1 | /* vim:set shiftwidth=4 ts=8: */ |
2 | |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | /* |
15 | * Tapered edges, based on lines.ps written by Denis Moskowitz. |
16 | */ |
17 | |
18 | #include "config.h" |
19 | |
20 | #include <math.h> |
21 | #include <stdio.h> |
22 | #include <stdlib.h> |
23 | #include <types.h> |
24 | #include <memory.h> |
25 | #include <logic.h> |
26 | #include <agxbuf.h> |
27 | #include <utils.h> |
28 | |
29 | /* sample point size; should be dynamic based on dpi or under user control */ |
30 | #define BEZIERSUBDIVISION 20 |
31 | |
32 | /* initial guess of array size */ |
33 | #define INITSZ 2000 |
34 | |
35 | /* convert degrees to radians and vice versa */ |
36 | #ifndef M_PI |
37 | #define M_PI 3.14159265358979323846 |
38 | #endif |
39 | #define D2R(d) (M_PI*(d)/180.0) |
40 | #define R2D(r) (180.0*(r)/M_PI) |
41 | |
42 | static double currentmiterlimit = 10.0; |
43 | |
44 | #define moveto(p,x,y) addto(p,x,y) |
45 | #define lineto(p,x,y) addto(p,x,y) |
46 | |
47 | static void addto (stroke_t* p, double x, double y) |
48 | { |
49 | pointf pt; |
50 | |
51 | if (p->nvertices >= p->flags) { |
52 | p->flags =+ INITSZ; |
53 | p->vertices = RALLOC(p->flags,p->vertices,pointf); |
54 | } |
55 | pt.x = x; |
56 | pt.y = y; |
57 | p->vertices[p->nvertices++] = pt; |
58 | } |
59 | |
60 | static void arcn (stroke_t* p, double x, double y, double r, double a1, double a2) |
61 | { |
62 | double theta; |
63 | int i; |
64 | |
65 | addto (p, x+r*cos(a1), y+r*sin(a1)); |
66 | if (r == 0) return; |
67 | while (a2 > a1) a2 -= 2*M_PI; |
68 | theta = a1 - a2; |
69 | while (theta > 2*M_PI) theta -= 2*M_PI; |
70 | theta /= (BEZIERSUBDIVISION-1); |
71 | for (i = 1; i < BEZIERSUBDIVISION; i++) |
72 | addto (p, x+r*cos(a1-i*theta), y+r*sin(a1-i*theta)); |
73 | } |
74 | |
75 | #if 0 |
76 | static void closepath (stroke_t* p) |
77 | { |
78 | pointf pt = p->vertices[0]; |
79 | |
80 | addto (p, pt.x, pt.y); |
81 | if (p->flags > p->nvertices) |
82 | p->vertices = RALLOC(p->nvertices,p->vertices,pointf); |
83 | } |
84 | #endif |
85 | |
86 | /* |
87 | * handle zeros |
88 | */ |
89 | static double myatan (double y, double x) |
90 | { |
91 | double v; |
92 | if ((x == 0) && (y == 0)) |
93 | return 0; |
94 | else { |
95 | v = atan2 (y, x); |
96 | if (v >= 0) return v; |
97 | else return (v + 2*M_PI); |
98 | } |
99 | } |
100 | |
101 | /* |
102 | * mod that accepts floats and makes negatives positive |
103 | */ |
104 | static double mymod (double original, double modulus) |
105 | { |
106 | double v; |
107 | if ((original < 0) || (original >= modulus)) { |
108 | v = -floor(original/modulus); |
109 | return ((v*modulus) + original); |
110 | } |
111 | return original; |
112 | } |
113 | |
114 | typedef struct { |
115 | double x; |
116 | double y; |
117 | double lengthsofar; |
118 | char type; |
119 | double dir; |
120 | double lout; |
121 | int bevel; |
122 | double dir2; |
123 | } pathpoint; |
124 | |
125 | typedef struct { |
126 | pathpoint* pts; |
127 | int cnt; |
128 | int sz; |
129 | } vararr_t; |
130 | |
131 | |
132 | static vararr_t* |
133 | newArr (void) |
134 | { |
135 | vararr_t* arr = NEW(vararr_t); |
136 | |
137 | arr->cnt = 0; |
138 | arr->sz = INITSZ; |
139 | arr->pts = N_NEW(INITSZ,pathpoint); |
140 | |
141 | return arr; |
142 | } |
143 | |
144 | static void |
145 | insertArr (vararr_t* arr, pointf p, double l) |
146 | { |
147 | if (arr->cnt >= arr->sz) { |
148 | arr->sz *= 2; |
149 | arr->pts = RALLOC(arr->sz,arr->pts,pathpoint); |
150 | } |
151 | |
152 | arr->pts[arr->cnt].x = p.x; |
153 | arr->pts[arr->cnt].y = p.y; |
154 | arr->pts[arr->cnt++].lengthsofar = l; |
155 | } |
156 | |
157 | #ifdef DEBUG |
158 | static void |
159 | printArr (vararr_t* arr, FILE* fp) |
160 | { |
161 | int i; |
162 | pathpoint pt; |
163 | |
164 | fprintf (fp, "cnt %d sz %d\n" , arr->cnt, arr->sz); |
165 | for (i = 0; i < arr->cnt; i++) { |
166 | pt = arr->pts[i]; |
167 | fprintf (fp, " [%d] x %.02f y %.02f d %.02f\n" , i, pt.x, pt.y, pt.lengthsofar); |
168 | } |
169 | } |
170 | #endif |
171 | |
172 | static void |
173 | fixArr (vararr_t* arr) |
174 | { |
175 | if (arr->sz > arr->cnt) |
176 | arr->pts = RALLOC(arr->cnt,arr->pts,pathpoint); |
177 | } |
178 | |
179 | static void |
180 | freeArr (vararr_t* arr) |
181 | { |
182 | free (arr->pts); |
183 | free (arr); |
184 | } |
185 | |
186 | static double l2dist (pointf p0, pointf p1) |
187 | { |
188 | double delx = p0.x - p1.x; |
189 | double dely = p0.y - p1.y; |
190 | return sqrt(delx*delx + dely*dely); |
191 | } |
192 | |
193 | /* analyze current path, creating pathpoints array |
194 | * turn all curves into lines |
195 | */ |
196 | static vararr_t* pathtolines (bezier* bez, double initwid) |
197 | { |
198 | int i, j, step; |
199 | double seglen, linelen = 0; |
200 | vararr_t* arr = newArr(); |
201 | pointf p0, p1, V[4]; |
202 | int n = bez->size; |
203 | pointf* A = bez->list; |
204 | |
205 | insertArr (arr, A[0], 0); |
206 | V[3] = A[0]; |
207 | for (i = 0; i + 3 < n; i += 3) { |
208 | V[0] = V[3]; |
209 | for (j = 1; j <= 3; j++) |
210 | V[j] = A[i + j]; |
211 | p0 = V[0]; |
212 | for (step = 1; step <= BEZIERSUBDIVISION; step++) { |
213 | p1 = Bezier(V, 3, (double) step / BEZIERSUBDIVISION, NULL, NULL); |
214 | seglen = l2dist(p0, p1); |
215 | /* If initwid is large, this may never happen, so turn off. I assume this is to prevent |
216 | * too man points or too small a movement. Perhaps a better test can be made, but for now |
217 | * we turn it off. |
218 | */ |
219 | /* if (seglen > initwid/10) { */ |
220 | linelen += seglen; |
221 | insertArr (arr, p1, linelen); |
222 | /* } */ |
223 | p0 = p1; |
224 | } |
225 | } |
226 | fixArr (arr); |
227 | #ifdef DEBUG |
228 | printArr (arr, stderr); |
229 | #endif |
230 | return arr; |
231 | } |
232 | |
233 | static void drawbevel(double x, double y, double lineout, int forward, double dir, double dir2, int linejoin, stroke_t* p) |
234 | { |
235 | double a, a1, a2; |
236 | |
237 | if (forward) { |
238 | a1 = dir; |
239 | a2 = dir2; |
240 | } else { |
241 | a1 = dir2; |
242 | a2 = dir; |
243 | } |
244 | if (linejoin == 1) { |
245 | a = a1 - a2; |
246 | if (a <= D2R(0.1)) a += D2R(360); |
247 | if (a < D2R(180)) { |
248 | a1 = a + a2; |
249 | arcn (p,x,y,lineout,a1,a2); |
250 | } else { |
251 | lineto (p, x + lineout*cos(a2), x + lineout*sin(a2)); |
252 | } |
253 | } else { |
254 | lineto (p, x + lineout*cos(a2), x + lineout*sin(a2)); |
255 | } |
256 | } |
257 | |
258 | typedef double (*radfunc_t) (double curlen, double totallen, double initwid); |
259 | |
260 | /* taper: |
261 | * Given a B-spline bez, returns a polygon that represents spline as a tapered |
262 | * edge, starting with width initwid. |
263 | * The radfunc determines the half-width along the curve. Typically, this will |
264 | * decrease from initwid to 0 as the curlen goes from 0 to totallen. |
265 | * The linejoin and linecap parameters have roughly the same meaning as in postscript. |
266 | * - linejoin = 0 or 1 |
267 | * - linecap = 0 or 1 or 2 |
268 | * |
269 | * Calling function needs to free the allocated stoke_t. |
270 | */ |
271 | stroke_t* taper (bezier* bez, radfunc_t radfunc, double initwid, int linejoin, int linecap) |
272 | { |
273 | int i, l, n; |
274 | int pathcount, bevel; |
275 | double direction=0, direction_2=0; |
276 | vararr_t* arr = pathtolines (bez, initwid); |
277 | pathpoint* pathpoints; |
278 | pathpoint cur_point, last_point, next_point; |
279 | double x=0, y=0, dist; |
280 | double nx, ny, ndir; |
281 | double lx, ly, ldir; |
282 | double lineout=0, linerad=0, linelen=0; |
283 | double theta, phi; |
284 | stroke_t* p; |
285 | |
286 | pathcount = arr->cnt; |
287 | pathpoints = arr->pts; |
288 | linelen = pathpoints[pathcount-1].lengthsofar; |
289 | |
290 | /* determine miter and bevel points and directions */ |
291 | for (i = 0; i < pathcount; i++) { |
292 | l = mymod(i-1,pathcount); |
293 | n = mymod(i+1,pathcount); |
294 | |
295 | cur_point = pathpoints[i]; |
296 | x = cur_point.x; |
297 | y = cur_point.y; |
298 | dist = cur_point.lengthsofar; |
299 | |
300 | next_point = pathpoints[n]; |
301 | nx = next_point.x; |
302 | ny = next_point.y; |
303 | ndir = myatan (ny-y, nx-x); |
304 | |
305 | last_point = pathpoints[l]; |
306 | lx = last_point.x; |
307 | ly = last_point.y; |
308 | ldir = myatan (ly-y, lx-x); |
309 | |
310 | bevel = FALSE; |
311 | direction_2 = 0; |
312 | |
313 | /* effective line radius at this point */ |
314 | linerad = radfunc(dist, linelen, initwid); |
315 | |
316 | if ((i == 0) || (i == pathcount-1)) { |
317 | lineout = linerad; |
318 | if (i == 0) { |
319 | direction = ndir + D2R(90); |
320 | if (linecap == 2) { |
321 | x -= cos(ndir)*lineout; |
322 | y -= sin(ndir)*lineout; |
323 | } |
324 | } else { |
325 | direction = ldir - D2R(90); |
326 | if (linecap == 2) { |
327 | x -= cos(ldir)*lineout; |
328 | y -= sin(ldir)*lineout; |
329 | } |
330 | } |
331 | direction_2 = direction; |
332 | } else { |
333 | theta = ndir-ldir; |
334 | if (theta < 0) { |
335 | theta += D2R(360); |
336 | } |
337 | phi = D2R(90)-(theta/2); |
338 | /* actual distance to junction point */ |
339 | if (cos(phi) == 0) { |
340 | lineout = 0; |
341 | } else { |
342 | lineout = linerad/(cos(phi)); |
343 | } |
344 | /* direction to junction point */ |
345 | direction = ndir+D2R(90)+phi; |
346 | if ((0 != linejoin) || (lineout > currentmiterlimit * linerad)) { |
347 | bevel = TRUE; |
348 | lineout = linerad; |
349 | direction = mymod(ldir-D2R(90),D2R(360)); |
350 | direction_2 = mymod(ndir+D2R(90),D2R(360)); |
351 | if (i == pathcount-1) { |
352 | bevel = FALSE; |
353 | } |
354 | } else { |
355 | direction_2 = direction; |
356 | } |
357 | } |
358 | pathpoints[i].x = x; |
359 | pathpoints[i].y = y; |
360 | pathpoints[i].lengthsofar = dist; |
361 | pathpoints[i].type = 'l'; |
362 | pathpoints[i].dir = direction; |
363 | pathpoints[i].lout = lineout; |
364 | pathpoints[i].bevel = bevel; |
365 | pathpoints[i].dir2 = direction_2; |
366 | } |
367 | |
368 | /* draw line */ |
369 | p = NEW(stroke_t); |
370 | /* side 1 */ |
371 | for (i = 0; i < pathcount; i++) { |
372 | cur_point = pathpoints[i]; |
373 | x = cur_point.x; |
374 | y = cur_point.y; |
375 | direction = cur_point.dir; |
376 | lineout = cur_point.lout; |
377 | bevel = cur_point.bevel; |
378 | direction_2 = cur_point.dir2; |
379 | if (i == 0) { |
380 | moveto (p, x+cos(direction)*lineout, y+sin(direction)*lineout); |
381 | } else { |
382 | lineto (p, x+cos(direction)*lineout, y+sin(direction)*lineout); |
383 | } |
384 | if (bevel) { |
385 | drawbevel (x, y, lineout, TRUE, direction, direction_2, linejoin, p); |
386 | } |
387 | } |
388 | /* end circle as needed */ |
389 | if (linecap == 1) { |
390 | arcn (p, x,y,lineout,direction,direction+D2R(180)); |
391 | } else { |
392 | direction += D2R(180); |
393 | lineto (p, x+cos(direction)*lineout, y+sin(direction)*lineout); |
394 | } |
395 | /* side 2 */ |
396 | for (i = pathcount-2; i >= 0; i--) { |
397 | cur_point = pathpoints[i]; |
398 | x = cur_point.x; |
399 | y = cur_point.y; |
400 | direction = cur_point.dir + D2R(180); |
401 | lineout = cur_point.lout; |
402 | bevel = cur_point.bevel; |
403 | direction_2 = cur_point.dir2 + D2R(180); |
404 | lineto (p, x+cos(direction_2)*lineout, y+sin(direction_2)*lineout); |
405 | if (bevel) { |
406 | drawbevel (x, y, lineout, FALSE, direction, direction_2, linejoin, p); |
407 | } |
408 | } |
409 | /* start circle if needed */ |
410 | if (linecap == 1) { |
411 | arcn (p, x,y,lineout,direction,direction+D2R(180)); |
412 | } |
413 | /* closepath (p); */ |
414 | freeArr (arr); |
415 | return p; |
416 | } |
417 | |
418 | static double halffunc (double curlen, double totallen, double initwid) |
419 | { |
420 | return ((1 - (curlen/totallen))*initwid/2.0); |
421 | } |
422 | |
423 | stroke_t* taper0 (bezier* bez, double initwid) |
424 | { |
425 | return taper(bez, halffunc, initwid, 0, 0); |
426 | } |
427 | |
428 | #ifdef TEST |
429 | static pointf pts[] = { |
430 | {100,100}, |
431 | {150,150}, |
432 | {200,100}, |
433 | {250,200}, |
434 | }; |
435 | |
436 | main () |
437 | { |
438 | stroke_t* sp; |
439 | bezier bez; |
440 | int i; |
441 | |
442 | bez.size = sizeof(pts)/sizeof(pointf); |
443 | bez.list = pts; |
444 | sp = taper0 (&bez, 20); |
445 | printf ("newpath\n" ); |
446 | printf ("%.02f %.02f moveto\n" , sp->vertices[0].x, sp->vertices[0].y); |
447 | for (i=1; i<sp->nvertices; i++) |
448 | printf ("%.02f %.02f lineto\n" , sp->vertices[i].x, sp->vertices[i].y); |
449 | printf ("fill showpage\n" ); |
450 | } |
451 | #endif |
452 | |