| 1 | /* vim:set shiftwidth=4 ts=8: */ |
| 2 | |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | /* |
| 15 | * Tapered edges, based on lines.ps written by Denis Moskowitz. |
| 16 | */ |
| 17 | |
| 18 | #include "config.h" |
| 19 | |
| 20 | #include <math.h> |
| 21 | #include <stdio.h> |
| 22 | #include <stdlib.h> |
| 23 | #include <types.h> |
| 24 | #include <memory.h> |
| 25 | #include <logic.h> |
| 26 | #include <agxbuf.h> |
| 27 | #include <utils.h> |
| 28 | |
| 29 | /* sample point size; should be dynamic based on dpi or under user control */ |
| 30 | #define BEZIERSUBDIVISION 20 |
| 31 | |
| 32 | /* initial guess of array size */ |
| 33 | #define INITSZ 2000 |
| 34 | |
| 35 | /* convert degrees to radians and vice versa */ |
| 36 | #ifndef M_PI |
| 37 | #define M_PI 3.14159265358979323846 |
| 38 | #endif |
| 39 | #define D2R(d) (M_PI*(d)/180.0) |
| 40 | #define R2D(r) (180.0*(r)/M_PI) |
| 41 | |
| 42 | static double currentmiterlimit = 10.0; |
| 43 | |
| 44 | #define moveto(p,x,y) addto(p,x,y) |
| 45 | #define lineto(p,x,y) addto(p,x,y) |
| 46 | |
| 47 | static void addto (stroke_t* p, double x, double y) |
| 48 | { |
| 49 | pointf pt; |
| 50 | |
| 51 | if (p->nvertices >= p->flags) { |
| 52 | p->flags =+ INITSZ; |
| 53 | p->vertices = RALLOC(p->flags,p->vertices,pointf); |
| 54 | } |
| 55 | pt.x = x; |
| 56 | pt.y = y; |
| 57 | p->vertices[p->nvertices++] = pt; |
| 58 | } |
| 59 | |
| 60 | static void arcn (stroke_t* p, double x, double y, double r, double a1, double a2) |
| 61 | { |
| 62 | double theta; |
| 63 | int i; |
| 64 | |
| 65 | addto (p, x+r*cos(a1), y+r*sin(a1)); |
| 66 | if (r == 0) return; |
| 67 | while (a2 > a1) a2 -= 2*M_PI; |
| 68 | theta = a1 - a2; |
| 69 | while (theta > 2*M_PI) theta -= 2*M_PI; |
| 70 | theta /= (BEZIERSUBDIVISION-1); |
| 71 | for (i = 1; i < BEZIERSUBDIVISION; i++) |
| 72 | addto (p, x+r*cos(a1-i*theta), y+r*sin(a1-i*theta)); |
| 73 | } |
| 74 | |
| 75 | #if 0 |
| 76 | static void closepath (stroke_t* p) |
| 77 | { |
| 78 | pointf pt = p->vertices[0]; |
| 79 | |
| 80 | addto (p, pt.x, pt.y); |
| 81 | if (p->flags > p->nvertices) |
| 82 | p->vertices = RALLOC(p->nvertices,p->vertices,pointf); |
| 83 | } |
| 84 | #endif |
| 85 | |
| 86 | /* |
| 87 | * handle zeros |
| 88 | */ |
| 89 | static double myatan (double y, double x) |
| 90 | { |
| 91 | double v; |
| 92 | if ((x == 0) && (y == 0)) |
| 93 | return 0; |
| 94 | else { |
| 95 | v = atan2 (y, x); |
| 96 | if (v >= 0) return v; |
| 97 | else return (v + 2*M_PI); |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | /* |
| 102 | * mod that accepts floats and makes negatives positive |
| 103 | */ |
| 104 | static double mymod (double original, double modulus) |
| 105 | { |
| 106 | double v; |
| 107 | if ((original < 0) || (original >= modulus)) { |
| 108 | v = -floor(original/modulus); |
| 109 | return ((v*modulus) + original); |
| 110 | } |
| 111 | return original; |
| 112 | } |
| 113 | |
| 114 | typedef struct { |
| 115 | double x; |
| 116 | double y; |
| 117 | double lengthsofar; |
| 118 | char type; |
| 119 | double dir; |
| 120 | double lout; |
| 121 | int bevel; |
| 122 | double dir2; |
| 123 | } pathpoint; |
| 124 | |
| 125 | typedef struct { |
| 126 | pathpoint* pts; |
| 127 | int cnt; |
| 128 | int sz; |
| 129 | } vararr_t; |
| 130 | |
| 131 | |
| 132 | static vararr_t* |
| 133 | newArr (void) |
| 134 | { |
| 135 | vararr_t* arr = NEW(vararr_t); |
| 136 | |
| 137 | arr->cnt = 0; |
| 138 | arr->sz = INITSZ; |
| 139 | arr->pts = N_NEW(INITSZ,pathpoint); |
| 140 | |
| 141 | return arr; |
| 142 | } |
| 143 | |
| 144 | static void |
| 145 | insertArr (vararr_t* arr, pointf p, double l) |
| 146 | { |
| 147 | if (arr->cnt >= arr->sz) { |
| 148 | arr->sz *= 2; |
| 149 | arr->pts = RALLOC(arr->sz,arr->pts,pathpoint); |
| 150 | } |
| 151 | |
| 152 | arr->pts[arr->cnt].x = p.x; |
| 153 | arr->pts[arr->cnt].y = p.y; |
| 154 | arr->pts[arr->cnt++].lengthsofar = l; |
| 155 | } |
| 156 | |
| 157 | #ifdef DEBUG |
| 158 | static void |
| 159 | printArr (vararr_t* arr, FILE* fp) |
| 160 | { |
| 161 | int i; |
| 162 | pathpoint pt; |
| 163 | |
| 164 | fprintf (fp, "cnt %d sz %d\n" , arr->cnt, arr->sz); |
| 165 | for (i = 0; i < arr->cnt; i++) { |
| 166 | pt = arr->pts[i]; |
| 167 | fprintf (fp, " [%d] x %.02f y %.02f d %.02f\n" , i, pt.x, pt.y, pt.lengthsofar); |
| 168 | } |
| 169 | } |
| 170 | #endif |
| 171 | |
| 172 | static void |
| 173 | fixArr (vararr_t* arr) |
| 174 | { |
| 175 | if (arr->sz > arr->cnt) |
| 176 | arr->pts = RALLOC(arr->cnt,arr->pts,pathpoint); |
| 177 | } |
| 178 | |
| 179 | static void |
| 180 | freeArr (vararr_t* arr) |
| 181 | { |
| 182 | free (arr->pts); |
| 183 | free (arr); |
| 184 | } |
| 185 | |
| 186 | static double l2dist (pointf p0, pointf p1) |
| 187 | { |
| 188 | double delx = p0.x - p1.x; |
| 189 | double dely = p0.y - p1.y; |
| 190 | return sqrt(delx*delx + dely*dely); |
| 191 | } |
| 192 | |
| 193 | /* analyze current path, creating pathpoints array |
| 194 | * turn all curves into lines |
| 195 | */ |
| 196 | static vararr_t* pathtolines (bezier* bez, double initwid) |
| 197 | { |
| 198 | int i, j, step; |
| 199 | double seglen, linelen = 0; |
| 200 | vararr_t* arr = newArr(); |
| 201 | pointf p0, p1, V[4]; |
| 202 | int n = bez->size; |
| 203 | pointf* A = bez->list; |
| 204 | |
| 205 | insertArr (arr, A[0], 0); |
| 206 | V[3] = A[0]; |
| 207 | for (i = 0; i + 3 < n; i += 3) { |
| 208 | V[0] = V[3]; |
| 209 | for (j = 1; j <= 3; j++) |
| 210 | V[j] = A[i + j]; |
| 211 | p0 = V[0]; |
| 212 | for (step = 1; step <= BEZIERSUBDIVISION; step++) { |
| 213 | p1 = Bezier(V, 3, (double) step / BEZIERSUBDIVISION, NULL, NULL); |
| 214 | seglen = l2dist(p0, p1); |
| 215 | /* If initwid is large, this may never happen, so turn off. I assume this is to prevent |
| 216 | * too man points or too small a movement. Perhaps a better test can be made, but for now |
| 217 | * we turn it off. |
| 218 | */ |
| 219 | /* if (seglen > initwid/10) { */ |
| 220 | linelen += seglen; |
| 221 | insertArr (arr, p1, linelen); |
| 222 | /* } */ |
| 223 | p0 = p1; |
| 224 | } |
| 225 | } |
| 226 | fixArr (arr); |
| 227 | #ifdef DEBUG |
| 228 | printArr (arr, stderr); |
| 229 | #endif |
| 230 | return arr; |
| 231 | } |
| 232 | |
| 233 | static void drawbevel(double x, double y, double lineout, int forward, double dir, double dir2, int linejoin, stroke_t* p) |
| 234 | { |
| 235 | double a, a1, a2; |
| 236 | |
| 237 | if (forward) { |
| 238 | a1 = dir; |
| 239 | a2 = dir2; |
| 240 | } else { |
| 241 | a1 = dir2; |
| 242 | a2 = dir; |
| 243 | } |
| 244 | if (linejoin == 1) { |
| 245 | a = a1 - a2; |
| 246 | if (a <= D2R(0.1)) a += D2R(360); |
| 247 | if (a < D2R(180)) { |
| 248 | a1 = a + a2; |
| 249 | arcn (p,x,y,lineout,a1,a2); |
| 250 | } else { |
| 251 | lineto (p, x + lineout*cos(a2), x + lineout*sin(a2)); |
| 252 | } |
| 253 | } else { |
| 254 | lineto (p, x + lineout*cos(a2), x + lineout*sin(a2)); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | typedef double (*radfunc_t) (double curlen, double totallen, double initwid); |
| 259 | |
| 260 | /* taper: |
| 261 | * Given a B-spline bez, returns a polygon that represents spline as a tapered |
| 262 | * edge, starting with width initwid. |
| 263 | * The radfunc determines the half-width along the curve. Typically, this will |
| 264 | * decrease from initwid to 0 as the curlen goes from 0 to totallen. |
| 265 | * The linejoin and linecap parameters have roughly the same meaning as in postscript. |
| 266 | * - linejoin = 0 or 1 |
| 267 | * - linecap = 0 or 1 or 2 |
| 268 | * |
| 269 | * Calling function needs to free the allocated stoke_t. |
| 270 | */ |
| 271 | stroke_t* taper (bezier* bez, radfunc_t radfunc, double initwid, int linejoin, int linecap) |
| 272 | { |
| 273 | int i, l, n; |
| 274 | int pathcount, bevel; |
| 275 | double direction=0, direction_2=0; |
| 276 | vararr_t* arr = pathtolines (bez, initwid); |
| 277 | pathpoint* pathpoints; |
| 278 | pathpoint cur_point, last_point, next_point; |
| 279 | double x=0, y=0, dist; |
| 280 | double nx, ny, ndir; |
| 281 | double lx, ly, ldir; |
| 282 | double lineout=0, linerad=0, linelen=0; |
| 283 | double theta, phi; |
| 284 | stroke_t* p; |
| 285 | |
| 286 | pathcount = arr->cnt; |
| 287 | pathpoints = arr->pts; |
| 288 | linelen = pathpoints[pathcount-1].lengthsofar; |
| 289 | |
| 290 | /* determine miter and bevel points and directions */ |
| 291 | for (i = 0; i < pathcount; i++) { |
| 292 | l = mymod(i-1,pathcount); |
| 293 | n = mymod(i+1,pathcount); |
| 294 | |
| 295 | cur_point = pathpoints[i]; |
| 296 | x = cur_point.x; |
| 297 | y = cur_point.y; |
| 298 | dist = cur_point.lengthsofar; |
| 299 | |
| 300 | next_point = pathpoints[n]; |
| 301 | nx = next_point.x; |
| 302 | ny = next_point.y; |
| 303 | ndir = myatan (ny-y, nx-x); |
| 304 | |
| 305 | last_point = pathpoints[l]; |
| 306 | lx = last_point.x; |
| 307 | ly = last_point.y; |
| 308 | ldir = myatan (ly-y, lx-x); |
| 309 | |
| 310 | bevel = FALSE; |
| 311 | direction_2 = 0; |
| 312 | |
| 313 | /* effective line radius at this point */ |
| 314 | linerad = radfunc(dist, linelen, initwid); |
| 315 | |
| 316 | if ((i == 0) || (i == pathcount-1)) { |
| 317 | lineout = linerad; |
| 318 | if (i == 0) { |
| 319 | direction = ndir + D2R(90); |
| 320 | if (linecap == 2) { |
| 321 | x -= cos(ndir)*lineout; |
| 322 | y -= sin(ndir)*lineout; |
| 323 | } |
| 324 | } else { |
| 325 | direction = ldir - D2R(90); |
| 326 | if (linecap == 2) { |
| 327 | x -= cos(ldir)*lineout; |
| 328 | y -= sin(ldir)*lineout; |
| 329 | } |
| 330 | } |
| 331 | direction_2 = direction; |
| 332 | } else { |
| 333 | theta = ndir-ldir; |
| 334 | if (theta < 0) { |
| 335 | theta += D2R(360); |
| 336 | } |
| 337 | phi = D2R(90)-(theta/2); |
| 338 | /* actual distance to junction point */ |
| 339 | if (cos(phi) == 0) { |
| 340 | lineout = 0; |
| 341 | } else { |
| 342 | lineout = linerad/(cos(phi)); |
| 343 | } |
| 344 | /* direction to junction point */ |
| 345 | direction = ndir+D2R(90)+phi; |
| 346 | if ((0 != linejoin) || (lineout > currentmiterlimit * linerad)) { |
| 347 | bevel = TRUE; |
| 348 | lineout = linerad; |
| 349 | direction = mymod(ldir-D2R(90),D2R(360)); |
| 350 | direction_2 = mymod(ndir+D2R(90),D2R(360)); |
| 351 | if (i == pathcount-1) { |
| 352 | bevel = FALSE; |
| 353 | } |
| 354 | } else { |
| 355 | direction_2 = direction; |
| 356 | } |
| 357 | } |
| 358 | pathpoints[i].x = x; |
| 359 | pathpoints[i].y = y; |
| 360 | pathpoints[i].lengthsofar = dist; |
| 361 | pathpoints[i].type = 'l'; |
| 362 | pathpoints[i].dir = direction; |
| 363 | pathpoints[i].lout = lineout; |
| 364 | pathpoints[i].bevel = bevel; |
| 365 | pathpoints[i].dir2 = direction_2; |
| 366 | } |
| 367 | |
| 368 | /* draw line */ |
| 369 | p = NEW(stroke_t); |
| 370 | /* side 1 */ |
| 371 | for (i = 0; i < pathcount; i++) { |
| 372 | cur_point = pathpoints[i]; |
| 373 | x = cur_point.x; |
| 374 | y = cur_point.y; |
| 375 | direction = cur_point.dir; |
| 376 | lineout = cur_point.lout; |
| 377 | bevel = cur_point.bevel; |
| 378 | direction_2 = cur_point.dir2; |
| 379 | if (i == 0) { |
| 380 | moveto (p, x+cos(direction)*lineout, y+sin(direction)*lineout); |
| 381 | } else { |
| 382 | lineto (p, x+cos(direction)*lineout, y+sin(direction)*lineout); |
| 383 | } |
| 384 | if (bevel) { |
| 385 | drawbevel (x, y, lineout, TRUE, direction, direction_2, linejoin, p); |
| 386 | } |
| 387 | } |
| 388 | /* end circle as needed */ |
| 389 | if (linecap == 1) { |
| 390 | arcn (p, x,y,lineout,direction,direction+D2R(180)); |
| 391 | } else { |
| 392 | direction += D2R(180); |
| 393 | lineto (p, x+cos(direction)*lineout, y+sin(direction)*lineout); |
| 394 | } |
| 395 | /* side 2 */ |
| 396 | for (i = pathcount-2; i >= 0; i--) { |
| 397 | cur_point = pathpoints[i]; |
| 398 | x = cur_point.x; |
| 399 | y = cur_point.y; |
| 400 | direction = cur_point.dir + D2R(180); |
| 401 | lineout = cur_point.lout; |
| 402 | bevel = cur_point.bevel; |
| 403 | direction_2 = cur_point.dir2 + D2R(180); |
| 404 | lineto (p, x+cos(direction_2)*lineout, y+sin(direction_2)*lineout); |
| 405 | if (bevel) { |
| 406 | drawbevel (x, y, lineout, FALSE, direction, direction_2, linejoin, p); |
| 407 | } |
| 408 | } |
| 409 | /* start circle if needed */ |
| 410 | if (linecap == 1) { |
| 411 | arcn (p, x,y,lineout,direction,direction+D2R(180)); |
| 412 | } |
| 413 | /* closepath (p); */ |
| 414 | freeArr (arr); |
| 415 | return p; |
| 416 | } |
| 417 | |
| 418 | static double halffunc (double curlen, double totallen, double initwid) |
| 419 | { |
| 420 | return ((1 - (curlen/totallen))*initwid/2.0); |
| 421 | } |
| 422 | |
| 423 | stroke_t* taper0 (bezier* bez, double initwid) |
| 424 | { |
| 425 | return taper(bez, halffunc, initwid, 0, 0); |
| 426 | } |
| 427 | |
| 428 | #ifdef TEST |
| 429 | static pointf pts[] = { |
| 430 | {100,100}, |
| 431 | {150,150}, |
| 432 | {200,100}, |
| 433 | {250,200}, |
| 434 | }; |
| 435 | |
| 436 | main () |
| 437 | { |
| 438 | stroke_t* sp; |
| 439 | bezier bez; |
| 440 | int i; |
| 441 | |
| 442 | bez.size = sizeof(pts)/sizeof(pointf); |
| 443 | bez.list = pts; |
| 444 | sp = taper0 (&bez, 20); |
| 445 | printf ("newpath\n" ); |
| 446 | printf ("%.02f %.02f moveto\n" , sp->vertices[0].x, sp->vertices[0].y); |
| 447 | for (i=1; i<sp->nvertices; i++) |
| 448 | printf ("%.02f %.02f lineto\n" , sp->vertices[i].x, sp->vertices[i].y); |
| 449 | printf ("fill showpage\n" ); |
| 450 | } |
| 451 | #endif |
| 452 | |