| 127 | } |
| 128 | found = FALSE; |
| 129 | low = 0.0; |
| 130 | high = 1.0; |
| 131 | do { |
| 132 | opt = pt; |
| 133 | t = (high + low) / 2.0; |
| 134 | pt = Bezier(sp, 3, t, left, right); |
| 135 | if (inside(inside_context, pt)) { |
| 136 | *idir = t; |
| 137 | } else { |
| 138 | for (i = 0; i < 4; i++) |
| 139 | best[i] = seg[i]; |
| 140 | found = TRUE; |
| 141 | *odir = t; |
| 142 | } |
| 143 | } while (ABS(opt.x - pt.x) > .5 || ABS(opt.y - pt.y) > .5); |
| 144 | if (found) |
| 145 | for (i = 0; i < 4; i++) |
| 146 | sp[i] = best[i]; |
| 147 | else |
| 148 | for (i = 0; i < 4; i++) |
| 149 | sp[i] = seg[i]; |
| 150 | } |
| 151 | |
| 152 | /* shape_clip0: |
| 153 | * Clip Bezier to node shape using binary search. |
| 154 | * left_inside specifies that curve[0] is inside the node, else |
| 155 | * curve[3] is taken as inside. |
| 156 | * Assumes ND_shape(n) and ND_shape(n)->fns->insidefn are non-NULL. |
| 157 | * See note on shape_clip. |
| 158 | */ |
| 159 | static void |
| 160 | shape_clip0(inside_t * inside_context, node_t * n, pointf curve[4], |
| 161 | boolean left_inside) |
| 162 | { |
| 163 | int i; |
| 164 | double save_real_size; |
| 165 | pointf c[4]; |
| 166 | |
| 167 | save_real_size = ND_rw(n); |
| 168 | for (i = 0; i < 4; i++) { |
| 169 | c[i].x = curve[i].x - ND_coord(n).x; |
| 170 | c[i].y = curve[i].y - ND_coord(n).y; |
| 171 | } |
| 172 | |
| 173 | bezier_clip(inside_context, ND_shape(n)->fns->insidefn, c, |
| 174 | left_inside); |
| 175 | |
| 176 | for (i = 0; i < 4; i++) { |
| 177 | curve[i].x = c[i].x + ND_coord(n).x; |
| 178 | curve[i].y = c[i].y + ND_coord(n).y; |
| 179 | } |
| 180 | ND_rw(n) = save_real_size; |
| 181 | } |
| 182 | |
| 183 | /* shape_clip: |
| 184 | * Clip Bezier to node shape |
| 185 | * Uses curve[0] to determine which which side is inside the node. |
| 186 | * NOTE: This test is bad. It is possible for previous call to |
| 187 | * shape_clip to produce a Bezier with curve[0] moved to the boundary |
| 188 | * for which insidefn(curve[0]) is true. Thus, if the new Bezier is |
| 189 | * fed back to shape_clip, it will again assume left_inside is true. |
| 190 | * To be safe, shape_clip0 should guarantee that the computed boundary |
| 191 | * point fails insidefn. |
| 192 | * The edge e is used to provide a port box. If NULL, the spline is |
| 193 | * clipped to the node shape. |
| 194 | */ |
| 195 | void shape_clip(node_t * n, pointf curve[4]) |
| 196 | { |
| 197 | double save_real_size; |
| 198 | boolean left_inside; |
| 199 | pointf c; |
| 200 | inside_t inside_context; |
| 201 | |
| 202 | if (ND_shape(n) == NULL || ND_shape(n)->fns->insidefn == NULL) |
| 203 | return; |
| 204 | |
| 205 | inside_context.s.n = n; |
| 206 | inside_context.s.bp = NULL; |
| 207 | save_real_size = ND_rw(n); |
| 208 | c.x = curve[0].x - ND_coord(n).x; |
| 209 | c.y = curve[0].y - ND_coord(n).y; |
| 210 | left_inside = ND_shape(n)->fns->insidefn(&inside_context, c); |
| 211 | ND_rw(n) = save_real_size; |
| 212 | shape_clip0(&inside_context, n, curve, left_inside); |
| 213 | } |
| 214 | |
| 215 | /* new_spline: |
| 216 | * Create and attach a new bezier of size sz to the edge d |
| 217 | */ |
| 218 | bezier *new_spline(edge_t * e, int sz) |
| 219 | { |
| 220 | bezier *rv; |
| 221 | while (ED_edge_type(e) != NORMAL) |
| 222 | e = ED_to_orig(e); |
| 223 | if (ED_spl(e) == NULL) |
| 224 | ED_spl(e) = NEW(splines); |
| 225 | ED_spl(e)->list = ALLOC(ED_spl(e)->size + 1, ED_spl(e)->list, bezier); |
| 226 | rv = &(ED_spl(e)->list[ED_spl(e)->size++]); |
| 227 | rv->list = N_NEW(sz, pointf); |
| 228 | rv->size = sz; |
| 229 | rv->sflag = rv->eflag = FALSE; |
| 230 | rv->sp.x = rv->sp.y = rv->ep.x = rv->ep.y = 0; |
| 231 | return rv; |
| 232 | } |
| 233 | |
| 234 | /* clip_and_install: |
| 235 | * Given a raw spline (pn control points in ps), representing |
| 236 | * a path from edge agtail(fe) ending in node hn, clip the ends to |
| 237 | * the node boundaries and attach the resulting spline to the |
| 238 | * edge. |
| 239 | */ |
| 240 | void |
| 241 | clip_and_install(edge_t * fe, node_t * hn, pointf * ps, int pn, |
| 242 | splineInfo * info) |
| 243 | { |
| 244 | pointf p2; |
| 245 | bezier *newspl; |
| 246 | node_t *tn; |
| 247 | int start, end, i, clipTail, clipHead; |
| 248 | graph_t *g; |
| 249 | edge_t *orig; |
| 250 | boxf *tbox, *hbox; |
| 251 | inside_t inside_context; |
| 252 | |
| 253 | tn = agtail(fe); |
| 254 | g = agraphof(tn); |
| 255 | newspl = new_spline(fe, pn); |
| 256 | |
| 257 | for (orig = fe; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
| 258 | |
| 259 | /* may be a reversed flat edge */ |
| 260 | if (!info->ignoreSwap && (ND_rank(tn) == ND_rank(hn)) && (ND_order(tn) > ND_order(hn))) { |
| 261 | node_t *tmp; |
| 262 | tmp = hn; |
| 263 | hn = tn; |
| 264 | tn = tmp; |
| 265 | } |
| 266 | if (tn == agtail(orig)) { |
| 267 | clipTail = ED_tail_port(orig).clip; |
| 268 | clipHead = ED_head_port(orig).clip; |
| 269 | tbox = ED_tail_port(orig).bp; |
| 270 | hbox = ED_head_port(orig).bp; |
| 271 | } |
| 272 | else { /* fe and orig are reversed */ |
| 273 | clipTail = ED_head_port(orig).clip; |
| 274 | clipHead = ED_tail_port(orig).clip; |
| 275 | hbox = ED_tail_port(orig).bp; |
| 276 | tbox = ED_head_port(orig).bp; |
| 277 | } |
| 278 | |
| 279 | /* spline may be interior to node */ |
| 280 | if(clipTail && ND_shape(tn) && ND_shape(tn)->fns->insidefn) { |
| 281 | inside_context.s.n = tn; |
| 282 | inside_context.s.bp = tbox; |
| 283 | for (start = 0; start < pn - 4; start += 3) { |
| 284 | p2.x = ps[start + 3].x - ND_coord(tn).x; |
| 285 | p2.y = ps[start + 3].y - ND_coord(tn).y; |
| 286 | if (ND_shape(tn)->fns->insidefn(&inside_context, p2) == FALSE) |
| 287 | break; |
| 288 | } |
| 289 | shape_clip0(&inside_context, tn, &ps[start], TRUE); |
| 290 | } else |
| 291 | start = 0; |
| 292 | if(clipHead && ND_shape(hn) && ND_shape(hn)->fns->insidefn) { |
| 293 | inside_context.s.n = hn; |
| 294 | inside_context.s.bp = hbox; |
| 295 | for (end = pn - 4; end > 0; end -= 3) { |
| 296 | p2.x = ps[end].x - ND_coord(hn).x; |
| 297 | p2.y = ps[end].y - ND_coord(hn).y; |
| 298 | if (ND_shape(hn)->fns->insidefn(&inside_context, p2) == FALSE) |
| 299 | break; |
| 300 | } |
| 301 | shape_clip0(&inside_context, hn, &ps[end], FALSE); |
| 302 | } else |
| 303 | end = pn - 4; |
| 304 | for (; start < pn - 4; start += 3) |
| 305 | if (! APPROXEQPT(ps[start], ps[start + 3], MILLIPOINT)) |
| 306 | break; |
| 307 | for (; end > 0; end -= 3) |
| 308 | if (! APPROXEQPT(ps[end], ps[end + 3], MILLIPOINT)) |
| 309 | break; |
| 310 | arrow_clip(fe, hn, ps, &start, &end, newspl, info); |
| 311 | for (i = start; i < end + 4; ) { |
| 312 | pointf cp[4]; |
| 313 | newspl->list[i - start] = ps[i]; |
| 314 | cp[0] = ps[i]; |
| 315 | i++; |
| 316 | if ( i >= end + 4) |
| 317 | break; |
| 318 | newspl->list[i - start] = ps[i]; |
| 319 | cp[1] = ps[i]; |
| 320 | i++; |
| 321 | newspl->list[i - start] = ps[i]; |
| 322 | cp[2] = ps[i]; |
| 323 | i++; |
| 324 | cp[3] = ps[i]; |
| 325 | update_bb_bz(&GD_bb(g), cp); |
| 326 | } |
| 327 | newspl->size = end - start + 4; |
| 328 | } |
| 329 | |
| 330 | static double |
| 331 | conc_slope(node_t* n) |
| 332 | { |
| 333 | double s_in, s_out, m_in, m_out; |
| 334 | int cnt_in, cnt_out; |
| 335 | pointf p; |
| 336 | edge_t *e; |
| 337 | |
| 338 | s_in = s_out = 0.0; |
| 339 | for (cnt_in = 0; (e = ND_in(n).list[cnt_in]); cnt_in++) |
| 340 | s_in += ND_coord(agtail(e)).x; |
| 341 | for (cnt_out = 0; (e = ND_out(n).list[cnt_out]); cnt_out++) |
| 342 | s_out += ND_coord(aghead(e)).x; |
| 343 | p.x = ND_coord(n).x - (s_in / cnt_in); |
| 344 | p.y = ND_coord(n).y - ND_coord(agtail(ND_in(n).list[0])).y; |
| 345 | m_in = atan2(p.y, p.x); |
| 346 | p.x = (s_out / cnt_out) - ND_coord(n).x; |
| 347 | p.y = ND_coord(aghead(ND_out(n).list[0])).y - ND_coord(n).y; |
| 348 | m_out = atan2(p.y, p.x); |
| 349 | return ((m_in + m_out) / 2.0); |
| 350 | } |
| 351 | |
| 352 | void add_box(path * P, boxf b) |
| 353 | { |
| 354 | if (b.LL.x < b.UR.x && b.LL.y < b.UR.y) |
| 355 | P->boxes[P->nbox++] = b; |
| 356 | } |
| 357 | |
| 358 | /* beginpath: |
| 359 | * Set up boxes near the tail node. |
| 360 | * For regular nodes, the result should be a list of contiguous rectangles |
| 361 | * such that the last one has the smallest LL.y and its LL.y is above |
| 362 | * the bottom of the rank (rank.ht1). |
| 363 | * |
| 364 | * For flat edges, we assume endp->sidemask has been set. For regular |
| 365 | * edges, we set this, but it doesn't appear to be needed any more. |
| 366 | * |
| 367 | * In many cases, we tweak the x or y coordinate of P->start.p by 1. |
| 368 | * This is because of a problem in the path routing code. If the starting |
| 369 | * point actually lies on the polygon, in some cases, the router gets |
| 370 | * confused and routes the path outside the polygon. So, the offset ensures |
| 371 | * the starting point is in the polygon. |
| 372 | * |
| 373 | * FIX: Creating the initial boxes only really works for rankdir=TB and |
| 374 | * rankdir=LR. For the others, we rely on compassPort flipping the side |
| 375 | * and then assume that the node shape has top-bottom symmetry. Since we |
| 376 | * at present only put compass points on the bounding box, this works. |
| 377 | * If we attempt to implement compass points on actual node perimeters, |
| 378 | * something major will probably be necessary. Doing the coordinate |
| 379 | * flip (postprocess) before spline routing will be too disruptive. The |
| 380 | * correct solution is probably to have beginpath/endpath create the |
| 381 | * boxes assuming an inverted node. Note that compassPort already does |
| 382 | * some flipping. Even better would be to allow the *_path function |
| 383 | * to provide a polygon. |
| 384 | * |
| 385 | * The extra space provided by FUDGE-2 prevents the edge from getting |
| 386 | * too close the side of the node. |
| 387 | * |
| 388 | */ |
| 389 | #define FUDGE 2 |
| 390 | #define HT2(n) (ND_ht(n)/2) |
| 391 | |
| 392 | void |
| 393 | beginpath(path * P, edge_t * e, int et, pathend_t * endp, boolean merge) |
| 394 | { |
| 395 | int side, mask; |
| 396 | node_t *n; |
| 397 | int (*pboxfn) (node_t*, port*, int, boxf*, int*); |
| 398 | |
| 399 | n = agtail(e); |
| 400 | |
| 401 | if (ED_tail_port(e).dyna) |
| 402 | ED_tail_port(e) = resolvePort(agtail(e), aghead(e), &ED_tail_port(e)); |
| 403 | if (ND_shape(n)) |
| 404 | pboxfn = ND_shape(n)->fns->pboxfn; |
| 405 | else |
| 406 | pboxfn = NULL; |
| 407 | P->start.p = add_pointf(ND_coord(n), ED_tail_port(e).p); |
| 408 | if (merge) { |
| 409 | /*P->start.theta = - M_PI / 2; */ |
| 410 | P->start.theta = conc_slope(agtail(e)); |
| 411 | P->start.constrained = TRUE; |
| 412 | } else { |
| 413 | if (ED_tail_port(e).constrained) { |
| 414 | P->start.theta = ED_tail_port(e).theta; |
| 415 | P->start.constrained = TRUE; |
| 416 | } else |
| 417 | P->start.constrained = FALSE; |
| 418 | } |
| 419 | P->nbox = 0; |
| 420 | P->data = (void *) e; |
| 421 | endp->np = P->start.p; |
| 422 | if ((et == REGULAREDGE) && (ND_node_type(n) == NORMAL) && ((side = ED_tail_port(e).side))) { |
| 423 | edge_t* orig; |
| 424 | boxf b0, b = endp->nb; |
| 425 | if (side & TOP) { |
| 426 | endp->sidemask = TOP; |
| 427 | if (P->start.p.x < ND_coord(n).x) { /* go left */ |
| 428 | b0.LL.x = b.LL.x - 1; |
| 429 | /* b0.LL.y = ND_coord(n).y + HT2(n); */ |
| 430 | b0.LL.y = P->start.p.y; |
| 431 | b0.UR.x = b.UR.x; |
| 432 | b0.UR.y = ND_coord(n).y + HT2(n) + GD_ranksep(agraphof(n))/2; |
| 433 | b.UR.x = ND_coord(n).x - ND_lw(n) - (FUDGE-2); |
| 434 | b.UR.y = b0.LL.y; |
| 435 | b.LL.y = ND_coord(n).y - HT2(n); |
| 436 | b.LL.x -= 1; |
| 437 | endp->boxes[0] = b0; |
| 438 | endp->boxes[1] = b; |
| 439 | } |
| 440 | else { |
| 441 | b0.LL.x = b.LL.x; |
| 442 | b0.LL.y = P->start.p.y; |
| 443 | /* b0.LL.y = ND_coord(n).y + HT2(n); */ |
| 444 | b0.UR.x = b.UR.x+1; |
| 445 | b0.UR.y = ND_coord(n).y + HT2(n) + GD_ranksep(agraphof(n))/2; |
| 446 | b.LL.x = ND_coord(n).x + ND_rw(n) + (FUDGE-2); |
| 447 | b.UR.y = b0.LL.y; |
| 448 | b.LL.y = ND_coord(n).y - HT2(n); |
| 449 | b.UR.x += 1; |
| 450 | endp->boxes[0] = b0; |
| 451 | endp->boxes[1] = b; |
| 452 | } |
| 453 | P->start.p.y += 1; |
| 454 | endp->boxn = 2; |
| 455 | } |
| 456 | else if (side & BOTTOM) { |
| 457 | endp->sidemask = BOTTOM; |
| 458 | b.UR.y = MAX(b.UR.y,P->start.p.y); |
| 459 | endp->boxes[0] = b; |
| 460 | endp->boxn = 1; |
| 461 | P->start.p.y -= 1; |
| 462 | } |
| 463 | else if (side & LEFT) { |
| 464 | endp->sidemask = LEFT; |
| 465 | b.UR.x = P->start.p.x; |
| 466 | b.LL.y = ND_coord(n).y - HT2(n); |
| 467 | b.UR.y = P->start.p.y; |
| 468 | endp->boxes[0] = b; |
| 469 | endp->boxn = 1; |
| 470 | P->start.p.x -= 1; |
| 471 | } |
| 472 | else { |
| 473 | endp->sidemask = RIGHT; |
| 474 | b.LL.x = P->start.p.x; |
| 475 | b.LL.y = ND_coord(n).y - HT2(n); |
| 476 | b.UR.y = P->start.p.y; |
| 477 | endp->boxes[0] = b; |
| 478 | endp->boxn = 1; |
| 479 | P->start.p.x += 1; |
| 480 | } |
| 481 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
| 482 | if (n == agtail(orig)) |
| 483 | ED_tail_port(orig).clip = FALSE; |
| 484 | else |
| 485 | ED_head_port(orig).clip = FALSE; |
| 486 | return; |
| 487 | } |
| 488 | if ((et == FLATEDGE) && ((side = ED_tail_port(e).side))) { |
| 489 | boxf b0, b = endp->nb; |
| 490 | edge_t* orig; |
| 491 | if (side & TOP) { |
| 492 | b.LL.y = MIN(b.LL.y,P->start.p.y); |
| 493 | endp->boxes[0] = b; |
| 494 | endp->boxn = 1; |
| 495 | P->start.p.y += 1; |
| 496 | } |
| 497 | else if (side & BOTTOM) { |
| 498 | if (endp->sidemask == TOP) { |
| 499 | b0.UR.y = ND_coord(n).y - HT2(n); |
| 500 | b0.UR.x = b.UR.x+1; |
| 501 | b0.LL.x = P->start.p.x; |
| 502 | b0.LL.y = b0.UR.y - GD_ranksep(agraphof(n))/2; |
| 503 | b.LL.x = ND_coord(n).x + ND_rw(n) + (FUDGE-2); |
| 504 | b.LL.y = b0.UR.y; |
| 505 | b.UR.y = ND_coord(n).y + HT2(n); |
| 506 | b.UR.x += 1; |
| 507 | endp->boxes[0] = b0; |
| 508 | endp->boxes[1] = b; |
| 509 | endp->boxn = 2; |
| 510 | } |
| 511 | else { |
| 512 | b.UR.y = MAX(b.UR.y,P->start.p.y); |
| 513 | endp->boxes[0] = b; |
| 514 | endp->boxn = 1; |
| 515 | } |
| 516 | P->start.p.y -= 1; |
| 517 | } |
| 518 | else if (side & LEFT) { |
| 519 | b.UR.x = P->start.p.x+1; |
| 520 | if (endp->sidemask == TOP) { |
| 521 | b.UR.y = ND_coord(n).y + HT2(n); |
| 522 | b.LL.y = P->start.p.y-1; |
| 523 | } |
| 524 | else { |
| 525 | b.LL.y = ND_coord(n).y - HT2(n); |
| 526 | b.UR.y = P->start.p.y+1; |
| 527 | } |
| 528 | endp->boxes[0] = b; |
| 529 | endp->boxn = 1; |
| 530 | P->start.p.x -= 1; |
| 531 | } |
| 532 | else { |
| 533 | b.LL.x = P->start.p.x; |
| 534 | if (endp->sidemask == TOP) { |
| 535 | b.UR.y = ND_coord(n).y + HT2(n); |
| 536 | b.LL.y = P->start.p.y; |
| 537 | } |
| 538 | else { |
| 539 | b.LL.y = ND_coord(n).y - HT2(n); |
| 540 | b.UR.y = P->start.p.y+1; |
| 541 | } |
| 542 | endp->boxes[0] = b; |
| 543 | endp->boxn = 1; |
| 544 | P->start.p.x += 1; |
| 545 | } |
| 546 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
| 547 | if (n == agtail(orig)) |
| 548 | ED_tail_port(orig).clip = FALSE; |
| 549 | else |
| 550 | ED_head_port(orig).clip = FALSE; |
| 551 | endp->sidemask = side; |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | if (et == REGULAREDGE) side = BOTTOM; |
| 556 | else side = endp->sidemask; /* for flat edges */ |
| 557 | if (pboxfn |
| 558 | && (mask = (*pboxfn) (n, &ED_tail_port(e), side, &endp->boxes[0], &endp->boxn))) |
| 559 | endp->sidemask = mask; |
| 560 | else { |
| 561 | endp->boxes[0] = endp->nb; |
| 562 | endp->boxn = 1; |
| 563 | |
| 564 | switch (et) { |
| 565 | case SELFEDGE: |
| 566 | /* moving the box UR.y by + 1 avoids colinearity between |
| 567 | port point and box that confuses Proutespline(). it's |
| 568 | a bug in Proutespline() but this is the easiest fix. */ |
| 569 | assert(0); /* at present, we don't use beginpath for selfedges */ |
| 570 | endp->boxes[0].UR.y = P->start.p.y - 1; |
| 571 | endp->sidemask = BOTTOM; |
| 572 | break; |
| 573 | case FLATEDGE: |
| 574 | if (endp->sidemask == TOP) |
| 575 | endp->boxes[0].LL.y = P->start.p.y; |
| 576 | else |
| 577 | endp->boxes[0].UR.y = P->start.p.y; |
| 578 | break; |
| 579 | case REGULAREDGE: |
| 580 | endp->boxes[0].UR.y = P->start.p.y; |
| 581 | endp->sidemask = BOTTOM; |
| 582 | P->start.p.y -= 1; |
| 583 | break; |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | void endpath(path * P, edge_t * e, int et, pathend_t * endp, boolean merge) |
| 589 | { |
| 590 | int side, mask; |
| 591 | node_t *n; |
| 592 | int (*pboxfn) (node_t* n, port*, int, boxf*, int*); |
| 593 | |
| 594 | n = aghead(e); |
| 595 | |
| 596 | if (ED_head_port(e).dyna) |
| 597 | ED_head_port(e) = resolvePort(aghead(e), agtail(e), &ED_head_port(e)); |
| 598 | if (ND_shape(n)) |
| 599 | pboxfn = ND_shape(n)->fns->pboxfn; |
| 600 | else |
| 601 | pboxfn = NULL; |
| 602 | P->end.p = add_pointf(ND_coord(n), ED_head_port(e).p); |
| 603 | if (merge) { |
| 604 | /*P->end.theta = M_PI / 2; */ |
| 605 | P->end.theta = conc_slope(aghead(e)) + M_PI; |
| 606 | assert(P->end.theta < 2 * M_PI); |
| 607 | P->end.constrained = TRUE; |
| 608 | } else { |
| 609 | if (ED_head_port(e).constrained) { |
| 610 | P->end.theta = ED_head_port(e).theta; |
| 611 | P->end.constrained = TRUE; |
| 612 | } else |
| 613 | P->end.constrained = FALSE; |
| 614 | } |
| 615 | endp->np = P->end.p; |
| 616 | if ((et == REGULAREDGE) && (ND_node_type(n) == NORMAL) && ((side = ED_head_port(e).side))) { |
| 617 | edge_t* orig; |
| 618 | boxf b0, b = endp->nb; |
| 619 | if (side & TOP) { |
| 620 | endp->sidemask = TOP; |
| 621 | b.LL.y = MIN(b.LL.y,P->end.p.y); |
| 622 | endp->boxes[0] = b; |
| 623 | endp->boxn = 1; |
| 624 | P->end.p.y += 1; |
| 625 | } |
| 626 | else if (side & BOTTOM) { |
| 627 | endp->sidemask = BOTTOM; |
| 628 | if (P->end.p.x < ND_coord(n).x) { /* go left */ |
| 629 | b0.LL.x = b.LL.x-1; |
| 630 | /* b0.UR.y = ND_coord(n).y - HT2(n); */ |
| 631 | b0.UR.y = P->end.p.y; |
| 632 | b0.UR.x = b.UR.x; |
| 633 | b0.LL.y = ND_coord(n).y - HT2(n) - GD_ranksep(agraphof(n))/2; |
| 634 | b.UR.x = ND_coord(n).x - ND_lw(n) - (FUDGE-2); |
| 635 | b.LL.y = b0.UR.y; |
| 636 | b.UR.y = ND_coord(n).y + HT2(n); |
| 637 | b.LL.x -= 1; |
| 638 | endp->boxes[0] = b0; |
| 639 | endp->boxes[1] = b; |
| 640 | } |
| 641 | else { |
| 642 | b0.LL.x = b.LL.x; |
| 643 | b0.UR.y = P->end.p.y; |
| 644 | /* b0.UR.y = ND_coord(n).y - HT2(n); */ |
| 645 | b0.UR.x = b.UR.x+1; |
| 646 | b0.LL.y = ND_coord(n).y - HT2(n) - GD_ranksep(agraphof(n))/2; |
| 647 | b.LL.x = ND_coord(n).x + ND_rw(n) + (FUDGE-2); |
| 648 | b.LL.y = b0.UR.y; |
| 649 | b.UR.y = ND_coord(n).y + HT2(n); |
| 650 | b.UR.x += 1; |
| 651 | endp->boxes[0] = b0; |
| 652 | endp->boxes[1] = b; |
| 653 | } |
| 654 | endp->boxn = 2; |
| 655 | P->end.p.y -= 1; |
| 656 | } |
| 657 | else if (side & LEFT) { |
| 658 | endp->sidemask = LEFT; |
| 659 | b.UR.x = P->end.p.x; |
| 660 | b.UR.y = ND_coord(n).y + HT2(n); |
| 661 | b.LL.y = P->end.p.y; |
| 662 | endp->boxes[0] = b; |
| 663 | endp->boxn = 1; |
| 664 | P->end.p.x -= 1; |
| 665 | } |
| 666 | else { |
| 667 | endp->sidemask = RIGHT; |
| 668 | b.LL.x = P->end.p.x; |
| 669 | b.UR.y = ND_coord(n).y + HT2(n); |
| 670 | b.LL.y = P->end.p.y; |
| 671 | endp->boxes[0] = b; |
| 672 | endp->boxn = 1; |
| 673 | P->end.p.x += 1; |
| 674 | } |
| 675 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
| 676 | if (n == aghead(orig)) |
| 677 | ED_head_port(orig).clip = FALSE; |
| 678 | else |
| 679 | ED_tail_port(orig).clip = FALSE; |
| 680 | endp->sidemask = side; |
| 681 | return; |
| 682 | } |
| 683 | |
| 684 | if ((et == FLATEDGE) && ((side = ED_head_port(e).side))) { |
| 685 | boxf b0, b = endp->nb; |
| 686 | edge_t* orig; |
| 687 | if (side & TOP) { |
| 688 | b.LL.y = MIN(b.LL.y,P->end.p.y); |
| 689 | endp->boxes[0] = b; |
| 690 | endp->boxn = 1; |
| 691 | P->end.p.y += 1; |
| 692 | } |
| 693 | else if (side & BOTTOM) { |
| 694 | if (endp->sidemask == TOP) { |
| 695 | b0.LL.x = b.LL.x-1; |
| 696 | b0.UR.y = ND_coord(n).y - HT2(n); |
| 697 | b0.UR.x = P->end.p.x; |
| 698 | b0.LL.y = b0.UR.y - GD_ranksep(agraphof(n))/2; |
| 699 | b.UR.x = ND_coord(n).x - ND_lw(n) - 2; |
| 700 | b.LL.y = b0.UR.y; |
| 701 | b.UR.y = ND_coord(n).y + HT2(n); |
| 702 | b.LL.x -= 1; |
| 703 | endp->boxes[0] = b0; |
| 704 | endp->boxes[1] = b; |
| 705 | endp->boxn = 2; |
| 706 | } |
| 707 | else { |
| 708 | b.UR.y = MAX(b.UR.y,P->start.p.y); |
| 709 | endp->boxes[0] = b; |
| 710 | endp->boxn = 1; |
| 711 | } |
| 712 | P->end.p.y -= 1; |
| 713 | } |
| 714 | else if (side & LEFT) { |
| 715 | b.UR.x = P->end.p.x+1; |
| 716 | if (endp->sidemask == TOP) { |
| 717 | b.UR.y = ND_coord(n).y + HT2(n); |
| 718 | b.LL.y = P->end.p.y-1; |
| 719 | } |
| 720 | else { |
| 721 | b.LL.y = ND_coord(n).y - HT2(n); |
| 722 | b.UR.y = P->end.p.y+1; |
| 723 | } |
| 724 | endp->boxes[0] = b; |
| 725 | endp->boxn = 1; |
| 726 | P->end.p.x -= 1; |
| 727 | } |
| 728 | else { |
| 729 | b.LL.x = P->end.p.x-1; |
| 730 | if (endp->sidemask == TOP) { |
| 731 | b.UR.y = ND_coord(n).y + HT2(n); |
| 732 | b.LL.y = P->end.p.y-1; |
| 733 | } |
| 734 | else { |
| 735 | b.LL.y = ND_coord(n).y - HT2(n); |
| 736 | b.UR.y = P->end.p.y; |
| 737 | } |
| 738 | endp->boxes[0] = b; |
| 739 | endp->boxn = 1; |
| 740 | P->end.p.x += 1; |
| 741 | } |
| 742 | for (orig = e; ED_edge_type(orig) != NORMAL; orig = ED_to_orig(orig)); |
| 743 | if (n == aghead(orig)) |
| 744 | ED_head_port(orig).clip = FALSE; |
| 745 | else |
| 746 | ED_tail_port(orig).clip = FALSE; |
| 747 | endp->sidemask = side; |
| 748 | return; |
| 749 | } |
| 750 | |
| 751 | if (et == REGULAREDGE) side = TOP; |
| 752 | else side = endp->sidemask; /* for flat edges */ |
| 753 | if (pboxfn |
| 754 | && (mask = (*pboxfn) (n, &ED_head_port(e), side, &endp->boxes[0], &endp->boxn))) |
| 755 | endp->sidemask = mask; |
| 756 | else { |
| 757 | endp->boxes[0] = endp->nb; |
| 758 | endp->boxn = 1; |
| 759 | |
| 760 | switch (et) { |
| 761 | case SELFEDGE: |
| 762 | /* offset of -1 is symmetric w.r.t. beginpath() |
| 763 | * FIXME: is any of this right? what if self-edge |
| 764 | * doesn't connect from BOTTOM to TOP??? */ |
| 765 | assert(0); /* at present, we don't use endpath for selfedges */ |
| 766 | endp->boxes[0].LL.y = P->end.p.y + 1; |
| 767 | endp->sidemask = TOP; |
| 768 | break; |
| 769 | case FLATEDGE: |
| 770 | if (endp->sidemask == TOP) |
| 771 | endp->boxes[0].LL.y = P->end.p.y; |
| 772 | else |
| 773 | endp->boxes[0].UR.y = P->end.p.y; |
| 774 | break; |
| 775 | case REGULAREDGE: |
| 776 | endp->boxes[0].LL.y = P->end.p.y; |
| 777 | endp->sidemask = TOP; |
| 778 | P->end.p.y += 1; |
| 779 | break; |
| 780 | } |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | |
| 785 | static int convert_sides_to_points(int tail_side, int head_side) |
| 786 | { |
| 787 | int vertices[] = {12,4,6,2,3,1,9,8}; //the cumulative side value of each node point |
| 788 | int i, tail_i, head_i; |
| 789 | int pair_a[8][8] = { //array of possible node point pairs |
| 790 | {11,12,13,14,15,16,17,18}, |
| 791 | {21,22,23,24,25,26,27,28}, |
| 792 | {31,32,33,34,35,36,37,38}, |
| 793 | {41,42,43,44,45,46,47,48}, |
| 794 | {51,52,53,54,55,56,57,58}, |
| 795 | {61,62,63,64,65,66,67,68}, |
| 796 | {71,72,73,74,75,76,77,78}, |
| 797 | {81,82,83,84,85,86,87,88} |
| 798 | }; |
| 799 | |
| 800 | tail_i = head_i = -1; |
| 801 | for(i=0;i< 8; i++){ |
| 802 | if(head_side == vertices[i]){ |
| 803 | head_i = i; |
| 804 | break; |
| 805 | } |
| 806 | } |
| 807 | for(i=0;i< 8; i++){ |
| 808 | if(tail_side == vertices[i]){ |
| 809 | tail_i = i; |
| 810 | break; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | if( tail_i < 0 || head_i < 0) |
| 815 | return 0; |
| 816 | else |
| 817 | return pair_a[tail_i][head_i]; |
| 818 | } |
| 819 | |
| 820 | |
| 821 | static void selfBottom (edge_t* edges[], int ind, int cnt, |
| 822 | double sizex, double stepy, splineInfo* sinfo) |
| 823 | { |
| 824 | pointf tp, hp, np; |
| 825 | node_t *n; |
| 826 | edge_t *e; |
| 827 | int i, sgn, point_pair; |
| 828 | double hy, ty, stepx, dx, dy, width, height; |
| 829 | pointf points[1000]; |
| 830 | int pointn; |
| 831 | |
| 832 | e = edges[ind]; |
| 833 | n = agtail(e); |
| 834 | |
| 835 | stepx = (sizex / 2.) / cnt; |
| 836 | stepx = MAX(stepx,2.); |
| 837 | pointn = 0; |
| 838 | np = ND_coord(n); |
| 839 | tp = ED_tail_port(e).p; |
| 840 | tp.x += np.x; |
| 841 | tp.y += np.y; |
| 842 | hp = ED_head_port(e).p; |
| 843 | hp.x += np.x; |
| 844 | hp.y += np.y; |
| 845 | if (tp.x >= hp.x) sgn = 1; |
| 846 | else sgn = -1; |
| 847 | dy = ND_ht(n)/2., dx = 0.; |
| 848 | // certain adjustments are required for some point_pairs in order to improve the |
| 849 | // display of the edge path between them |
| 850 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
| 851 | switch(point_pair){ |
| 852 | case 67: sgn = -sgn; |
| 853 | break; |
| 854 | default: |
| 855 | break; |
| 856 | } |
| 857 | ty = MIN(dy, 3*(tp.y + dy - np.y)); |
| 858 | hy = MIN(dy, 3*(hp.y + dy - np.y)); |
| 859 | for (i = 0; i < cnt; i++) { |
| 860 | e = edges[ind++]; |
| 861 | dy += stepy, ty += stepy, hy += stepy, dx += sgn*stepx; |
| 862 | pointn = 0; |
| 863 | points[pointn++] = tp; |
| 864 | points[pointn++] = pointfof(tp.x + dx, tp.y - ty / 3); |
| 865 | points[pointn++] = pointfof(tp.x + dx, np.y - dy); |
| 866 | points[pointn++] = pointfof((tp.x+hp.x)/2, np.y - dy); |
| 867 | points[pointn++] = pointfof(hp.x - dx, np.y - dy); |
| 868 | points[pointn++] = pointfof(hp.x - dx, hp.y - hy / 3); |
| 869 | points[pointn++] = hp; |
| 870 | if (ED_label(e)) { |
| 871 | if (GD_flip(agraphof(agtail(e)))) { |
| 872 | width = ED_label(e)->dimen.y; |
| 873 | height = ED_label(e)->dimen.x; |
| 874 | } else { |
| 875 | width = ED_label(e)->dimen.x; |
| 876 | height = ED_label(e)->dimen.y; |
| 877 | } |
| 878 | ED_label(e)->pos.y = ND_coord(n).y - dy - height / 2.0; |
| 879 | ED_label(e)->pos.x = ND_coord(n).x; |
| 880 | ED_label(e)->set = TRUE; |
| 881 | if (height > stepy) |
| 882 | dy += height - stepy; |
| 883 | } |
| 884 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
| 885 | #ifdef DEBUG |
| 886 | if (debugleveln(e,1)) |
| 887 | showPoints (points, pointn); |
| 888 | #endif |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | |
| 893 | static void |
| 894 | selfTop (edge_t* edges[], int ind, int cnt, double sizex, double stepy, |
| 895 | splineInfo* sinfo) |
| 896 | { |
| 897 | int i, sgn, point_pair; |
| 898 | double hy, ty, stepx, dx, dy, width, height; |
| 899 | pointf tp, hp, np; |
| 900 | node_t *n; |
| 901 | edge_t *e; |
| 902 | pointf points[1000]; |
| 903 | int pointn; |
| 904 | |
| 905 | e = edges[ind]; |
| 906 | n = agtail(e); |
| 907 | |
| 908 | stepx = (sizex / 2.) / cnt; |
| 909 | stepx = MAX(stepx, 2.); |
| 910 | pointn = 0; |
| 911 | np = ND_coord(n); |
| 912 | tp = ED_tail_port(e).p; |
| 913 | tp.x += np.x; |
| 914 | tp.y += np.y; |
| 915 | hp = ED_head_port(e).p; |
| 916 | hp.x += np.x; |
| 917 | hp.y += np.y; |
| 918 | if (tp.x >= hp.x) sgn = 1; |
| 919 | else sgn = -1; |
| 920 | dy = ND_ht(n)/2., dx = 0.; |
| 921 | // certain adjustments are required for some point_pairs in order to improve the |
| 922 | // display of the edge path between them |
| 923 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
| 924 | switch(point_pair){ |
| 925 | case 15: |
| 926 | dx = sgn*(ND_rw(n) - (hp.x-np.x) + stepx); |
| 927 | break; |
| 928 | |
| 929 | case 38: |
| 930 | dx = sgn*(ND_lw(n)-(np.x-hp.x) + stepx); |
| 931 | break; |
| 932 | case 41: |
| 933 | dx = sgn*(ND_rw(n)-(tp.x-np.x) + stepx); |
| 934 | break; |
| 935 | case 48: |
| 936 | dx = sgn*(ND_rw(n)-(tp.x-np.x) + stepx); |
| 937 | break; |
| 938 | |
| 939 | case 14: |
| 940 | case 37: |
| 941 | case 47: |
| 942 | case 51: |
| 943 | case 57: |
| 944 | case 58: |
| 945 | dx = sgn*((((ND_lw(n)-(np.x-tp.x)) + (ND_rw(n)-(hp.x-np.x)))/3.)); |
| 946 | break; |
| 947 | case 73: |
| 948 | dx = sgn*(ND_lw(n)-(np.x-tp.x) + stepx); |
| 949 | break; |
| 950 | case 83: |
| 951 | dx = sgn*(ND_lw(n)-(np.x-tp.x)); |
| 952 | break; |
| 953 | case 84: |
| 954 | dx = sgn*((((ND_lw(n)-(np.x-tp.x)) + (ND_rw(n)-(hp.x-np.x)))/2.) + stepx); |
| 955 | break; |
| 956 | case 74: |
| 957 | case 75: |
| 958 | case 85: |
| 959 | dx = sgn*((((ND_lw(n)-(np.x-tp.x)) + (ND_rw(n)-(hp.x-np.x)))/2.) + 2*stepx); |
| 960 | break; |
| 961 | default: |
| 962 | break; |
| 963 | } |
| 964 | ty = MIN(dy, 3*(np.y + dy - tp.y)); |
| 965 | hy = MIN(dy, 3*(np.y + dy - hp.y)); |
| 966 | for (i = 0; i < cnt; i++) { |
| 967 | e = edges[ind++]; |
| 968 | dy += stepy, ty += stepy, hy += stepy, dx += sgn*stepx; |
| 969 | pointn = 0; |
| 970 | points[pointn++] = tp; |
| 971 | points[pointn++] = pointfof(tp.x + dx, tp.y + ty / 3); |
| 972 | points[pointn++] = pointfof(tp.x + dx, np.y + dy); |
| 973 | points[pointn++] = pointfof((tp.x+hp.x)/2, np.y + dy); |
| 974 | points[pointn++] = pointfof(hp.x - dx, np.y + dy); |
| 975 | points[pointn++] = pointfof(hp.x - dx, hp.y + hy / 3); |
| 976 | points[pointn++] = hp; |
| 977 | if (ED_label(e)) { |
| 978 | if (GD_flip(agraphof(agtail(e)))) { |
| 979 | width = ED_label(e)->dimen.y; |
| 980 | height = ED_label(e)->dimen.x; |
| 981 | } else { |
| 982 | width = ED_label(e)->dimen.x; |
| 983 | height = ED_label(e)->dimen.y; |
| 984 | } |
| 985 | ED_label(e)->pos.y = ND_coord(n).y + dy + height / 2.0; |
| 986 | ED_label(e)->pos.x = ND_coord(n).x; |
| 987 | ED_label(e)->set = TRUE; |
| 988 | if (height > stepy) |
| 989 | dy += height - stepy; |
| 990 | } |
| 991 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
| 992 | #ifdef DEBUG |
| 993 | if (debugleveln(e,1)) |
| 994 | showPoints (points, pointn); |
| 995 | #endif |
| 996 | } |
| 997 | return; |
| 998 | } |
| 999 | |
| 1000 | static void |
| 1001 | selfRight (edge_t* edges[], int ind, int cnt, double stepx, double sizey, |
| 1002 | splineInfo* sinfo) |
| 1003 | { |
| 1004 | int i, sgn, point_pair; |
| 1005 | double hx, tx, stepy, dx, dy, width, height; |
| 1006 | pointf tp, hp, np; |
| 1007 | node_t *n; |
| 1008 | edge_t *e; |
| 1009 | pointf points[1000]; |
| 1010 | int pointn; |
| 1011 | |
| 1012 | e = edges[ind]; |
| 1013 | n = agtail(e); |
| 1014 | |
| 1015 | stepy = (sizey / 2.) / cnt; |
| 1016 | stepy = MAX(stepy, 2.); |
| 1017 | pointn = 0; |
| 1018 | np = ND_coord(n); |
| 1019 | tp = ED_tail_port(e).p; |
| 1020 | tp.x += np.x; |
| 1021 | tp.y += np.y; |
| 1022 | hp = ED_head_port(e).p; |
| 1023 | hp.x += np.x; |
| 1024 | hp.y += np.y; |
| 1025 | if (tp.y >= hp.y) sgn = 1; |
| 1026 | else sgn = -1; |
| 1027 | dx = ND_rw(n), dy = 0; |
| 1028 | // certain adjustments are required for some point_pairs in order to improve the |
| 1029 | // display of the edge path between them |
| 1030 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
| 1031 | switch(point_pair){ |
| 1032 | case 32: |
| 1033 | case 65: if(tp.y == hp.y) |
| 1034 | sgn = -sgn; |
| 1035 | break; |
| 1036 | default: |
| 1037 | break; |
| 1038 | } |
| 1039 | tx = MIN(dx, 3*(np.x + dx - tp.x)); |
| 1040 | hx = MIN(dx, 3*(np.x + dx - hp.x)); |
| 1041 | for (i = 0; i < cnt; i++) { |
| 1042 | e = edges[ind++]; |
| 1043 | dx += stepx, tx += stepx, hx += stepx, dy += sgn*stepy; |
| 1044 | pointn = 0; |
| 1045 | points[pointn++] = tp; |
| 1046 | points[pointn++] = pointfof(tp.x + tx / 3, tp.y + dy); |
| 1047 | points[pointn++] = pointfof(np.x + dx, tp.y + dy); |
| 1048 | points[pointn++] = pointfof(np.x + dx, (tp.y+hp.y)/2); |
| 1049 | points[pointn++] = pointfof(np.x + dx, hp.y - dy); |
| 1050 | points[pointn++] = pointfof(hp.x + hx / 3, hp.y - dy); |
| 1051 | points[pointn++] = hp; |
| 1052 | if (ED_label(e)) { |
| 1053 | if (GD_flip(agraphof(agtail(e)))) { |
| 1054 | width = ED_label(e)->dimen.y; |
| 1055 | height = ED_label(e)->dimen.x; |
| 1056 | } else { |
| 1057 | width = ED_label(e)->dimen.x; |
| 1058 | height = ED_label(e)->dimen.y; |
| 1059 | } |
| 1060 | ED_label(e)->pos.x = ND_coord(n).x + dx + width / 2.0; |
| 1061 | ED_label(e)->pos.y = ND_coord(n).y; |
| 1062 | ED_label(e)->set = TRUE; |
| 1063 | if (width > stepx) |
| 1064 | dx += width - stepx; |
| 1065 | } |
| 1066 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
| 1067 | #ifdef DEBUG |
| 1068 | if (debugleveln(e,1)) |
| 1069 | showPoints (points, pointn); |
| 1070 | #endif |
| 1071 | } |
| 1072 | return; |
| 1073 | } |
| 1074 | |
| 1075 | static void |
| 1076 | selfLeft (edge_t* edges[], int ind, int cnt, double stepx, double sizey, |
| 1077 | splineInfo* sinfo) |
| 1078 | { |
| 1079 | int i, sgn,point_pair; |
| 1080 | double hx, tx, stepy, dx, dy, width, height; |
| 1081 | pointf tp, hp, np; |
| 1082 | node_t *n; |
| 1083 | edge_t *e; |
| 1084 | pointf points[1000]; |
| 1085 | int pointn; |
| 1086 | |
| 1087 | e = edges[ind]; |
| 1088 | n = agtail(e); |
| 1089 | |
| 1090 | stepy = (sizey / 2.) / cnt; |
| 1091 | stepy = MAX(stepy,2.); |
| 1092 | pointn = 0; |
| 1093 | np = ND_coord(n); |
| 1094 | tp = ED_tail_port(e).p; |
| 1095 | tp.x += np.x; |
| 1096 | tp.y += np.y; |
| 1097 | hp = ED_head_port(e).p; |
| 1098 | hp.x += np.x; |
| 1099 | hp.y += np.y; |
| 1100 | |
| 1101 | |
| 1102 | if (tp.y >= hp.y) sgn = 1; |
| 1103 | else sgn = -1; |
| 1104 | dx = ND_lw(n), dy = 0.; |
| 1105 | // certain adjustments are required for some point_pairs in order to improve the |
| 1106 | // display of the edge path between them |
| 1107 | point_pair = convert_sides_to_points(ED_tail_port(e).side,ED_head_port(e).side); |
| 1108 | switch(point_pair){ |
| 1109 | case 12: |
| 1110 | case 67: |
| 1111 | if(tp.y == hp.y) |
| 1112 | sgn = -sgn; |
| 1113 | break; |
| 1114 | default: |
| 1115 | break; |
| 1116 | } |
| 1117 | tx = MIN(dx, 3*(tp.x + dx - np.x)); |
| 1118 | hx = MIN(dx, 3*(hp.x + dx - np.x)); |
| 1119 | for (i = 0; i < cnt; i++) { |
| 1120 | e = edges[ind++]; |
| 1121 | dx += stepx, tx += stepx, hx += stepx, dy += sgn*stepy; |
| 1122 | pointn = 0; |
| 1123 | points[pointn++] = tp; |
| 1124 | points[pointn++] = pointfof(tp.x - tx / 3, tp.y + dy); |
| 1125 | points[pointn++] = pointfof(np.x - dx, tp.y + dy); |
| 1126 | points[pointn++] = pointfof(np.x - dx, (tp.y+hp.y)/2); |
| 1127 | points[pointn++] = pointfof(np.x - dx, hp.y - dy); |
| 1128 | points[pointn++] = pointfof(hp.x - hx / 3, hp.y - dy); |
| 1129 | |
| 1130 | points[pointn++] = hp; |
| 1131 | if (ED_label(e)) { |
| 1132 | if (GD_flip(agraphof(agtail(e)))) { |
| 1133 | width = ED_label(e)->dimen.y; |
| 1134 | height = ED_label(e)->dimen.x; |
| 1135 | } else { |
| 1136 | width = ED_label(e)->dimen.x; |
| 1137 | height = ED_label(e)->dimen.y; |
| 1138 | } |
| 1139 | ED_label(e)->pos.x = ND_coord(n).x - dx - width / 2.0; |
| 1140 | ED_label(e)->pos.y = ND_coord(n).y; |
| 1141 | ED_label(e)->set = TRUE; |
| 1142 | if (width > stepx) |
| 1143 | dx += width - stepx; |
| 1144 | } |
| 1145 | |
| 1146 | clip_and_install(e, aghead(e), points, pointn, sinfo); |
| 1147 | #ifdef DEBUG |
| 1148 | if (debugleveln(e,1)) |
| 1149 | showPoints (points, pointn); |
| 1150 | #endif |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | /* selfRightSpace: |
| 1155 | * Assume e is self-edge. |
| 1156 | * Return extra space necessary on the right for this edge. |
| 1157 | * If the edge does not go on the right, return 0. |
| 1158 | * NOTE: the actual space is determined dynamically by GD_nodesep, |
| 1159 | * so using the constant SELF_EDGE_SIZE is going to be wrong. |
| 1160 | * Fortunately, the default nodesep is the same as SELF_EDGE_SIZE. |
| 1161 | */ |
| 1162 | int |
| 1163 | selfRightSpace (edge_t* e) |
| 1164 | { |
| 1165 | int sw; |
| 1166 | double label_width; |
| 1167 | textlabel_t* l = ED_label(e); |
| 1168 | |
| 1169 | if (((!ED_tail_port(e).defined) && (!ED_head_port(e).defined)) || |
| 1170 | (!(ED_tail_port(e).side & LEFT) && |
| 1171 | !(ED_head_port(e).side & LEFT) && |
| 1172 | ((ED_tail_port(e).side != ED_head_port(e).side) || |
| 1173 | (!(ED_tail_port(e).side & (TOP|BOTTOM)))))) { |
| 1174 | sw = SELF_EDGE_SIZE; |
| 1175 | if (l) { |
| 1176 | label_width = GD_flip(agraphof(aghead(e))) ? l->dimen.y : l->dimen.x; |
| 1177 | sw += label_width; |
| 1178 | } |
| 1179 | } |
| 1180 | else sw = 0; |
| 1181 | return sw; |
| 1182 | } |
| 1183 | |
| 1184 | /* makeSelfEdge: |
| 1185 | * The routing is biased towards the right side because this is what |
| 1186 | * dot supports, and leaves room for. |
| 1187 | * FIX: With this bias, labels tend to be placed on top of each other. |
| 1188 | * Perhaps for self-edges, the label should be centered. |
| 1189 | */ |
| 1190 | void |
| 1191 | makeSelfEdge(path * P, edge_t * edges[], int ind, int cnt, double sizex, |
| 1192 | double sizey, splineInfo * sinfo) |
| 1193 | { |
| 1194 | edge_t *e; |
| 1195 | |
| 1196 | e = edges[ind]; |
| 1197 | |
| 1198 | /* self edge without ports or |
| 1199 | * self edge with all ports inside, on the right, or at most 1 on top |
| 1200 | * and at most 1 on bottom |
| 1201 | */ |
| 1202 | |
| 1203 | if (((!ED_tail_port(e).defined) && (!ED_head_port(e).defined)) || |
| 1204 | (!(ED_tail_port(e).side & LEFT) && |
| 1205 | !(ED_head_port(e).side & LEFT) && |
| 1206 | ((ED_tail_port(e).side != ED_head_port(e).side) || |
| 1207 | (!(ED_tail_port(e).side & (TOP|BOTTOM)))))) { |
| 1208 | selfRight(edges, ind, cnt, sizex, sizey, sinfo); |
| 1209 | } |
| 1210 | |
| 1211 | /* self edge with port on left side */ |
| 1212 | else if ((ED_tail_port(e).side & LEFT) || (ED_head_port(e).side & LEFT)) { |
| 1213 | |
| 1214 | /* handle L-R specially */ |
| 1215 | if ((ED_tail_port(e).side & RIGHT) || (ED_head_port(e).side & RIGHT)) { |
| 1216 | selfTop(edges, ind, cnt, sizex, sizey, sinfo); |
| 1217 | } |
| 1218 | else { |
| 1219 | selfLeft(edges, ind, cnt, sizex, sizey, sinfo); |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | /* self edge with both ports on top side */ |
| 1224 | else if (ED_tail_port(e).side & TOP) { |
| 1225 | selfTop(edges, ind, cnt, sizex, sizey, sinfo); |
| 1226 | } |
| 1227 | else if (ED_tail_port(e).side & BOTTOM) { |
| 1228 | selfBottom(edges, ind, cnt, sizex, sizey, sinfo); |
| 1229 | } |
| 1230 | |
| 1231 | else assert(0); |
| 1232 | } |
| 1233 | |
| 1234 | /* makePortLabels: |
| 1235 | * Add head and tail labels if necessary and update bounding box. |
| 1236 | */ |
| 1237 | void makePortLabels(edge_t * e) |
| 1238 | { |
| 1239 | /* Only use this if labelangle or labeldistance is set for the edge; |
| 1240 | * otherwise, handle with external labels. |
| 1241 | */ |
| 1242 | if (!E_labelangle && !E_labeldistance) return; |
| 1243 | |
| 1244 | if (ED_head_label(e) && !ED_head_label(e)->set) { |
| 1245 | if (place_portlabel(e, TRUE)) |
| 1246 | updateBB(agraphof(agtail(e)), ED_head_label(e)); |
| 1247 | } |
| 1248 | if (ED_tail_label(e) && !ED_tail_label(e)->set) { |
| 1249 | if (place_portlabel(e, FALSE)) |
| 1250 | updateBB(agraphof(agtail(e)), ED_tail_label(e)); |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | /* endPoints: |
| 1255 | * Extract the actual end points of the spline, where |
| 1256 | * they touch the node. |
| 1257 | */ |
| 1258 | static void endPoints(splines * spl, pointf * p, pointf * q) |
| 1259 | { |
| 1260 | bezier bz; |
| 1261 | |
| 1262 | bz = spl->list[0]; |
| 1263 | if (bz.sflag) { |
| 1264 | *p = bz.sp; |
| 1265 | } |
| 1266 | else { |
| 1267 | *p = bz.list[0]; |
| 1268 | } |
| 1269 | bz = spl->list[spl->size - 1]; |
| 1270 | if (bz.eflag) { |
| 1271 | *q = bz.ep; |
| 1272 | } |
| 1273 | else { |
| 1274 | *q = bz.list[bz.size - 1]; |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | /* polylineMidpoint; |
| 1279 | * Find midpoint of polyline. |
| 1280 | * pp and pq are set to the endpoints of the line segment containing it. |
| 1281 | */ |
| 1282 | static pointf |
| 1283 | polylineMidpoint (splines* spl, pointf* pp, pointf* pq) |
| 1284 | { |
| 1285 | bezier bz; |
| 1286 | int i, j, k; |
| 1287 | double d, dist = 0; |
| 1288 | pointf pf, qf, mf; |
| 1289 | |
| 1290 | for (i = 0; i < spl->size; i++) { |
| 1291 | bz = spl->list[i]; |
| 1292 | for (j = 0, k=3; k < bz.size; j+=3,k+=3) { |
| 1293 | pf = bz.list[j]; |
| 1294 | qf = bz.list[k]; |
| 1295 | dist += DIST(pf, qf); |
| 1296 | } |
| 1297 | } |
| 1298 | dist /= 2; |
| 1299 | for (i = 0; i < spl->size; i++) { |
| 1300 | bz = spl->list[i]; |
| 1301 | for (j = 0, k=3; k < bz.size; j+=3,k+=3) { |
| 1302 | pf = bz.list[j]; |
| 1303 | qf = bz.list[k]; |
| 1304 | d = DIST(pf,qf); |
| 1305 | if (d >= dist) { |
| 1306 | *pp = pf; |
| 1307 | *pq = qf; |
| 1308 | mf.x = ((qf.x*dist) + (pf.x*(d-dist)))/d; |
| 1309 | mf.y = ((qf.y*dist) + (pf.y*(d-dist)))/d; |
| 1310 | return mf; |
| 1311 | } |
| 1312 | else |
| 1313 | dist -= d; |
| 1314 | } |
| 1315 | } |
| 1316 | assert (FALSE); /* should never get here */ |
| 1317 | return mf; |
| 1318 | } |
| 1319 | |
| 1320 | pointf |
| 1321 | edgeMidpoint (graph_t* g, edge_t * e) |
| 1322 | { |
| 1323 | int et = EDGE_TYPE (g); |
| 1324 | pointf d, spf, p, q; |
| 1325 | |
| 1326 | endPoints(ED_spl(e), &p, &q); |
| 1327 | if (APPROXEQPT(p, q, MILLIPOINT)) { /* degenerate spline */ |
| 1328 | spf = p; |
| 1329 | } |
| 1330 | else if ((et == ET_SPLINE) || (et == ET_CURVED)) { |
| 1331 | d.x = (q.x + p.x) / 2.; |
| 1332 | d.y = (p.y + q.y) / 2.; |
| 1333 | spf = dotneato_closest(ED_spl(e), d); |
| 1334 | } |
| 1335 | else { /* ET_PLINE, ET_ORTHO or ET_LINE */ |
| 1336 | spf = polylineMidpoint (ED_spl(e), &p, &q); |
| 1337 | } |
| 1338 | |
| 1339 | return spf; |
| 1340 | } |
| 1341 | |
| 1342 | #define LEFTOF(a,b,c) (((a.y - b.y)*(c.x - b.x) - (c.y - b.y)*(a.x - b.x)) > 0) |
| 1343 | #define MAXLABELWD (POINTS_PER_INCH/2.0) |
| 1344 | |
| 1345 | /* addEdgeLabels: |
| 1346 | * rp and rq are the port points of the tail and head node. |
| 1347 | * Adds label, headlabel and taillabel. |
| 1348 | * The use of 2 and 4 in computing ld.x and ld.y are fudge factors, to |
| 1349 | * introduce a bit of spacing. |
| 1350 | * Updates bounding box. |
| 1351 | * We try to use the actual endpoints of the spline, as they may differ |
| 1352 | * significantly from rp and rq, but if the spline is degenerate (e.g., |
| 1353 | * the nodes overlap), we use rp and rq. |
| 1354 | */ |
| 1355 | void addEdgeLabels(graph_t* g, edge_t * e, pointf rp, pointf rq) |
| 1356 | { |
| 1357 | #if 0 |
| 1358 | int et = EDGE_TYPE (g); |
| 1359 | pointf p, q; |
| 1360 | pointf d; /* midpoint of segment p-q */ |
| 1361 | point ld; |
| 1362 | point del; |
| 1363 | pointf spf; |
| 1364 | double f, ht, wd, dist2; |
| 1365 | int leftOf; |
| 1366 | |
| 1367 | if (ED_label(e) && !ED_label(e)->set) { |
| 1368 | endPoints(ED_spl(e), &p, &q); |
| 1369 | if (APPROXEQPT(p, q, MILLIPOINT)) { /* degenerate spline */ |
| 1370 | p = rp; |
| 1371 | q = rq; |
| 1372 | spf = p; |
| 1373 | } |
| 1374 | else if (et == ET_SPLINE) { |
| 1375 | d.x = (q.x + p.x) / 2.; |
| 1376 | d.y = (p.y + q.y) / 2.; |
| 1377 | spf = dotneato_closest(ED_spl(e), d); |
| 1378 | } |
| 1379 | else { /* ET_PLINE, ET_ORTHO or ET_LINE */ |
| 1380 | spf = polylineMidpoint (ED_spl(e), &p, &q); |
| 1381 | } |
| 1382 | del.x = q.x - p.x; |
| 1383 | del.y = q.y - p.y; |
| 1384 | dist2 = del.x*del.x + del.y*del.y; |
| 1385 | ht = (ED_label(e)->dimen.y + 2)/2.0; |
| 1386 | if (dist2) { |
| 1387 | wd = (MIN(ED_label(e)->dimen.x + 2, MAXLABELWD))/2.0; |
| 1388 | leftOf = LEFTOF(p, q, spf); |
| 1389 | if ((leftOf && (del.y >= 0)) || (!leftOf && (del.y < 0))) { |
| 1390 | if (del.x*del.y >= 0) |
| 1391 | ht *= -1; |
| 1392 | } |
| 1393 | else { |
| 1394 | wd *= -1; |
| 1395 | if (del.x*del.y < 0) |
| 1396 | ht *= -1; |
| 1397 | } |
| 1398 | f = (del.y*wd - del.x*ht)/dist2; |
| 1399 | ld.x = -f*del.y; |
| 1400 | ld.y = f*del.x; |
| 1401 | } |
| 1402 | else { /* end points the same */ |
| 1403 | ld.x = 0; |
| 1404 | ld.y = -ht; |
| 1405 | } |
| 1406 | |
| 1407 | ED_label(e)->pos.x = spf.x + ld.x; |
| 1408 | ED_label(e)->pos.y = spf.y + ld.y; |
| 1409 | ED_label(e)->set = TRUE; |
| 1410 | updateBB(agraphof(agtail(e)), ED_label(e)); |
| 1411 | } |
| 1412 | #endif |
| 1413 | makePortLabels(e); |
| 1414 | } |
| 1415 | |
| 1416 | #define AGXGET(o,a) agxget(o,a) |
| 1417 | |
| 1418 | /* vladimir */ |
| 1419 | /* place_portlabel: |
| 1420 | * place the {head,tail}label (depending on HEAD_P) of edge E |
| 1421 | * N.B. Assume edges are normalized, so tail is at spl->list[0].list[0] |
| 1422 | * and head is at spl->list[spl->size-l].list[bez->size-1] |
| 1423 | * Return 1 on success |
| 1424 | */ |
| 1425 | int place_portlabel(edge_t * e, boolean head_p) |
| 1426 | { |
| 1427 | textlabel_t *l; |
| 1428 | splines *spl; |
| 1429 | bezier *bez; |
| 1430 | double dist, angle; |
| 1431 | pointf c[4], pe, pf; |
| 1432 | int i; |
| 1433 | char* la; |
| 1434 | char* ld; |
| 1435 | |
| 1436 | if (ED_edge_type(e) == IGNORED) |
| 1437 | return 0; |
| 1438 | /* add label here only if labelangle or labeldistance is defined; else, use external label */ |
| 1439 | if ((!E_labelangle || (*(la = AGXGET(e,E_labelangle)) == '\0')) && |
| 1440 | (!E_labeldistance || (*(ld = AGXGET(e,E_labeldistance)) == '\0'))) { |
| 1441 | return 0; |
| 1442 | } |
| 1443 | |
| 1444 | l = head_p ? ED_head_label(e) : ED_tail_label(e); |
| 1445 | if ((spl = getsplinepoints(e)) == NULL) return 0; |
| 1446 | if (!head_p) { |
| 1447 | bez = &spl->list[0]; |
| 1448 | if (bez->sflag) { |
| 1449 | pe = bez->sp; |
| 1450 | pf = bez->list[0]; |
| 1451 | } else { |
| 1452 | pe = bez->list[0]; |
| 1453 | for (i = 0; i < 4; i++) |
| 1454 | c[i] = bez->list[i]; |
| 1455 | pf = Bezier(c, 3, 0.1, NULL, NULL); |
| 1456 | } |
| 1457 | } else { |
| 1458 | bez = &spl->list[spl->size - 1]; |
| 1459 | if (bez->eflag) { |
| 1460 | pe = bez->ep; |
| 1461 | pf = bez->list[bez->size - 1]; |
| 1462 | } else { |
| 1463 | pe = bez->list[bez->size - 1]; |
| 1464 | for (i = 0; i < 4; i++) |
| 1465 | c[i] = bez->list[bez->size - 4 + i]; |
| 1466 | pf = Bezier(c, 3, 0.9, NULL, NULL); |
| 1467 | } |
| 1468 | } |
| 1469 | angle = atan2(pf.y - pe.y, pf.x - pe.x) + |
| 1470 | RADIANS(late_double(e, E_labelangle, PORT_LABEL_ANGLE, -180.0)); |
| 1471 | dist = PORT_LABEL_DISTANCE * late_double(e, E_labeldistance, 1.0, 0.0); |
| 1472 | l->pos.x = pe.x + dist * cos(angle); |
| 1473 | l->pos.y = pe.y + dist * sin(angle); |
| 1474 | l->set = TRUE; |
| 1475 | return 1; |
| 1476 | } |
| 1477 | |
| 1478 | splines *getsplinepoints(edge_t * e) |
| 1479 | { |
| 1480 | edge_t *le; |
| 1481 | splines *sp; |
| 1482 | |
| 1483 | for (le = e; !(sp = ED_spl(le)) && ED_edge_type(le) != NORMAL; |
| 1484 | le = ED_to_orig(le)); |
| 1485 | if (sp == NULL) |
| 1486 | agerr (AGERR, "getsplinepoints: no spline points available for edge (%s,%s)\n" , |
| 1487 | agnameof(agtail(e)), agnameof(aghead(e))); |
| 1488 | return sp; |
| 1489 | } |
| 1490 | |
| 1491 | |