1 | /* $Id$ $Revision$ */ |
2 | /* vim:set shiftwidth=4 ts=8: */ |
3 | |
4 | /************************************************************************* |
5 | * Copyright (c) 2011 AT&T Intellectual Property |
6 | * All rights reserved. This program and the accompanying materials |
7 | * are made available under the terms of the Eclipse Public License v1.0 |
8 | * which accompanies this distribution, and is available at |
9 | * http://www.eclipse.org/legal/epl-v10.html |
10 | * |
11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
12 | *************************************************************************/ |
13 | |
14 | #include "render.h" |
15 | #include "agxbuf.h" |
16 | #include "htmltable.h" |
17 | #include "entities.h" |
18 | #include "logic.h" |
19 | #include "gvc.h" |
20 | |
21 | #ifdef _WIN32 |
22 | #define R_OK 4 |
23 | #endif |
24 | |
25 | #ifdef HAVE_UNISTD_H |
26 | # include <unistd.h> |
27 | #endif // HAVE_UNISTD_H |
28 | |
29 | #include <ctype.h> |
30 | |
31 | /* |
32 | * a queue of nodes |
33 | */ |
34 | nodequeue *new_queue(int sz) |
35 | { |
36 | nodequeue *q = NEW(nodequeue); |
37 | |
38 | if (sz <= 1) |
39 | sz = 2; |
40 | q->head = q->tail = q->store = N_NEW(sz, node_t *); |
41 | q->limit = q->store + sz; |
42 | return q; |
43 | } |
44 | |
45 | void free_queue(nodequeue * q) |
46 | { |
47 | free(q->store); |
48 | free(q); |
49 | } |
50 | |
51 | void enqueue(nodequeue * q, node_t * n) |
52 | { |
53 | *(q->tail++) = n; |
54 | if (q->tail >= q->limit) |
55 | q->tail = q->store; |
56 | } |
57 | |
58 | node_t *dequeue(nodequeue * q) |
59 | { |
60 | node_t *n; |
61 | if (q->head == q->tail) |
62 | n = NULL; |
63 | else { |
64 | n = *(q->head++); |
65 | if (q->head >= q->limit) |
66 | q->head = q->store; |
67 | } |
68 | return n; |
69 | } |
70 | |
71 | int late_int(void *obj, attrsym_t * attr, int def, int low) |
72 | { |
73 | char *p; |
74 | char *endp; |
75 | int rv; |
76 | if (attr == NULL) |
77 | return def; |
78 | p = ag_xget(obj, attr); |
79 | if (!p || p[0] == '\0') |
80 | return def; |
81 | rv = strtol (p, &endp, 10); |
82 | if (p == endp) return def; /* invalid int format */ |
83 | if (rv < low) return low; |
84 | else return rv; |
85 | } |
86 | |
87 | double late_double(void *obj, attrsym_t * attr, double def, double low) |
88 | { |
89 | char *p; |
90 | char *endp; |
91 | double rv; |
92 | |
93 | if (!attr || !obj) |
94 | return def; |
95 | p = ag_xget(obj, attr); |
96 | if (!p || p[0] == '\0') |
97 | return def; |
98 | rv = strtod (p, &endp); |
99 | if (p == endp) return def; /* invalid double format */ |
100 | if (rv < low) return low; |
101 | else return rv; |
102 | } |
103 | |
104 | /* get_inputscale: |
105 | * Return value for PSinputscale. If this is > 0, it has been set on the |
106 | * command line and this value is used. |
107 | * Otherwise, we check the graph's inputscale attribute. If this is not set |
108 | * or has a bad value, we return -1. |
109 | * If the value is 0, we return the default. Otherwise, we return the value. |
110 | * Set but negative values are treated like 0. |
111 | */ |
112 | double get_inputscale (graph_t* g) |
113 | { |
114 | double d; |
115 | |
116 | if (PSinputscale > 0) return PSinputscale; /* command line flag prevails */ |
117 | d = late_double(g, agfindgraphattr(g, "inputscale" ), -1, 0); |
118 | if (d == 0) return POINTS_PER_INCH; |
119 | else return d; |
120 | } |
121 | |
122 | char *late_string(void *obj, attrsym_t * attr, char *def) |
123 | { |
124 | if (!attr || !obj) |
125 | return def; |
126 | return agxget(obj, attr); |
127 | } |
128 | |
129 | char *late_nnstring(void *obj, attrsym_t * attr, char *def) |
130 | { |
131 | char *rv = late_string(obj, attr, def); |
132 | if (!rv || (rv[0] == '\0')) |
133 | rv = def; |
134 | return rv; |
135 | } |
136 | |
137 | boolean late_bool(void *obj, attrsym_t * attr, int def) |
138 | { |
139 | if (attr == NULL) |
140 | return def; |
141 | |
142 | return mapbool(agxget(obj, attr)); |
143 | } |
144 | |
145 | /* union-find */ |
146 | node_t *UF_find(node_t * n) |
147 | { |
148 | while (ND_UF_parent(n) && (ND_UF_parent(n) != n)) { |
149 | if (ND_UF_parent(ND_UF_parent(n))) |
150 | ND_UF_parent(n) = ND_UF_parent(ND_UF_parent(n)); |
151 | n = ND_UF_parent(n); |
152 | } |
153 | return n; |
154 | } |
155 | |
156 | node_t *UF_union(node_t * u, node_t * v) |
157 | { |
158 | if (u == v) |
159 | return u; |
160 | if (ND_UF_parent(u) == NULL) { |
161 | ND_UF_parent(u) = u; |
162 | ND_UF_size(u) = 1; |
163 | } else |
164 | u = UF_find(u); |
165 | if (ND_UF_parent(v) == NULL) { |
166 | ND_UF_parent(v) = v; |
167 | ND_UF_size(v) = 1; |
168 | } else |
169 | v = UF_find(v); |
170 | if (ND_id(u) > ND_id(v)) { |
171 | ND_UF_parent(u) = v; |
172 | ND_UF_size(v) += ND_UF_size(u); |
173 | } else { |
174 | ND_UF_parent(v) = u; |
175 | ND_UF_size(u) += ND_UF_size(v); |
176 | v = u; |
177 | } |
178 | return v; |
179 | } |
180 | |
181 | void UF_remove(node_t * u, node_t * v) |
182 | { |
183 | assert(ND_UF_size(u) == 1); |
184 | ND_UF_parent(u) = u; |
185 | ND_UF_size(v) -= ND_UF_size(u); |
186 | } |
187 | |
188 | void UF_singleton(node_t * u) |
189 | { |
190 | ND_UF_size(u) = 1; |
191 | ND_UF_parent(u) = NULL; |
192 | ND_ranktype(u) = NORMAL; |
193 | } |
194 | |
195 | void UF_setname(node_t * u, node_t * v) |
196 | { |
197 | assert(u == UF_find(u)); |
198 | ND_UF_parent(u) = v; |
199 | ND_UF_size(v) += ND_UF_size(u); |
200 | } |
201 | |
202 | pointf coord(node_t * n) |
203 | { |
204 | pointf r; |
205 | |
206 | r.x = POINTS_PER_INCH * ND_pos(n)[0]; |
207 | r.y = POINTS_PER_INCH * ND_pos(n)[1]; |
208 | return r; |
209 | } |
210 | |
211 | /* from Glassner's Graphics Gems */ |
212 | #define W_DEGREE 5 |
213 | |
214 | /* |
215 | * Bezier : |
216 | * Evaluate a Bezier curve at a particular parameter value |
217 | * Fill in control points for resulting sub-curves if "Left" and |
218 | * "Right" are non-null. |
219 | * |
220 | */ |
221 | pointf Bezier(pointf * V, int degree, double t, pointf * Left, pointf * Right) |
222 | { |
223 | int i, j; /* Index variables */ |
224 | pointf Vtemp[W_DEGREE + 1][W_DEGREE + 1]; |
225 | |
226 | /* Copy control points */ |
227 | for (j = 0; j <= degree; j++) { |
228 | Vtemp[0][j] = V[j]; |
229 | } |
230 | |
231 | /* Triangle computation */ |
232 | for (i = 1; i <= degree; i++) { |
233 | for (j = 0; j <= degree - i; j++) { |
234 | Vtemp[i][j].x = |
235 | (1.0 - t) * Vtemp[i - 1][j].x + t * Vtemp[i - 1][j + 1].x; |
236 | Vtemp[i][j].y = |
237 | (1.0 - t) * Vtemp[i - 1][j].y + t * Vtemp[i - 1][j + 1].y; |
238 | } |
239 | } |
240 | |
241 | if (Left != NULL) |
242 | for (j = 0; j <= degree; j++) |
243 | Left[j] = Vtemp[j][0]; |
244 | if (Right != NULL) |
245 | for (j = 0; j <= degree; j++) |
246 | Right[j] = Vtemp[degree - j][j]; |
247 | |
248 | return (Vtemp[degree][0]); |
249 | } |
250 | |
251 | #ifdef DEBUG |
252 | edge_t *debug_getedge(graph_t * g, char *s0, char *s1) |
253 | { |
254 | node_t *n0, *n1; |
255 | n0 = agfindnode(g, s0); |
256 | n1 = agfindnode(g, s1); |
257 | if (n0 && n1) |
258 | return agfindedge(g, n0, n1); |
259 | else |
260 | return NULL; |
261 | } |
262 | Agraphinfo_t* GD_info(graph_t * g) { return ((Agraphinfo_t*)AGDATA(g));} |
263 | Agnodeinfo_t* ND_info(node_t * n) { return ((Agnodeinfo_t*)AGDATA(n));} |
264 | #endif |
265 | |
266 | #if !defined(_WIN32) |
267 | #include <pwd.h> |
268 | |
269 | #if 0 |
270 | static void cleanup(void) |
271 | { |
272 | agxbfree(&xb); |
273 | } |
274 | #endif |
275 | #endif |
276 | |
277 | /* Fgets: |
278 | * Read a complete line. |
279 | * Return pointer to line, |
280 | * or 0 on EOF |
281 | */ |
282 | char *Fgets(FILE * fp) |
283 | { |
284 | static int bsize = 0; |
285 | static char *buf; |
286 | char *lp; |
287 | int len; |
288 | |
289 | len = 0; |
290 | do { |
291 | if (bsize - len < BUFSIZ) { |
292 | bsize += BUFSIZ; |
293 | buf = grealloc(buf, bsize); |
294 | } |
295 | lp = fgets(buf + len, bsize - len, fp); |
296 | if (lp == 0) |
297 | break; |
298 | len += strlen(lp); /* since lp != NULL, len > 0 */ |
299 | } while (buf[len - 1] != '\n'); |
300 | |
301 | if (len > 0) |
302 | return buf; |
303 | else |
304 | return 0; |
305 | } |
306 | |
307 | /* safefile: |
308 | * Check to make sure it is okay to read in files. |
309 | * It returns NULL if the filename is trivial. |
310 | * |
311 | * If the application has set the SERVER_NAME environment variable, |
312 | * this indicates it is web-active. In this case, it requires that the GV_FILE_PATH |
313 | * environment variable be set. This gives the legal directories |
314 | * from which files may be read. safefile then derives the rightmost component |
315 | * of filename, where components are separated by a slash, backslash or colon, |
316 | * It then checks for the existence of a file consisting of a directory from |
317 | * GV_FILE_PATH followed by the rightmost component of filename. It returns the |
318 | * first such found, or NULL otherwise. |
319 | * The filename returned is thus |
320 | * Gvfilepath concatenated with the last component of filename, |
321 | * where a component is determined by a slash, backslash or colon |
322 | * character. |
323 | * |
324 | * If filename contains multiple components, the user is |
325 | * warned, once, that everything to the left is ignored. |
326 | * |
327 | * For non-server applications, we use the path list in Gvimagepath to |
328 | * resolve relative pathnames. |
329 | * |
330 | * N.B. safefile uses a fixed buffer, so functions using it should use the |
331 | * value immediately or make a copy. |
332 | */ |
333 | #ifdef _WIN32 |
334 | #define PATHSEP ";" |
335 | #else |
336 | #define PATHSEP ":" |
337 | #endif |
338 | |
339 | static char** mkDirlist (const char* list, int* maxdirlen) |
340 | { |
341 | int cnt = 0; |
342 | char* s = strdup (list); |
343 | char* dir; |
344 | char** dirs = NULL; |
345 | int maxlen = 0; |
346 | |
347 | for (dir = strtok (s, PATHSEP); dir; dir = strtok (NULL, PATHSEP)) { |
348 | dirs = ALLOC (cnt+2,dirs,char*); |
349 | dirs[cnt++] = dir; |
350 | maxlen = MAX(maxlen, strlen (dir)); |
351 | } |
352 | dirs[cnt] = NULL; |
353 | *maxdirlen = maxlen; |
354 | return dirs; |
355 | } |
356 | |
357 | static char* findPath (char** dirs, int maxdirlen, const char* str) |
358 | { |
359 | static char *safefilename = NULL; |
360 | char** dp; |
361 | |
362 | /* allocate a buffer that we are sure is big enough |
363 | * +1 for null character. |
364 | * +1 for directory separator character. |
365 | */ |
366 | safefilename = realloc(safefilename, (maxdirlen + strlen(str) + 2)); |
367 | |
368 | for (dp = dirs; *dp; dp++) { |
369 | sprintf (safefilename, "%s%s%s" , *dp, DIRSEP, str); |
370 | if (access (safefilename, R_OK) == 0) |
371 | return safefilename; |
372 | } |
373 | return NULL; |
374 | } |
375 | |
376 | const char *safefile(const char *filename) |
377 | { |
378 | static boolean onetime = TRUE; |
379 | static char *pathlist = NULL; |
380 | static int maxdirlen; |
381 | static char** dirs; |
382 | const char *str, *p; |
383 | |
384 | if (!filename || !filename[0]) |
385 | return NULL; |
386 | |
387 | if (HTTPServerEnVar) { /* If used as a server */ |
388 | /* |
389 | * If we are running in an http server we allow |
390 | * files only from the directory specified in |
391 | * the GV_FILE_PATH environment variable. |
392 | */ |
393 | if (!Gvfilepath || (*Gvfilepath == '\0')) { |
394 | if (onetime) { |
395 | agerr(AGWARN, |
396 | "file loading is disabled because the environment contains SERVER_NAME=\"%s\"\n" |
397 | "and the GV_FILE_PATH variable is unset or empty.\n" , |
398 | HTTPServerEnVar); |
399 | onetime = FALSE; |
400 | } |
401 | return NULL; |
402 | } |
403 | if (!pathlist) { |
404 | dirs = mkDirlist (Gvfilepath, &maxdirlen); |
405 | pathlist = Gvfilepath; |
406 | } |
407 | |
408 | str = filename; |
409 | if ((p = strrchr(str, '/'))) |
410 | str = ++p; |
411 | if ((p = strrchr(str, '\\'))) |
412 | str = ++p; |
413 | if ((p = strrchr(str, ':'))) |
414 | str = ++p; |
415 | |
416 | if (onetime && str != filename) { |
417 | agerr(AGWARN, "Path provided to file: \"%s\" has been ignored" |
418 | " because files are only permitted to be loaded from the directories in \"%s\"" |
419 | " when running in an http server.\n" , filename, Gvfilepath); |
420 | onetime = FALSE; |
421 | } |
422 | |
423 | return findPath (dirs, maxdirlen, str); |
424 | } |
425 | |
426 | if (pathlist != Gvimagepath) { |
427 | if (dirs) { |
428 | free (dirs[0]); |
429 | free (dirs); |
430 | dirs = NULL; |
431 | } |
432 | pathlist = Gvimagepath; |
433 | if (pathlist && *pathlist) |
434 | dirs = mkDirlist (pathlist, &maxdirlen); |
435 | } |
436 | |
437 | if ((*filename == DIRSEP[0]) || !dirs) |
438 | return filename; |
439 | |
440 | return findPath (dirs, maxdirlen, filename); |
441 | } |
442 | |
443 | int maptoken(char *p, char **name, int *val) |
444 | { |
445 | int i; |
446 | char *q; |
447 | |
448 | for (i = 0; (q = name[i]) != 0; i++) |
449 | if (p && streq(p, q)) |
450 | break; |
451 | return val[i]; |
452 | } |
453 | |
454 | boolean mapBool(char *p, boolean dflt) |
455 | { |
456 | if (!p || (*p == '\0')) |
457 | return dflt; |
458 | if (!strcasecmp(p, "false" )) |
459 | return FALSE; |
460 | if (!strcasecmp(p, "no" )) |
461 | return FALSE; |
462 | if (!strcasecmp(p, "true" )) |
463 | return TRUE; |
464 | if (!strcasecmp(p, "yes" )) |
465 | return TRUE; |
466 | if (isdigit(*p)) |
467 | return atoi(p); |
468 | else |
469 | return dflt; |
470 | } |
471 | |
472 | boolean mapbool(char *p) |
473 | { |
474 | return mapBool (p, FALSE); |
475 | } |
476 | |
477 | pointf dotneato_closest(splines * spl, pointf pt) |
478 | { |
479 | int i, j, k, besti, bestj; |
480 | double bestdist2, d2, dlow2, dhigh2; /* squares of distances */ |
481 | double low, high, t; |
482 | pointf c[4], pt2; |
483 | bezier bz; |
484 | |
485 | besti = bestj = -1; |
486 | bestdist2 = 1e+38; |
487 | for (i = 0; i < spl->size; i++) { |
488 | bz = spl->list[i]; |
489 | for (j = 0; j < bz.size; j++) { |
490 | pointf b; |
491 | |
492 | b.x = bz.list[j].x; |
493 | b.y = bz.list[j].y; |
494 | d2 = DIST2(b, pt); |
495 | if ((bestj == -1) || (d2 < bestdist2)) { |
496 | besti = i; |
497 | bestj = j; |
498 | bestdist2 = d2; |
499 | } |
500 | } |
501 | } |
502 | |
503 | bz = spl->list[besti]; |
504 | /* Pick best Bezier. If bestj is the last point in the B-spline, decrement. |
505 | * Then set j to be the first point in the corresponding Bezier by dividing |
506 | * then multiplying be 3. Thus, 0,1,2 => 0; 3,4,5 => 3, etc. |
507 | */ |
508 | if (bestj == bz.size-1) |
509 | bestj--; |
510 | j = 3*(bestj / 3); |
511 | for (k = 0; k < 4; k++) { |
512 | c[k].x = bz.list[j + k].x; |
513 | c[k].y = bz.list[j + k].y; |
514 | } |
515 | low = 0.0; |
516 | high = 1.0; |
517 | dlow2 = DIST2(c[0], pt); |
518 | dhigh2 = DIST2(c[3], pt); |
519 | do { |
520 | t = (low + high) / 2.0; |
521 | pt2 = Bezier(c, 3, t, NULL, NULL); |
522 | if (fabs(dlow2 - dhigh2) < 1.0) |
523 | break; |
524 | if (fabs(high - low) < .00001) |
525 | break; |
526 | if (dlow2 < dhigh2) { |
527 | high = t; |
528 | dhigh2 = DIST2(pt2, pt); |
529 | } else { |
530 | low = t; |
531 | dlow2 = DIST2(pt2, pt); |
532 | } |
533 | } while (1); |
534 | return pt2; |
535 | } |
536 | |
537 | pointf spline_at_y(splines * spl, double y) |
538 | { |
539 | int i, j; |
540 | double low, high, d, t; |
541 | pointf c[4], p; |
542 | static bezier bz; |
543 | |
544 | /* this caching seems to prevent p.x from getting set from bz.list[0].x |
545 | - optimizer problem ? */ |
546 | |
547 | #if 0 |
548 | static splines *mem = NULL; |
549 | |
550 | if (mem != spl) { |
551 | mem = spl; |
552 | #endif |
553 | for (i = 0; i < spl->size; i++) { |
554 | bz = spl->list[i]; |
555 | if (BETWEEN(bz.list[bz.size - 1].y, y, bz.list[0].y)) |
556 | break; |
557 | } |
558 | #if 0 |
559 | } |
560 | #endif |
561 | if (y > bz.list[0].y) |
562 | p = bz.list[0]; |
563 | else if (y < bz.list[bz.size - 1].y) |
564 | p = bz.list[bz.size - 1]; |
565 | else { |
566 | for (i = 0; i < bz.size; i += 3) { |
567 | for (j = 0; j < 3; j++) { |
568 | if ((bz.list[i + j].y <= y) && (y <= bz.list[i + j + 1].y)) |
569 | break; |
570 | if ((bz.list[i + j].y >= y) && (y >= bz.list[i + j + 1].y)) |
571 | break; |
572 | } |
573 | if (j < 3) |
574 | break; |
575 | } |
576 | assert(i < bz.size); |
577 | for (j = 0; j < 4; j++) { |
578 | c[j].x = bz.list[i + j].x; |
579 | c[j].y = bz.list[i + j].y; |
580 | /* make the spline be monotonic in Y, awful but it works for now */ |
581 | if ((j > 0) && (c[j].y > c[j - 1].y)) |
582 | c[j].y = c[j - 1].y; |
583 | } |
584 | low = 0.0; |
585 | high = 1.0; |
586 | do { |
587 | t = (low + high) / 2.0; |
588 | p = Bezier(c, 3, t, NULL, NULL); |
589 | d = p.y - y; |
590 | if (ABS(d) <= 1) |
591 | break; |
592 | if (d < 0) |
593 | high = t; |
594 | else |
595 | low = t; |
596 | } while (1); |
597 | } |
598 | p.y = y; |
599 | return p; |
600 | } |
601 | |
602 | pointf neato_closest(splines * spl, pointf p) |
603 | { |
604 | /* this is a stub so that we can share a common emit.c between dot and neato */ |
605 | |
606 | return spline_at_y(spl, p.y); |
607 | } |
608 | |
609 | static int Tflag; |
610 | void gvToggle(int s) |
611 | { |
612 | Tflag = !Tflag; |
613 | #if !defined(_WIN32) |
614 | signal(SIGUSR1, gvToggle); |
615 | #endif |
616 | } |
617 | |
618 | int test_toggle() |
619 | { |
620 | return Tflag; |
621 | } |
622 | |
623 | struct fontinfo { |
624 | double fontsize; |
625 | char *fontname; |
626 | char *fontcolor; |
627 | }; |
628 | |
629 | void common_init_node(node_t * n) |
630 | { |
631 | struct fontinfo fi; |
632 | char *str; |
633 | ND_width(n) = |
634 | late_double(n, N_width, DEFAULT_NODEWIDTH, MIN_NODEWIDTH); |
635 | ND_height(n) = |
636 | late_double(n, N_height, DEFAULT_NODEHEIGHT, MIN_NODEHEIGHT); |
637 | ND_shape(n) = |
638 | bind_shape(late_nnstring(n, N_shape, DEFAULT_NODESHAPE), n); |
639 | str = agxget(n, N_label); |
640 | fi.fontsize = late_double(n, N_fontsize, DEFAULT_FONTSIZE, MIN_FONTSIZE); |
641 | fi.fontname = late_nnstring(n, N_fontname, DEFAULT_FONTNAME); |
642 | fi.fontcolor = late_nnstring(n, N_fontcolor, DEFAULT_COLOR); |
643 | ND_label(n) = make_label((void*)n, str, |
644 | ((aghtmlstr(str) ? LT_HTML : LT_NONE) | ( (shapeOf(n) == SH_RECORD) ? LT_RECD : LT_NONE)), |
645 | fi.fontsize, fi.fontname, fi.fontcolor); |
646 | if (N_xlabel && (str = agxget(n, N_xlabel)) && (str[0])) { |
647 | ND_xlabel(n) = make_label((void*)n, str, (aghtmlstr(str) ? LT_HTML : LT_NONE), |
648 | fi.fontsize, fi.fontname, fi.fontcolor); |
649 | GD_has_labels(agraphof(n)) |= NODE_XLABEL; |
650 | } |
651 | |
652 | ND_showboxes(n) = late_int(n, N_showboxes, 0, 0); |
653 | ND_shape(n)->fns->initfn(n); |
654 | } |
655 | |
656 | static void initFontEdgeAttr(edge_t * e, struct fontinfo *fi) |
657 | { |
658 | fi->fontsize = late_double(e, E_fontsize, DEFAULT_FONTSIZE, MIN_FONTSIZE); |
659 | fi->fontname = late_nnstring(e, E_fontname, DEFAULT_FONTNAME); |
660 | fi->fontcolor = late_nnstring(e, E_fontcolor, DEFAULT_COLOR); |
661 | } |
662 | |
663 | static void |
664 | initFontLabelEdgeAttr(edge_t * e, struct fontinfo *fi, |
665 | struct fontinfo *lfi) |
666 | { |
667 | if (!fi->fontname) initFontEdgeAttr(e, fi); |
668 | lfi->fontsize = late_double(e, E_labelfontsize, fi->fontsize, MIN_FONTSIZE); |
669 | lfi->fontname = late_nnstring(e, E_labelfontname, fi->fontname); |
670 | lfi->fontcolor = late_nnstring(e, E_labelfontcolor, fi->fontcolor); |
671 | } |
672 | |
673 | /* noClip: |
674 | * Return true if head/tail end of edge should not be clipped |
675 | * to node. |
676 | */ |
677 | static boolean |
678 | noClip(edge_t *e, attrsym_t* sym) |
679 | { |
680 | char *str; |
681 | boolean rv = FALSE; |
682 | |
683 | if (sym) { /* mapbool isn't a good fit, because we want "" to mean true */ |
684 | str = agxget(e,sym); |
685 | if (str && str[0]) rv = !mapbool(str); |
686 | else rv = FALSE; |
687 | } |
688 | return rv; |
689 | } |
690 | |
691 | /*chkPort: |
692 | */ |
693 | static port |
694 | chkPort (port (*pf)(node_t*, char*, char*), node_t* n, char* s) |
695 | { |
696 | port pt; |
697 | char* cp=NULL; |
698 | if(s) |
699 | cp= strchr(s,':'); |
700 | if (cp) { |
701 | *cp = '\0'; |
702 | pt = pf(n, s, cp+1); |
703 | *cp = ':'; |
704 | pt.name = cp+1; |
705 | } |
706 | else { |
707 | pt = pf(n, s, NULL); |
708 | pt.name = s; |
709 | } |
710 | return pt; |
711 | } |
712 | |
713 | /* return true if edge has label */ |
714 | int common_init_edge(edge_t * e) |
715 | { |
716 | char *str; |
717 | int r = 0; |
718 | struct fontinfo fi; |
719 | struct fontinfo lfi; |
720 | graph_t *sg = agraphof(agtail(e)); |
721 | |
722 | fi.fontname = NULL; |
723 | lfi.fontname = NULL; |
724 | if (E_label && (str = agxget(e, E_label)) && (str[0])) { |
725 | r = 1; |
726 | initFontEdgeAttr(e, &fi); |
727 | ED_label(e) = make_label((void*)e, str, (aghtmlstr(str) ? LT_HTML : LT_NONE), |
728 | fi.fontsize, fi.fontname, fi.fontcolor); |
729 | GD_has_labels(sg) |= EDGE_LABEL; |
730 | ED_label_ontop(e) = |
731 | mapbool(late_string(e, E_label_float, "false" )); |
732 | } |
733 | |
734 | if (E_xlabel && (str = agxget(e, E_xlabel)) && (str[0])) { |
735 | if (!fi.fontname) |
736 | initFontEdgeAttr(e, &fi); |
737 | ED_xlabel(e) = make_label((void*)e, str, (aghtmlstr(str) ? LT_HTML : LT_NONE), |
738 | fi.fontsize, fi.fontname, fi.fontcolor); |
739 | GD_has_labels(sg) |= EDGE_XLABEL; |
740 | } |
741 | |
742 | |
743 | /* vladimir */ |
744 | if (E_headlabel && (str = agxget(e, E_headlabel)) && (str[0])) { |
745 | initFontLabelEdgeAttr(e, &fi, &lfi); |
746 | ED_head_label(e) = make_label((void*)e, str, (aghtmlstr(str) ? LT_HTML : LT_NONE), |
747 | lfi.fontsize, lfi.fontname, lfi.fontcolor); |
748 | GD_has_labels(sg) |= HEAD_LABEL; |
749 | } |
750 | if (E_taillabel && (str = agxget(e, E_taillabel)) && (str[0])) { |
751 | if (!lfi.fontname) |
752 | initFontLabelEdgeAttr(e, &fi, &lfi); |
753 | ED_tail_label(e) = make_label((void*)e, str, (aghtmlstr(str) ? LT_HTML : LT_NONE), |
754 | lfi.fontsize, lfi.fontname, lfi.fontcolor); |
755 | GD_has_labels(sg) |= TAIL_LABEL; |
756 | } |
757 | /* end vladimir */ |
758 | |
759 | /* We still accept ports beginning with colons but this is deprecated |
760 | * That is, we allow tailport = ":abc" as well as the preferred |
761 | * tailport = "abc". |
762 | */ |
763 | str = agget(e, TAIL_ID); |
764 | /* libgraph always defines tailport/headport; libcgraph doesn't */ |
765 | if (!str) str = "" ; |
766 | if (str && str[0]) |
767 | ND_has_port(agtail(e)) = TRUE; |
768 | ED_tail_port(e) = chkPort (ND_shape(agtail(e))->fns->portfn, agtail(e), str); |
769 | if (noClip(e, E_tailclip)) |
770 | ED_tail_port(e).clip = FALSE; |
771 | str = agget(e, HEAD_ID); |
772 | /* libgraph always defines tailport/headport; libcgraph doesn't */ |
773 | if (!str) str = "" ; |
774 | if (str && str[0]) |
775 | ND_has_port(aghead(e)) = TRUE; |
776 | ED_head_port(e) = chkPort(ND_shape(aghead(e))->fns->portfn, aghead(e), str); |
777 | if (noClip(e, E_headclip)) |
778 | ED_head_port(e).clip = FALSE; |
779 | |
780 | return r; |
781 | } |
782 | |
783 | /* addLabelBB: |
784 | */ |
785 | static boxf addLabelBB(boxf bb, textlabel_t * lp, boolean flipxy) |
786 | { |
787 | double width, height; |
788 | pointf p = lp->pos; |
789 | double min, max; |
790 | |
791 | if (flipxy) { |
792 | height = lp->dimen.x; |
793 | width = lp->dimen.y; |
794 | } |
795 | else { |
796 | width = lp->dimen.x; |
797 | height = lp->dimen.y; |
798 | } |
799 | min = p.x - width / 2.; |
800 | max = p.x + width / 2.; |
801 | if (min < bb.LL.x) |
802 | bb.LL.x = min; |
803 | if (max > bb.UR.x) |
804 | bb.UR.x = max; |
805 | |
806 | min = p.y - height / 2.; |
807 | max = p.y + height / 2.; |
808 | if (min < bb.LL.y) |
809 | bb.LL.y = min; |
810 | if (max > bb.UR.y) |
811 | bb.UR.y = max; |
812 | |
813 | return bb; |
814 | } |
815 | |
816 | /* polyBB: |
817 | * Compute the bounding box of a polygon. |
818 | * We only need to use the outer periphery. |
819 | */ |
820 | boxf |
821 | polyBB (polygon_t* poly) |
822 | { |
823 | int i, sides = poly->sides; |
824 | int peris = MAX(poly->peripheries,1); |
825 | pointf* verts = poly->vertices + (peris-1)*sides; |
826 | boxf bb; |
827 | |
828 | bb.LL = bb.UR = verts[0]; |
829 | for (i = 1; i < sides; i++) { |
830 | bb.LL.x = MIN(bb.LL.x,verts[i].x); |
831 | bb.LL.y = MIN(bb.LL.y,verts[i].y); |
832 | bb.UR.x = MAX(bb.UR.x,verts[i].x); |
833 | bb.UR.y = MAX(bb.UR.y,verts[i].y); |
834 | } |
835 | return bb; |
836 | } |
837 | |
838 | /* updateBB: |
839 | * Reset graph's bounding box to include bounding box of the given label. |
840 | * Assume the label's position has been set. |
841 | */ |
842 | void updateBB(graph_t * g, textlabel_t * lp) |
843 | { |
844 | GD_bb(g) = addLabelBB(GD_bb(g), lp, GD_flip(g)); |
845 | } |
846 | |
847 | /* compute_bb: |
848 | * Compute bounding box of g using nodes, splines, and clusters. |
849 | * Assumes bb of clusters already computed. |
850 | * store in GD_bb. |
851 | */ |
852 | void compute_bb(graph_t * g) |
853 | { |
854 | node_t *n; |
855 | edge_t *e; |
856 | boxf b, bb; |
857 | boxf BF; |
858 | pointf ptf, s2; |
859 | int i, j; |
860 | |
861 | if ((agnnodes(g) == 0) && (GD_n_cluster(g) ==0)) { |
862 | bb.LL = pointfof(0, 0); |
863 | bb.UR = pointfof(0, 0); |
864 | return; |
865 | } |
866 | |
867 | bb.LL = pointfof(INT_MAX, INT_MAX); |
868 | bb.UR = pointfof(-INT_MAX, -INT_MAX); |
869 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
870 | ptf = coord(n); |
871 | s2.x = ND_xsize(n) / 2.0; |
872 | s2.y = ND_ysize(n) / 2.0; |
873 | b.LL = sub_pointf(ptf, s2); |
874 | b.UR = add_pointf(ptf, s2); |
875 | |
876 | EXPANDBB(bb,b); |
877 | if (ND_xlabel(n) && ND_xlabel(n)->set) { |
878 | bb = addLabelBB(bb, ND_xlabel(n), GD_flip(g)); |
879 | } |
880 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
881 | if (ED_spl(e) == 0) |
882 | continue; |
883 | for (i = 0; i < ED_spl(e)->size; i++) { |
884 | for (j = 0; j < (((Agedgeinfo_t*)AGDATA(e))->spl)->list[i].size; j++) { |
885 | ptf = ED_spl(e)->list[i].list[j]; |
886 | EXPANDBP(bb,ptf); |
887 | } |
888 | } |
889 | if (ED_label(e) && ED_label(e)->set) { |
890 | bb = addLabelBB(bb, ED_label(e), GD_flip(g)); |
891 | } |
892 | if (ED_head_label(e) && ED_head_label(e)->set) { |
893 | bb = addLabelBB(bb, ED_head_label(e), GD_flip(g)); |
894 | } |
895 | if (ED_tail_label(e) && ED_tail_label(e)->set) { |
896 | bb = addLabelBB(bb, ED_tail_label(e), GD_flip(g)); |
897 | } |
898 | if (ED_xlabel(e) && ED_xlabel(e)->set) { |
899 | bb = addLabelBB(bb, ED_xlabel(e), GD_flip(g)); |
900 | } |
901 | } |
902 | } |
903 | |
904 | for (i = 1; i <= GD_n_cluster(g); i++) { |
905 | B2BF(GD_bb(GD_clust(g)[i]), BF); |
906 | EXPANDBB(bb,BF); |
907 | } |
908 | if (GD_label(g) && GD_label(g)->set) { |
909 | bb = addLabelBB(bb, GD_label(g), GD_flip(g)); |
910 | } |
911 | |
912 | GD_bb(g) = bb; |
913 | } |
914 | |
915 | int is_a_cluster (Agraph_t* g) |
916 | { |
917 | return ((g == g->root) || (!strncasecmp(agnameof(g), "cluster" , 7)) || mapBool(agget(g,"cluster" ),FALSE)); |
918 | } |
919 | |
920 | /* setAttr: |
921 | * Sets object's name attribute to the given value. |
922 | * Creates the attribute if not already set. |
923 | */ |
924 | Agsym_t *setAttr(graph_t * g, void *obj, char *name, char *value, |
925 | Agsym_t * ap) |
926 | { |
927 | if (ap == NULL) { |
928 | switch (agobjkind(obj)) { |
929 | case AGRAPH: |
930 | ap = agattr(g, AGRAPH,name, "" ); |
931 | break; |
932 | case AGNODE: |
933 | ap = agattr(g,AGNODE, name, "" ); |
934 | break; |
935 | case AGEDGE: |
936 | ap = agattr(g,AGEDGE, name, "" ); |
937 | break; |
938 | } |
939 | } |
940 | agxset(obj, ap, value); |
941 | return ap; |
942 | } |
943 | |
944 | /* clustNode: |
945 | * Generate a special cluster node representing the end node |
946 | * of an edge to the cluster cg. n is a node whose name is the same |
947 | * as the cluster cg. clg is the subgraph of all of |
948 | * the original nodes, which will be deleted later. |
949 | */ |
950 | static node_t *clustNode(node_t * n, graph_t * cg, agxbuf * xb, |
951 | graph_t * clg) |
952 | { |
953 | node_t *cn; |
954 | static int idx = 0; |
955 | char num[100]; |
956 | |
957 | agxbput(xb, "__" ); |
958 | sprintf(num, "%d" , idx++); |
959 | agxbput(xb, num); |
960 | agxbputc(xb, ':'); |
961 | agxbput(xb, agnameof(cg)); |
962 | |
963 | cn = agnode(agroot(cg), agxbuse(xb), 1); |
964 | agbindrec(cn, "Agnodeinfo_t" , sizeof(Agnodeinfo_t), TRUE); |
965 | |
966 | SET_CLUST_NODE(cn); |
967 | agsubnode(cg,cn,1); |
968 | //aginsert(cg, cn); |
969 | agsubnode(clg,n,1); |
970 | //aginsert(clg, n); |
971 | |
972 | /* set attributes */ |
973 | N_label = setAttr(agraphof(cn), cn, "label" , "" , N_label); |
974 | N_style = setAttr(agraphof(cn), cn, "style" , "invis" , N_style); |
975 | N_shape = setAttr(agraphof(cn), cn, "shape" , "box" , N_shape); |
976 | /* N_width = setAttr (cn->graph, cn, "width", "0.0001", N_width); */ |
977 | |
978 | return cn; |
979 | } |
980 | |
981 | typedef struct { |
982 | Dtlink_t link; /* cdt data */ |
983 | void *p[2]; /* key */ |
984 | node_t *t; |
985 | node_t *h; |
986 | } item; |
987 | |
988 | static int cmpItem(Dt_t * d, void *p1[], void *p2[], Dtdisc_t * disc) |
989 | { |
990 | NOTUSED(d); |
991 | NOTUSED(disc); |
992 | |
993 | if (p1[0] < p2[0]) |
994 | return -1; |
995 | else if (p1[0] > p2[0]) |
996 | return 1; |
997 | else if (p1[1] < p2[1]) |
998 | return -1; |
999 | else if (p1[1] > p2[1]) |
1000 | return 1; |
1001 | else |
1002 | return 0; |
1003 | } |
1004 | |
1005 | /* newItem: |
1006 | */ |
1007 | static void *newItem(Dt_t * d, item * objp, Dtdisc_t * disc) |
1008 | { |
1009 | item *newp = NEW(item); |
1010 | |
1011 | NOTUSED(disc); |
1012 | newp->p[0] = objp->p[0]; |
1013 | newp->p[1] = objp->p[1]; |
1014 | newp->t = objp->t; |
1015 | newp->h = objp->h; |
1016 | |
1017 | return newp; |
1018 | } |
1019 | |
1020 | /* freeItem: |
1021 | */ |
1022 | static void freeItem(Dt_t * d, item * obj, Dtdisc_t * disc) |
1023 | { |
1024 | free(obj); |
1025 | } |
1026 | |
1027 | static Dtdisc_t mapDisc = { |
1028 | offsetof(item, p), |
1029 | sizeof(2 * sizeof(void *)), |
1030 | offsetof(item, link), |
1031 | (Dtmake_f) newItem, |
1032 | (Dtfree_f) freeItem, |
1033 | (Dtcompar_f) cmpItem, |
1034 | NIL(Dthash_f), |
1035 | NIL(Dtmemory_f), |
1036 | NIL(Dtevent_f) |
1037 | }; |
1038 | |
1039 | /* cloneEdge: |
1040 | * Make a copy of e in e's graph but using ct and ch as nodes |
1041 | */ |
1042 | static edge_t *cloneEdge(edge_t * e, node_t * ct, node_t * ch) |
1043 | { |
1044 | graph_t *g = agraphof(ct); |
1045 | edge_t *ce = agedge(g, ct, ch,NULL,1); |
1046 | agbindrec(ce, "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); |
1047 | agcopyattr(e, ce); |
1048 | ED_compound(ce) = TRUE; |
1049 | |
1050 | return ce; |
1051 | } |
1052 | |
1053 | /* insertEdge: |
1054 | */ |
1055 | static void insertEdge(Dt_t * map, void *t, void *h, edge_t * e) |
1056 | { |
1057 | item dummy; |
1058 | |
1059 | dummy.p[0] = t; |
1060 | dummy.p[1] = h; |
1061 | dummy.t = agtail(e); |
1062 | dummy.h = aghead(e); |
1063 | dtinsert(map, &dummy); |
1064 | |
1065 | dummy.p[0] = h; |
1066 | dummy.p[1] = t; |
1067 | dummy.t = aghead(e); |
1068 | dummy.h = agtail(e); |
1069 | dtinsert(map, &dummy); |
1070 | } |
1071 | |
1072 | /* mapEdge: |
1073 | * Check if we already have cluster edge corresponding to t->h, |
1074 | * and return it. |
1075 | */ |
1076 | static item *mapEdge(Dt_t * map, edge_t * e) |
1077 | { |
1078 | void *key[2]; |
1079 | |
1080 | key[0] = agtail(e); |
1081 | key[1] = aghead(e); |
1082 | return (item *) dtmatch(map, &key); |
1083 | } |
1084 | |
1085 | /* checkCompound: |
1086 | * If endpoint names a cluster, mark for temporary deletion and create |
1087 | * special node and insert into cluster. Then clone the edge. Real edge |
1088 | * will be deleted when we delete the original node. |
1089 | * Invariant: new edge has same sense as old. That is, given t->h with |
1090 | * t and h mapped to ct and ch, the new edge is ct->ch. |
1091 | * |
1092 | * In the current model, we create a cluster node for each cluster edge |
1093 | * between the cluster and some other node or cluster, treating the |
1094 | * cluster node as a port on the cluster. This should help with better |
1095 | * routing to avoid edge crossings. At present, this is not implemented, |
1096 | * so we could use a simpler model in which we create a single cluster |
1097 | * node for each cluster used in a cluster edge. |
1098 | * |
1099 | * Return 1 if cluster edge is created. |
1100 | */ |
1101 | #define MAPC(n) (strncmp(agnameof(n),"cluster",7)?NULL:findCluster(cmap,agnameof(n))) |
1102 | |
1103 | static int |
1104 | checkCompound(edge_t * e, graph_t * clg, agxbuf * xb, Dt_t * map, Dt_t* cmap) |
1105 | { |
1106 | graph_t *tg; |
1107 | graph_t *hg; |
1108 | node_t *cn; |
1109 | node_t *cn1; |
1110 | node_t *t = agtail(e); |
1111 | node_t *h = aghead(e); |
1112 | edge_t *ce; |
1113 | item *ip; |
1114 | |
1115 | if (IS_CLUST_NODE(h)) return 0; |
1116 | tg = MAPC(t); |
1117 | hg = MAPC(h); |
1118 | if (!tg && !hg) |
1119 | return 0; |
1120 | if (tg == hg) { |
1121 | agerr(AGWARN, "cluster cycle %s -- %s not supported\n" , agnameof(t), |
1122 | agnameof(t)); |
1123 | return 0; |
1124 | } |
1125 | ip = mapEdge(map, e); |
1126 | if (ip) { |
1127 | cloneEdge(e, ip->t, ip->h); |
1128 | return 1; |
1129 | } |
1130 | |
1131 | if (hg) { |
1132 | if (tg) { |
1133 | if (agcontains(hg, tg)) { |
1134 | agerr(AGWARN, "tail cluster %s inside head cluster %s\n" , |
1135 | agnameof(tg), agnameof(hg)); |
1136 | return 0; |
1137 | } |
1138 | if (agcontains(tg, hg)) { |
1139 | agerr(AGWARN, "head cluster %s inside tail cluster %s\n" , |
1140 | agnameof(hg),agnameof(tg)); |
1141 | return 0; |
1142 | } |
1143 | cn = clustNode(t, tg, xb, clg); |
1144 | cn1 = clustNode(h, hg, xb, clg); |
1145 | ce = cloneEdge(e, cn, cn1); |
1146 | insertEdge(map, t, h, ce); |
1147 | } else { |
1148 | if (agcontains(hg, t)) { |
1149 | agerr(AGWARN, "tail node %s inside head cluster %s\n" , |
1150 | agnameof(t), agnameof(hg)); |
1151 | return 0; |
1152 | } |
1153 | cn = clustNode(h, hg, xb, clg); |
1154 | ce = cloneEdge(e, t, cn); |
1155 | insertEdge(map, t, h, ce); |
1156 | } |
1157 | } else { |
1158 | if (agcontains(tg, h)) { |
1159 | agerr(AGWARN, "head node %s inside tail cluster %s\n" , agnameof(h), |
1160 | agnameof(tg)); |
1161 | return 0; |
1162 | } |
1163 | cn = clustNode(t, tg, xb, clg); |
1164 | ce = cloneEdge(e, cn, h); |
1165 | insertEdge(map, t, h, ce); |
1166 | } |
1167 | return 1; |
1168 | } |
1169 | |
1170 | typedef struct { |
1171 | Agrec_t hdr; |
1172 | int n_cluster_edges; |
1173 | } cl_edge_t; |
1174 | |
1175 | static int |
1176 | num_clust_edges(graph_t * g) |
1177 | { |
1178 | cl_edge_t* cl_info = (cl_edge_t*)HAS_CLUST_EDGE(g); |
1179 | if (cl_info) |
1180 | return cl_info->n_cluster_edges; |
1181 | else |
1182 | return 0; |
1183 | } |
1184 | |
1185 | /* processClusterEdges: |
1186 | * Look for cluster edges. Replace cluster edge endpoints |
1187 | * corresponding to a cluster with special cluster nodes. |
1188 | * Delete original nodes. |
1189 | * If cluster edges are found, a cl_edge_t record will be |
1190 | * attached to the graph, containing the count of such edges. |
1191 | */ |
1192 | void processClusterEdges(graph_t * g) |
1193 | { |
1194 | int num_cl_edges = 0; |
1195 | node_t *n; |
1196 | node_t *nxt; |
1197 | edge_t *e; |
1198 | graph_t *clg; |
1199 | agxbuf xb; |
1200 | Dt_t *map; |
1201 | Dt_t *cmap = mkClustMap (g); |
1202 | unsigned char buf[SMALLBUF]; |
1203 | |
1204 | map = dtopen(&mapDisc, Dtoset); |
1205 | clg = agsubg(g, "__clusternodes" ,1); |
1206 | agbindrec(clg, "Agraphinfo_t" , sizeof(Agraphinfo_t), TRUE); |
1207 | agxbinit(&xb, SMALLBUF, buf); |
1208 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
1209 | if (IS_CLUST_NODE(n)) continue; |
1210 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
1211 | num_cl_edges += checkCompound(e, clg, &xb, map, cmap); |
1212 | } |
1213 | } |
1214 | agxbfree(&xb); |
1215 | dtclose(map); |
1216 | for (n = agfstnode(clg); n; n = nxt) { |
1217 | nxt = agnxtnode(clg, n); |
1218 | agdelete(g, n); |
1219 | } |
1220 | agclose(clg); |
1221 | if (num_cl_edges) { |
1222 | cl_edge_t* cl_info; |
1223 | cl_info = agbindrec(g, CL_EDGE_TAG, sizeof(cl_edge_t), FALSE); |
1224 | cl_info->n_cluster_edges = num_cl_edges; |
1225 | } |
1226 | dtclose(cmap); |
1227 | } |
1228 | |
1229 | /* mapN: |
1230 | * Convert cluster nodes back to ordinary nodes |
1231 | * If n is already ordinary, return it. |
1232 | * Otherwise, we know node's name is "__i:xxx" |
1233 | * where i is some number and xxx is the nodes's original name. |
1234 | * Create new node of name xxx if it doesn't exist and add n to clg |
1235 | * for later deletion. |
1236 | */ |
1237 | static node_t *mapN(node_t * n, graph_t * clg) |
1238 | { |
1239 | node_t *nn; |
1240 | char *name; |
1241 | graph_t *g = agraphof(n); |
1242 | Agsym_t *sym; |
1243 | |
1244 | if (!(IS_CLUST_NODE(n))) |
1245 | return n; |
1246 | agsubnode(clg, n, 1); |
1247 | name = strchr(agnameof(n), ':'); |
1248 | assert(name); |
1249 | name++; |
1250 | if ((nn = agfindnode(g, name))) |
1251 | return nn; |
1252 | nn = agnode(g, name, 1); |
1253 | agbindrec(nn, "Agnodeinfo_t" , sizeof(Agnodeinfo_t), TRUE); |
1254 | SET_CLUST_NODE(nn); |
1255 | |
1256 | /* Set all attributes to default */ |
1257 | for (sym = agnxtattr(g, AGNODE, NULL); sym; (sym = agnxtattr(g, AGNODE, sym))) { |
1258 | if (agxget(nn, sym) != sym->defval) |
1259 | agxset(nn, sym, sym->defval); |
1260 | } |
1261 | return nn; |
1262 | } |
1263 | |
1264 | static void undoCompound(edge_t * e, graph_t * clg) |
1265 | { |
1266 | node_t *t = agtail(e); |
1267 | node_t *h = aghead(e); |
1268 | node_t *ntail; |
1269 | node_t *nhead; |
1270 | edge_t* ce; |
1271 | |
1272 | ntail = mapN(t, clg); |
1273 | nhead = mapN(h, clg); |
1274 | ce = cloneEdge(e, ntail, nhead); |
1275 | |
1276 | /* transfer drawing information */ |
1277 | ED_spl(ce) = ED_spl(e); |
1278 | ED_spl(e) = NULL; |
1279 | ED_label(ce) = ED_label(e); |
1280 | ED_label(e) = NULL; |
1281 | ED_xlabel(ce) = ED_xlabel(e); |
1282 | ED_xlabel(e) = NULL; |
1283 | ED_head_label(ce) = ED_head_label(e); |
1284 | ED_head_label(e) = NULL; |
1285 | ED_tail_label(ce) = ED_tail_label(e); |
1286 | ED_tail_label(e) = NULL; |
1287 | gv_cleanup_edge(e); |
1288 | } |
1289 | |
1290 | /* undoClusterEdges: |
1291 | * Replace cluster nodes with originals. Make sure original has |
1292 | * no attributes. Replace original edges. Delete cluster nodes, |
1293 | * which will also delete cluster edges. |
1294 | */ |
1295 | void undoClusterEdges(graph_t * g) |
1296 | { |
1297 | node_t *n; |
1298 | node_t *nextn; |
1299 | edge_t *e; |
1300 | graph_t *clg; |
1301 | edge_t **elist; |
1302 | int ecnt = num_clust_edges(g); |
1303 | int i = 0; |
1304 | |
1305 | if (!ecnt) return; |
1306 | clg = agsubg(g, "__clusternodes" ,1); |
1307 | agbindrec(clg, "Agraphinfo_t" , sizeof(Agraphinfo_t), TRUE); |
1308 | elist = N_NEW(ecnt, edge_t*); |
1309 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
1310 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
1311 | if (ED_compound(e)) |
1312 | elist[i++] = e; |
1313 | } |
1314 | } |
1315 | assert(i == ecnt); |
1316 | for (i = 0; i < ecnt; i++) |
1317 | undoCompound(elist[i], clg); |
1318 | free (elist); |
1319 | for (n = agfstnode(clg); n; n = nextn) { |
1320 | nextn = agnxtnode(clg, n); |
1321 | gv_cleanup_node(n); |
1322 | agdelete(g, n); |
1323 | } |
1324 | agclose(clg); |
1325 | } |
1326 | |
1327 | /* safe_dcl: |
1328 | * Find the attribute belonging to graph g for objects like obj |
1329 | * with given name. If one does not exist, create it with the |
1330 | * default value def. |
1331 | */ |
1332 | attrsym_t* |
1333 | safe_dcl(graph_t * g, int obj_kind, char *name, char *def) |
1334 | { |
1335 | attrsym_t *a = agattr(g,obj_kind,name, NULL); |
1336 | if (!a) /* attribute does not exist */ |
1337 | a = agattr(g,obj_kind,name,def); |
1338 | return a; |
1339 | } |
1340 | |
1341 | static int comp_entities(const void *e1, const void *e2) { |
1342 | return strcmp(((struct entities_s *)e1)->name, ((struct entities_s *)e2)->name); |
1343 | } |
1344 | |
1345 | #define MAXENTLEN 8 |
1346 | |
1347 | /* scanEntity: |
1348 | * Scan non-numeric entity, convert to &#...; form and store in xbuf. |
1349 | * t points to first char after '&'. Return after final semicolon. |
1350 | * If unknown, we return t and let libexpat flag the error. |
1351 | * */ |
1352 | char* scanEntity (char* t, agxbuf* xb) |
1353 | { |
1354 | char* endp = strchr (t, ';'); |
1355 | struct entities_s key, *res; |
1356 | int len; |
1357 | char buf[MAXENTLEN+1]; |
1358 | |
1359 | agxbputc(xb, '&'); |
1360 | if (!endp) return t; |
1361 | if (((len = endp-t) > MAXENTLEN) || (len < 2)) return t; |
1362 | strncpy (buf, t, len); |
1363 | buf[len] = '\0'; |
1364 | key.name = buf; |
1365 | res = bsearch(&key, entities, NR_OF_ENTITIES, |
1366 | sizeof(entities[0]), comp_entities); |
1367 | if (!res) return t; |
1368 | sprintf (buf, "%d" , res->value); |
1369 | agxbputc(xb, '#'); |
1370 | agxbput(xb, buf); |
1371 | agxbputc(xb, ';'); |
1372 | return (endp+1); |
1373 | } |
1374 | |
1375 | |
1376 | /* htmlEntity: |
1377 | * Check for an HTML entity for a special character. |
1378 | * Assume *s points to first byte after '&'. |
1379 | * If successful, return the corresponding value and update s to |
1380 | * point after the terminating ';'. |
1381 | * On failure, return 0 and leave s unchanged. |
1382 | */ |
1383 | static int |
1384 | htmlEntity (char** s) |
1385 | { |
1386 | char *p; |
1387 | struct entities_s key, *res; |
1388 | char entity_name_buf[ENTITY_NAME_LENGTH_MAX+1]; |
1389 | unsigned char* str = *(unsigned char**)s; |
1390 | unsigned int byte; |
1391 | int i, n = 0; |
1392 | |
1393 | byte = *str; |
1394 | if (byte == '#') { |
1395 | byte = *(str + 1); |
1396 | if (byte == 'x' || byte == 'X') { |
1397 | for (i = 2; i < 8; i++) { |
1398 | byte = *(str + i); |
1399 | if (byte >= 'A' && byte <= 'F') |
1400 | byte = byte - 'A' + 10; |
1401 | else if (byte >= 'a' && byte <= 'f') |
1402 | byte = byte - 'a' + 10; |
1403 | else if (byte >= '0' && byte <= '9') |
1404 | byte = byte - '0'; |
1405 | else |
1406 | break; |
1407 | n = (n * 16) + byte; |
1408 | } |
1409 | } |
1410 | else { |
1411 | for (i = 1; i < 8; i++) { |
1412 | byte = *(str + i); |
1413 | if (byte >= '0' && byte <= '9') |
1414 | n = (n * 10) + (byte - '0'); |
1415 | else |
1416 | break; |
1417 | } |
1418 | } |
1419 | if (byte == ';') { |
1420 | str += i+1; |
1421 | } |
1422 | else { |
1423 | n = 0; |
1424 | } |
1425 | } |
1426 | else { |
1427 | key.name = p = entity_name_buf; |
1428 | for (i = 0; i < ENTITY_NAME_LENGTH_MAX; i++) { |
1429 | byte = *(str + i); |
1430 | if (byte == '\0') break; |
1431 | if (byte == ';') { |
1432 | *p++ = '\0'; |
1433 | res = bsearch(&key, entities, NR_OF_ENTITIES, |
1434 | sizeof(entities[0]), *comp_entities); |
1435 | if (res) { |
1436 | n = res->value; |
1437 | str += i+1; |
1438 | } |
1439 | break; |
1440 | } |
1441 | *p++ = byte; |
1442 | } |
1443 | } |
1444 | *s = (char*)str; |
1445 | return n; |
1446 | } |
1447 | |
1448 | static unsigned char |
1449 | cvtAndAppend (unsigned char c, agxbuf* xb) |
1450 | { |
1451 | char buf[2]; |
1452 | char* s; |
1453 | char* p; |
1454 | int len; |
1455 | |
1456 | buf[0] = c; |
1457 | buf[1] = '\0'; |
1458 | |
1459 | p = s = latin1ToUTF8 (buf); |
1460 | len = strlen(s); |
1461 | while (len-- > 1) |
1462 | agxbputc(xb, *p++); |
1463 | c = *p; |
1464 | free (s); |
1465 | return c; |
1466 | } |
1467 | |
1468 | /* htmlEntityUTF8: |
1469 | * substitute html entities like: { and: & with the UTF8 equivalents |
1470 | * check for invalid utf8. If found, treat a single byte as Latin-1, convert it to |
1471 | * utf8 and warn the user. |
1472 | */ |
1473 | char* htmlEntityUTF8 (char* s, graph_t* g) |
1474 | { |
1475 | static graph_t* lastg; |
1476 | static boolean warned; |
1477 | char* ns; |
1478 | agxbuf xb; |
1479 | unsigned char buf[BUFSIZ]; |
1480 | unsigned char c; |
1481 | unsigned int v; |
1482 | |
1483 | int uc; |
1484 | int ui; |
1485 | |
1486 | if (lastg != g) { |
1487 | lastg = g; |
1488 | warned = 0; |
1489 | } |
1490 | |
1491 | agxbinit(&xb, BUFSIZ, buf); |
1492 | |
1493 | while ((c = *(unsigned char*)s++)) { |
1494 | if (c < 0xC0) |
1495 | /* |
1496 | * Handles properly formed UTF-8 characters between |
1497 | * 0x01 and 0x7F. Also treats \0 and naked trail |
1498 | * bytes 0x80 to 0xBF as valid characters representing |
1499 | * themselves. |
1500 | */ |
1501 | uc = 0; |
1502 | else if (c < 0xE0) |
1503 | uc = 1; |
1504 | else if (c < 0xF0) |
1505 | uc = 2; |
1506 | else if (c < 0xF8) |
1507 | uc = 3; |
1508 | else { |
1509 | uc = -1; |
1510 | if (!warned) { |
1511 | agerr(AGWARN, "UTF8 codes > 4 bytes are not currently supported (graph %s) - treated as Latin-1. Perhaps \"-Gcharset=latin1\" is needed?\n" , agnameof(g)); |
1512 | warned = 1; |
1513 | } |
1514 | c = cvtAndAppend (c, &xb); |
1515 | } |
1516 | |
1517 | if (uc == 0 && c == '&') { |
1518 | /* replace html entity sequences like: & |
1519 | * and: { with their UTF8 equivalents */ |
1520 | v = htmlEntity (&s); |
1521 | if (v) { |
1522 | if (v < 0x7F) /* entity needs 1 byte in UTF8 */ |
1523 | c = v; |
1524 | else if (v < 0x07FF) { /* entity needs 2 bytes in UTF8 */ |
1525 | agxbputc(&xb, (v >> 6) | 0xC0); |
1526 | c = (v & 0x3F) | 0x80; |
1527 | } |
1528 | else { /* entity needs 3 bytes in UTF8 */ |
1529 | agxbputc(&xb, (v >> 12) | 0xE0); |
1530 | agxbputc(&xb, ((v >> 6) & 0x3F) | 0x80); |
1531 | c = (v & 0x3F) | 0x80; |
1532 | } |
1533 | } |
1534 | } |
1535 | else /* copy n byte UTF8 characters */ |
1536 | for (ui = 0; ui < uc; ++ui) |
1537 | if ((*s & 0xC0) == 0x80) { |
1538 | agxbputc(&xb, c); |
1539 | c = *(unsigned char*)s++; |
1540 | } |
1541 | else { |
1542 | if (!warned) { |
1543 | agerr(AGWARN, "Invalid %d-byte UTF8 found in input of graph %s - treated as Latin-1. Perhaps \"-Gcharset=latin1\" is needed?\n" , uc + 1, agnameof(g)); |
1544 | warned = 1; |
1545 | } |
1546 | c = cvtAndAppend (c, &xb); |
1547 | break; |
1548 | } |
1549 | agxbputc(&xb, c); |
1550 | } |
1551 | ns = strdup (agxbuse(&xb)); |
1552 | agxbfree(&xb); |
1553 | return ns; |
1554 | } |
1555 | |
1556 | /* latin1ToUTF8: |
1557 | * Converts string from Latin1 encoding to utf8 |
1558 | * Also translates HTML entities. |
1559 | * |
1560 | */ |
1561 | char* latin1ToUTF8 (char* s) |
1562 | { |
1563 | char* ns; |
1564 | agxbuf xb; |
1565 | unsigned char buf[BUFSIZ]; |
1566 | unsigned int v; |
1567 | |
1568 | agxbinit(&xb, BUFSIZ, buf); |
1569 | |
1570 | /* Values are either a byte (<= 256) or come from htmlEntity, whose |
1571 | * values are all less than 0x07FF, so we need at most 3 bytes. |
1572 | */ |
1573 | while ((v = *(unsigned char*)s++)) { |
1574 | if (v == '&') { |
1575 | v = htmlEntity (&s); |
1576 | if (!v) v = '&'; |
1577 | } |
1578 | if (v < 0x7F) |
1579 | agxbputc(&xb, v); |
1580 | else if (v < 0x07FF) { |
1581 | agxbputc(&xb, (v >> 6) | 0xC0); |
1582 | agxbputc(&xb, (v & 0x3F) | 0x80); |
1583 | } |
1584 | else { |
1585 | agxbputc(&xb, (v >> 12) | 0xE0); |
1586 | agxbputc(&xb, ((v >> 6) & 0x3F) | 0x80); |
1587 | agxbputc(&xb, (v & 0x3F) | 0x80); |
1588 | } |
1589 | } |
1590 | ns = strdup (agxbuse(&xb)); |
1591 | agxbfree(&xb); |
1592 | return ns; |
1593 | } |
1594 | |
1595 | /* utf8ToLatin1: |
1596 | * Converts string from utf8 encoding to Latin1 |
1597 | * Note that it does not attempt to reproduce HTML entities. |
1598 | * We assume the input string comes from latin1ToUTF8. |
1599 | */ |
1600 | char* |
1601 | utf8ToLatin1 (char* s) |
1602 | { |
1603 | char* ns; |
1604 | agxbuf xb; |
1605 | unsigned char buf[BUFSIZ]; |
1606 | unsigned char c; |
1607 | unsigned char outc; |
1608 | |
1609 | agxbinit(&xb, BUFSIZ, buf); |
1610 | |
1611 | while ((c = *(unsigned char*)s++)) { |
1612 | if (c < 0x7F) |
1613 | agxbputc(&xb, c); |
1614 | else { |
1615 | outc = (c & 0x03) << 6; |
1616 | c = *(unsigned char*)s++; |
1617 | outc = outc | (c & 0x3F); |
1618 | agxbputc(&xb, outc); |
1619 | } |
1620 | } |
1621 | ns = strdup (agxbuse(&xb)); |
1622 | agxbfree(&xb); |
1623 | return ns; |
1624 | } |
1625 | |
1626 | boolean overlap_node(node_t *n, boxf b) |
1627 | { |
1628 | inside_t ictxt; |
1629 | pointf p; |
1630 | |
1631 | if (! OVERLAP(b, ND_bb(n))) |
1632 | return FALSE; |
1633 | |
1634 | /* FIXME - need to do something better about CLOSEENOUGH */ |
1635 | p = sub_pointf(ND_coord(n), mid_pointf(b.UR, b.LL)); |
1636 | |
1637 | ictxt.s.n = n; |
1638 | ictxt.s.bp = NULL; |
1639 | |
1640 | return ND_shape(n)->fns->insidefn(&ictxt, p); |
1641 | } |
1642 | |
1643 | boolean overlap_label(textlabel_t *lp, boxf b) |
1644 | { |
1645 | pointf s; |
1646 | boxf bb; |
1647 | |
1648 | s.x = lp->dimen.x / 2.; |
1649 | s.y = lp->dimen.y / 2.; |
1650 | bb.LL = sub_pointf(lp->pos, s); |
1651 | bb.UR = add_pointf(lp->pos, s); |
1652 | return OVERLAP(b, bb); |
1653 | } |
1654 | |
1655 | static boolean overlap_arrow(pointf p, pointf u, double scale, int flag, boxf b) |
1656 | { |
1657 | if (OVERLAP(b, arrow_bb(p, u, scale, flag))) { |
1658 | /* FIXME - check inside arrow shape */ |
1659 | return TRUE; |
1660 | } |
1661 | return FALSE; |
1662 | } |
1663 | |
1664 | static boolean overlap_bezier(bezier bz, boxf b) |
1665 | { |
1666 | int i; |
1667 | pointf p, u; |
1668 | |
1669 | assert(bz.size); |
1670 | u = bz.list[0]; |
1671 | for (i = 1; i < bz.size; i++) { |
1672 | p = bz.list[i]; |
1673 | if (lineToBox(p, u, b) != -1) |
1674 | return TRUE; |
1675 | u = p; |
1676 | } |
1677 | |
1678 | /* check arrows */ |
1679 | if (bz.sflag) { |
1680 | if (overlap_arrow(bz.sp, bz.list[0], 1, bz.sflag, b)) |
1681 | return TRUE; |
1682 | } |
1683 | if (bz.eflag) { |
1684 | if (overlap_arrow(bz.ep, bz.list[bz.size - 1], 1, bz.eflag, b)) |
1685 | return TRUE; |
1686 | } |
1687 | return FALSE; |
1688 | } |
1689 | |
1690 | boolean overlap_edge(edge_t *e, boxf b) |
1691 | { |
1692 | int i; |
1693 | splines *spl; |
1694 | textlabel_t *lp; |
1695 | |
1696 | spl = ED_spl(e); |
1697 | if (spl && boxf_overlap(spl->bb, b)) |
1698 | for (i = 0; i < spl->size; i++) |
1699 | if (overlap_bezier(spl->list[i], b)) |
1700 | return TRUE; |
1701 | |
1702 | lp = ED_label(e); |
1703 | if (lp && overlap_label(lp, b)) |
1704 | return TRUE; |
1705 | |
1706 | return FALSE; |
1707 | } |
1708 | |
1709 | /* edgeType: |
1710 | * Convert string to edge type. |
1711 | */ |
1712 | int edgeType (char* s, int dflt) |
1713 | { |
1714 | int et; |
1715 | |
1716 | if (!s || (*s == '\0')) return dflt; |
1717 | |
1718 | et = ET_NONE; |
1719 | switch (*s) { |
1720 | case '0' : /* false */ |
1721 | et = ET_LINE; |
1722 | break; |
1723 | case '1' : /* true */ |
1724 | case '2' : |
1725 | case '3' : |
1726 | case '4' : |
1727 | case '5' : |
1728 | case '6' : |
1729 | case '7' : |
1730 | case '8' : |
1731 | case '9' : |
1732 | et = ET_SPLINE; |
1733 | break; |
1734 | case 'c' : |
1735 | case 'C' : |
1736 | if (!strcasecmp (s+1, "urved" )) |
1737 | et = ET_CURVED; |
1738 | else if (!strcasecmp (s+1, "ompound" )) |
1739 | et = ET_COMPOUND; |
1740 | break; |
1741 | case 'f' : |
1742 | case 'F' : |
1743 | if (!strcasecmp (s+1, "alse" )) |
1744 | et = ET_LINE; |
1745 | break; |
1746 | case 'l' : |
1747 | case 'L' : |
1748 | if (!strcasecmp (s+1, "ine" )) |
1749 | et = ET_LINE; |
1750 | break; |
1751 | case 'n' : |
1752 | case 'N' : |
1753 | if (!strcasecmp (s+1, "one" )) return et; |
1754 | if (!strcasecmp (s+1, "o" )) return ET_LINE; |
1755 | break; |
1756 | case 'o' : |
1757 | case 'O' : |
1758 | if (!strcasecmp (s+1, "rtho" )) |
1759 | et = ET_ORTHO; |
1760 | break; |
1761 | case 'p' : |
1762 | case 'P' : |
1763 | if (!strcasecmp (s+1, "olyline" )) |
1764 | et = ET_PLINE; |
1765 | break; |
1766 | case 's' : |
1767 | case 'S' : |
1768 | if (!strcasecmp (s+1, "pline" )) |
1769 | et = ET_SPLINE; |
1770 | break; |
1771 | case 't' : |
1772 | case 'T' : |
1773 | if (!strcasecmp (s+1, "rue" )) |
1774 | et = ET_SPLINE; |
1775 | break; |
1776 | case 'y' : |
1777 | case 'Y' : |
1778 | if (!strcasecmp (s+1, "es" )) |
1779 | et = ET_SPLINE; |
1780 | break; |
1781 | } |
1782 | if (!et) { |
1783 | agerr(AGWARN, "Unknown \"splines\" value: \"%s\" - ignored\n" , s); |
1784 | et = dflt; |
1785 | } |
1786 | return et; |
1787 | } |
1788 | |
1789 | /* setEdgeType: |
1790 | * Sets graph's edge type based on the "splines" attribute. |
1791 | * If the attribute is not defined, use default. |
1792 | * If the attribute is "", use NONE. |
1793 | * If attribute value matches (case indepedent), use match. |
1794 | * ortho => ET_ORTHO |
1795 | * none => ET_NONE |
1796 | * line => ET_LINE |
1797 | * polyline => ET_PLINE |
1798 | * spline => ET_SPLINE |
1799 | * If attribute is boolean, true means ET_SPLINE, false means ET_LINE. |
1800 | * Else warn and use default. |
1801 | */ |
1802 | void setEdgeType (graph_t* g, int dflt) |
1803 | { |
1804 | char* s = agget(g, "splines" ); |
1805 | int et; |
1806 | |
1807 | if (!s) { |
1808 | et = dflt; |
1809 | } |
1810 | else if (*s == '\0') { |
1811 | et = ET_NONE; |
1812 | } |
1813 | else et = edgeType (s, dflt); |
1814 | GD_flags(g) |= et; |
1815 | } |
1816 | |
1817 | |
1818 | /* get_gradient_points |
1819 | * Evaluates the extreme points of an ellipse or polygon |
1820 | * Determines the point at the center of the extreme points |
1821 | * If isRadial is true,sets the inner radius to half the distance to the min point; |
1822 | * else uses the angle parameter to identify two points on a line that defines the |
1823 | * gradient direction |
1824 | * By default, this assumes a left-hand coordinate system (for svg); if RHS = 2 flag |
1825 | * is set, use standard coordinate system. |
1826 | */ |
1827 | void get_gradient_points(pointf * A, pointf * G, int n, float angle, int flags) |
1828 | { |
1829 | int i; |
1830 | double rx, ry; |
1831 | pointf min,max,center; |
1832 | int isRadial = flags & 1; |
1833 | int isRHS = flags & 2; |
1834 | |
1835 | if (n == 2) { |
1836 | rx = A[1].x - A[0].x; |
1837 | ry = A[1].y - A[0].y; |
1838 | min.x = A[0].x - rx; |
1839 | max.x = A[0].x + rx; |
1840 | min.y = A[0].y - ry; |
1841 | max.y = A[0].y + ry; |
1842 | } |
1843 | else { |
1844 | min.x = max.x = A[0].x; |
1845 | min.y = max.y = A[0].y; |
1846 | for (i = 0; i < n; i++){ |
1847 | min.x = MIN(A[i].x,min.x); |
1848 | min.y = MIN(A[i].y,min.y); |
1849 | max.x = MAX(A[i].x,max.x); |
1850 | max.y = MAX(A[i].y,max.y); |
1851 | } |
1852 | } |
1853 | center.x = min.x + (max.x - min.x)/2; |
1854 | center.y = min.y + (max.y - min.y)/2; |
1855 | if (isRadial) { |
1856 | double inner_r, outer_r; |
1857 | outer_r = sqrt((center.x - min.x)*(center.x - min.x) + |
1858 | (center.y - min.y)*(center.y - min.y)); |
1859 | inner_r = outer_r /4.; |
1860 | if (isRHS) { |
1861 | G[0].y = center.y; |
1862 | } |
1863 | else { |
1864 | G[0].y = -center.y; |
1865 | } |
1866 | G[0].x = center.x; |
1867 | G[1].x = inner_r; |
1868 | G[1].y = outer_r; |
1869 | } |
1870 | else { |
1871 | double half_x = max.x - center.x; |
1872 | double half_y = max.y - center.y; |
1873 | double sina = sin(angle); |
1874 | double cosa = cos(angle); |
1875 | if (isRHS) { |
1876 | G[0].y = center.y - half_y * sina; |
1877 | G[1].y = center.y + half_y * sina; |
1878 | } |
1879 | else { |
1880 | G[0].y = -center.y + (max.y - center.y) * sin(angle); |
1881 | G[1].y = -center.y - (center.y - min.y) * sin(angle); |
1882 | } |
1883 | G[0].x = center.x - half_x * cosa; |
1884 | G[1].x = center.x + half_x * cosa; |
1885 | } |
1886 | } |
1887 | |
1888 | #ifndef WIN32_STATIC |
1889 | #ifndef HAVE_STRCASECMP |
1890 | |
1891 | |
1892 | #include <string.h> |
1893 | //#include <ctype.h> |
1894 | |
1895 | |
1896 | int strcasecmp(const char *s1, const char *s2) |
1897 | { |
1898 | while ((*s1 != '\0') |
1899 | && (tolower(*(unsigned char *) s1) == |
1900 | tolower(*(unsigned char *) s2))) { |
1901 | s1++; |
1902 | s2++; |
1903 | } |
1904 | |
1905 | return tolower(*(unsigned char *) s1) - tolower(*(unsigned char *) s2); |
1906 | } |
1907 | |
1908 | #endif /* HAVE_STRCASECMP */ |
1909 | #endif /* WIN32_STATIC */ |
1910 | |
1911 | #ifndef WIN32_STATIC |
1912 | #ifndef HAVE_STRNCASECMP |
1913 | #include <string.h> |
1914 | //#include <ctype.h> |
1915 | |
1916 | int strncasecmp(const char *s1, const char *s2, unsigned int n) |
1917 | { |
1918 | if (n == 0) |
1919 | return 0; |
1920 | |
1921 | while ((n-- != 0) |
1922 | && (tolower(*(unsigned char *) s1) == |
1923 | tolower(*(unsigned char *) s2))) { |
1924 | if (n == 0 || *s1 == '\0' || *s2 == '\0') |
1925 | return 0; |
1926 | s1++; |
1927 | s2++; |
1928 | } |
1929 | |
1930 | return tolower(*(unsigned char *) s1) - tolower(*(unsigned char *) s2); |
1931 | } |
1932 | |
1933 | #endif /* HAVE_STRNCASECMP */ |
1934 | #endif /* WIN32_STATIC */ |
1935 | void gv_free_splines(edge_t * e) |
1936 | { |
1937 | int i; |
1938 | if (ED_spl(e)) { |
1939 | for (i = 0; i < ED_spl(e)->size; i++) |
1940 | free(ED_spl(e)->list[i].list); |
1941 | free(ED_spl(e)->list); |
1942 | free(ED_spl(e)); |
1943 | } |
1944 | ED_spl(e) = NULL; |
1945 | } |
1946 | |
1947 | void gv_cleanup_edge(edge_t * e) |
1948 | { |
1949 | free (ED_path(e).ps); |
1950 | gv_free_splines(e); |
1951 | free_label(ED_label(e)); |
1952 | free_label(ED_xlabel(e)); |
1953 | free_label(ED_head_label(e)); |
1954 | free_label(ED_tail_label(e)); |
1955 | /*FIX HERE , shallow cleaning may not be enough here */ |
1956 | agdelrec(e, "Agedgeinfo_t" ); |
1957 | } |
1958 | |
1959 | void gv_cleanup_node(node_t * n) |
1960 | { |
1961 | if (ND_pos(n)) free(ND_pos(n)); |
1962 | if (ND_shape(n)) |
1963 | ND_shape(n)->fns->freefn(n); |
1964 | free_label(ND_label(n)); |
1965 | free_label(ND_xlabel(n)); |
1966 | /*FIX HERE , shallow cleaning may not be enough here */ |
1967 | agdelrec(n, "Agnodeinfo_t" ); |
1968 | } |
1969 | |
1970 | void gv_nodesize(node_t * n, boolean flip) |
1971 | { |
1972 | double w; |
1973 | |
1974 | if (flip) { |
1975 | w = INCH2PS(ND_height(n)); |
1976 | ND_lw(n) = ND_rw(n) = w / 2; |
1977 | ND_ht(n) = INCH2PS(ND_width(n)); |
1978 | } |
1979 | else { |
1980 | w = INCH2PS(ND_width(n)); |
1981 | ND_lw(n) = ND_rw(n) = w / 2; |
1982 | ND_ht(n) = INCH2PS(ND_height(n)); |
1983 | } |
1984 | } |
1985 | |
1986 | #ifdef _WIN32 |
1987 | void fix_fc(void) |
1988 | { |
1989 | char buf[28192]; |
1990 | char buf2[28192]; |
1991 | int cur=0; |
1992 | FILE* fp; |
1993 | |
1994 | if((fp = fopen("fix-fc.exe" , "r" )) == NULL) |
1995 | return ; |
1996 | fclose (fp); |
1997 | if (!system ("fix-fc.exe" )) { |
1998 | system ("del fix-fc.exe" ); |
1999 | system ("dot -c" ); //run dot -c once too since we already run things :) |
2000 | } |
2001 | } |
2002 | #endif |
2003 | |
2004 | #ifndef HAVE_DRAND48 |
2005 | double drand48(void) |
2006 | { |
2007 | double d; |
2008 | d = rand(); |
2009 | d = d / RAND_MAX; |
2010 | return d; |
2011 | } |
2012 | #endif |
2013 | typedef struct { |
2014 | Dtlink_t link; |
2015 | char* name; |
2016 | Agraph_t* clp; |
2017 | } clust_t; |
2018 | |
2019 | static void free_clust (Dt_t* dt, clust_t* clp, Dtdisc_t* disc) |
2020 | { |
2021 | free (clp); |
2022 | } |
2023 | |
2024 | static Dtdisc_t strDisc = { |
2025 | offsetof(clust_t,name), |
2026 | -1, |
2027 | offsetof(clust_t,link), |
2028 | NIL(Dtmake_f), |
2029 | (Dtfree_f)free_clust, |
2030 | NIL(Dtcompar_f), |
2031 | NIL(Dthash_f), |
2032 | NIL(Dtmemory_f), |
2033 | NIL(Dtevent_f) |
2034 | }; |
2035 | |
2036 | static void fillMap (Agraph_t* g, Dt_t* map) |
2037 | { |
2038 | Agraph_t* cl; |
2039 | int c; |
2040 | char* s; |
2041 | clust_t* ip; |
2042 | |
2043 | for (c = 1; c <= GD_n_cluster(g); c++) { |
2044 | cl = GD_clust(g)[c]; |
2045 | s = agnameof(cl); |
2046 | if (dtmatch (map, s)) { |
2047 | agerr(AGWARN, "Two clusters named %s - the second will be ignored\n" , s); |
2048 | } |
2049 | else { |
2050 | ip = NEW(clust_t); |
2051 | ip->name = s; |
2052 | ip->clp = cl; |
2053 | dtinsert (map, ip); |
2054 | } |
2055 | fillMap (cl, map); |
2056 | } |
2057 | } |
2058 | |
2059 | /* mkClustMap: |
2060 | * Generates a dictionary mapping cluster names to corresponding cluster. |
2061 | * Used with cgraph as the latter does not support a flat namespace of clusters. |
2062 | * Assumes G has already built a cluster tree using GD_n_cluster and GD_clust. |
2063 | */ |
2064 | Dt_t* mkClustMap (Agraph_t* g) |
2065 | { |
2066 | Dt_t* map = dtopen (&strDisc, Dtoset); |
2067 | |
2068 | fillMap (g, map); |
2069 | |
2070 | return map; |
2071 | } |
2072 | |
2073 | Agraph_t* |
2074 | findCluster (Dt_t* map, char* name) |
2075 | { |
2076 | clust_t* clp = dtmatch (map, name); |
2077 | if (clp) |
2078 | return clp->clp; |
2079 | else |
2080 | return NULL; |
2081 | } |
2082 | |
2083 | Agnodeinfo_t* ninf(Agnode_t* n) {return (Agnodeinfo_t*)AGDATA(n);} |
2084 | Agraphinfo_t* ginf(Agraph_t* g) {return (Agraphinfo_t*)AGDATA(g);} |
2085 | Agedgeinfo_t* einf(Agedge_t* e) {return (Agedgeinfo_t*)AGDATA(e);} |
2086 | /* void dumpG(Agraph_t* g) { agwrite(g, stderr); } */ |
2087 | |