| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "dot.h" |
| 15 | |
| 16 | /* |
| 17 | * Author: Mohammad T. Irfan |
| 18 | * Summer, 2008 |
| 19 | */ |
| 20 | |
| 21 | /* TODO: |
| 22 | * - Support clusters |
| 23 | * - Support disconnected graphs |
| 24 | * - Provide algorithms for aspect ratios < 1 |
| 25 | */ |
| 26 | |
| 27 | #define MIN_AR 1.0 |
| 28 | #define MAX_AR 20.0 |
| 29 | #define DEF_PASSES 5 |
| 30 | #define DPI 72 |
| 31 | |
| 32 | /* |
| 33 | * NODE GROUPS FOR SAME RANKING |
| 34 | * Node group data structure groups nodes together for |
| 35 | * MIN, MAX, SOURCE, SINK constraints. |
| 36 | * The grouping is based on the union-find data structure and |
| 37 | * provides sequential access to the nodes in the same group. |
| 38 | */ |
| 39 | |
| 40 | /* data structure for node groups */ |
| 41 | typedef struct nodeGroup_t { |
| 42 | node_t **nodes; |
| 43 | int nNodes; |
| 44 | double width, height; |
| 45 | } nodeGroup_t; |
| 46 | |
| 47 | static nodeGroup_t *nodeGroups; |
| 48 | static int nNodeGroups = 0; |
| 49 | |
| 50 | /* computeNodeGroups: |
| 51 | * computeNodeGroups function does the groupings of nodes. |
| 52 | * The grouping is based on the union-find data structure. |
| 53 | */ |
| 54 | static void computeNodeGroups(graph_t * g) |
| 55 | { |
| 56 | node_t *n; |
| 57 | |
| 58 | nodeGroups = N_GNEW(agnnodes(g), nodeGroup_t); |
| 59 | |
| 60 | nNodeGroups = 0; |
| 61 | |
| 62 | /* initialize node ids. Id of a node is used as an index to the group. */ |
| 63 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 64 | ND_id(n) = -1; |
| 65 | } |
| 66 | |
| 67 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 68 | if (ND_UF_size(n) == 0) { /* no same ranking constraint */ |
| 69 | nodeGroups[nNodeGroups].nodes = NEW(node_t *); |
| 70 | nodeGroups[nNodeGroups].nodes[0] = n; |
| 71 | nodeGroups[nNodeGroups].nNodes = 1; |
| 72 | nodeGroups[nNodeGroups].width = ND_width(n); |
| 73 | nodeGroups[nNodeGroups].height = ND_height(n); |
| 74 | |
| 75 | ND_id(n) = nNodeGroups; |
| 76 | nNodeGroups++; |
| 77 | } else /* group same ranked nodes */ |
| 78 | { |
| 79 | node_t *l = UF_find(n); |
| 80 | if (ND_id(l) > -1) /* leader is already grouped */ |
| 81 | { |
| 82 | int index = ND_id(l); |
| 83 | nodeGroups[index].nodes[nodeGroups[index].nNodes++] = n; |
| 84 | nodeGroups[index].width += ND_width(n); |
| 85 | nodeGroups[index].height = |
| 86 | (nodeGroups[index].height < |
| 87 | ND_height(n)) ? ND_height(n) : nodeGroups[index]. |
| 88 | height; |
| 89 | |
| 90 | ND_id(n) = index; |
| 91 | } else /* create a new group */ |
| 92 | { |
| 93 | nodeGroups[nNodeGroups].nodes = |
| 94 | N_NEW(ND_UF_size(l), node_t *); |
| 95 | |
| 96 | if (l == n) /* node n is the leader */ |
| 97 | { |
| 98 | nodeGroups[nNodeGroups].nodes[0] = l; |
| 99 | nodeGroups[nNodeGroups].nNodes = 1; |
| 100 | nodeGroups[nNodeGroups].width = ND_width(l); |
| 101 | nodeGroups[nNodeGroups].height = ND_height(l); |
| 102 | } else { |
| 103 | nodeGroups[nNodeGroups].nodes[0] = l; |
| 104 | nodeGroups[nNodeGroups].nodes[1] = n; |
| 105 | nodeGroups[nNodeGroups].nNodes = 2; |
| 106 | nodeGroups[nNodeGroups].width = |
| 107 | ND_width(l) + ND_width(n); |
| 108 | nodeGroups[nNodeGroups].height = |
| 109 | (ND_height(l) < |
| 110 | ND_height(n)) ? ND_height(n) : ND_height(l); |
| 111 | } |
| 112 | |
| 113 | ND_id(l) = nNodeGroups; |
| 114 | ND_id(n) = nNodeGroups; |
| 115 | nNodeGroups++; |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * END OF CODES FOR NODE GROUPS |
| 124 | */ |
| 125 | |
| 126 | /* countDummyNodes: |
| 127 | * Count the number of dummy nodes |
| 128 | */ |
| 129 | int countDummyNodes(graph_t * g) |
| 130 | { |
| 131 | int count = 0; |
| 132 | node_t *n; |
| 133 | edge_t *e; |
| 134 | |
| 135 | /* Count dummy nodes */ |
| 136 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 137 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 138 | #ifdef UNUSED |
| 139 | /* this loop can be avoided */ |
| 140 | for (k = ND_rank(agtail(e))+1; k < ND_rank(aghead(e)); k++) { |
| 141 | count++; |
| 142 | } |
| 143 | #endif |
| 144 | /* flat edges do not have dummy nodes */ |
| 145 | if (ND_rank(aghead(e)) != ND_rank(agtail(e))) |
| 146 | count += abs(ND_rank(aghead(e)) - ND_rank(agtail(e))) - 1; |
| 147 | } |
| 148 | } |
| 149 | return count; |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * FFDH PACKING ALGORITHM TO ACHIEVE TARGET ASPECT RATIO |
| 154 | */ |
| 155 | |
| 156 | /* |
| 157 | * layerWidthInfo_t: data structure for keeping layer width information |
| 158 | * Each layer consists of a number of node groups. |
| 159 | */ |
| 160 | typedef struct layerWidthInfo_t { |
| 161 | int layerNumber; |
| 162 | nodeGroup_t **nodeGroupsInLayer; |
| 163 | int *removed; /* is the node group removed? */ |
| 164 | int nNodeGroupsInLayer; |
| 165 | int nDummyNodes; |
| 166 | double width; |
| 167 | double height; |
| 168 | } layerWidthInfo_t; |
| 169 | |
| 170 | static layerWidthInfo_t *layerWidthInfo = NULL; |
| 171 | static int *sortedLayerIndex; |
| 172 | static int nLayers = 0; |
| 173 | |
| 174 | /* computeLayerWidths: |
| 175 | */ |
| 176 | static void computeLayerWidths(graph_t * g) |
| 177 | { |
| 178 | int i; |
| 179 | node_t *v; |
| 180 | node_t *n; |
| 181 | edge_t *e; |
| 182 | |
| 183 | nLayers = 0; |
| 184 | |
| 185 | /* free previously allocated memory */ |
| 186 | if (layerWidthInfo) { |
| 187 | for (i = 0; i < nNodeGroups; i++) { |
| 188 | if (layerWidthInfo[i].nodeGroupsInLayer) { |
| 189 | int j; |
| 190 | for (j = 0; j < layerWidthInfo[i].nNodeGroupsInLayer; j++) { |
| 191 | //if (layerWidthInfo[i].nodeGroupsInLayer[j]) |
| 192 | //free(layerWidthInfo[i].nodeGroupsInLayer[j]); |
| 193 | } |
| 194 | free(layerWidthInfo[i].nodeGroupsInLayer); |
| 195 | } |
| 196 | if (layerWidthInfo[i].removed) |
| 197 | free(layerWidthInfo[i].removed); |
| 198 | } |
| 199 | |
| 200 | free(layerWidthInfo); |
| 201 | } |
| 202 | /* allocate memory |
| 203 | * the number of layers can go up to the number of node groups |
| 204 | */ |
| 205 | layerWidthInfo = N_NEW(nNodeGroups, layerWidthInfo_t); |
| 206 | |
| 207 | for (i = 0; i < nNodeGroups; i++) { |
| 208 | layerWidthInfo[i].nodeGroupsInLayer = |
| 209 | N_NEW(nNodeGroups, nodeGroup_t *); |
| 210 | |
| 211 | layerWidthInfo[i].removed = N_NEW(nNodeGroups, int); |
| 212 | |
| 213 | layerWidthInfo[i].layerNumber = i; |
| 214 | layerWidthInfo[i].nNodeGroupsInLayer = 0; |
| 215 | layerWidthInfo[i].nDummyNodes = 0; |
| 216 | layerWidthInfo[i].width = 0.0; |
| 217 | layerWidthInfo[i].height = 0.0; |
| 218 | } |
| 219 | |
| 220 | |
| 221 | |
| 222 | /* Count dummy nodes in the layer */ |
| 223 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 224 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 225 | int k; |
| 226 | |
| 227 | /* FIX: This loop maybe unnecessary, but removing it and using |
| 228 | * the commented codes next, gives a segmentation fault. I |
| 229 | * forgot the reason why. |
| 230 | */ |
| 231 | for (k = ND_rank(agtail(e)) + 1; k < ND_rank(aghead(e)); k++) { |
| 232 | layerWidthInfo[k].nDummyNodes++; |
| 233 | } |
| 234 | |
| 235 | #ifdef UNUSED |
| 236 | if (ND_rank(aghead(e)) != ND_rank(agtail(e))) |
| 237 | /* flat edges do not have dummy nodes */ |
| 238 | layerWidthInfo[k].nDummyNodes = abs(ND_rank(aghead(e)) - ND_rank(agtail(e))) - 1; |
| 239 | #endif |
| 240 | } |
| 241 | |
| 242 | #ifdef UNUSED |
| 243 | /***************************************************************** |
| 244 | * This code is removed. It considers dummy nodes in layer width, |
| 245 | * which does not give good results in experiments. |
| 246 | *****************************************************************/ |
| 247 | |
| 248 | for (i = 0; i < nNodeGroups; i++) { |
| 249 | v = nodeGroups[i].nodes[0]; |
| 250 | layerWidthInfo[ND_rank(v)].width = (layerWidthInfo[ND_rank(v)].nDummyNodes - 1) * GD_nodesep(g); |
| 251 | } |
| 252 | #endif |
| 253 | |
| 254 | /* gather the layer information */ |
| 255 | for (i = 0; i < nNodeGroups; i++) { |
| 256 | v = nodeGroups[i].nodes[0]; |
| 257 | if (ND_rank(v) + 1 > nLayers) /* update the number of layers */ |
| 258 | nLayers = ND_rank(v) + 1; |
| 259 | |
| 260 | layerWidthInfo[ND_rank(v)].width += |
| 261 | nodeGroups[i].width * DPI + (layerWidthInfo[ND_rank(v)].width > |
| 262 | 0) * GD_nodesep(g); |
| 263 | if (layerWidthInfo[ND_rank(v)].height < nodeGroups[i].height * DPI) |
| 264 | layerWidthInfo[ND_rank(v)].height = nodeGroups[i].height * DPI; |
| 265 | layerWidthInfo[ND_rank(v)]. |
| 266 | nodeGroupsInLayer[layerWidthInfo[ND_rank(v)]. |
| 267 | nNodeGroupsInLayer] = &nodeGroups[i]; |
| 268 | layerWidthInfo[ND_rank(v)].nNodeGroupsInLayer++; |
| 269 | } |
| 270 | |
| 271 | } |
| 272 | |
| 273 | /* compFunction: |
| 274 | * Comparison function to be used in qsort. |
| 275 | * For sorting the layers by nonincreasing width |
| 276 | */ |
| 277 | static int compFunction(const void *a, const void *b) |
| 278 | { |
| 279 | int *ind1 = (int *) a; |
| 280 | int *ind2 = (int *) b; |
| 281 | |
| 282 | return (layerWidthInfo[*ind2].width > |
| 283 | layerWidthInfo[*ind1].width) - (layerWidthInfo[*ind2].width < |
| 284 | layerWidthInfo[*ind1].width); |
| 285 | } |
| 286 | |
| 287 | /* sortLayers: |
| 288 | * Sort the layers by width (nonincreasing order) |
| 289 | * qsort should be replaced by insertion sort for better performance. |
| 290 | * (layers are "almost" sorted during iterations) |
| 291 | */ |
| 292 | static void sortLayers(graph_t * g) |
| 293 | { |
| 294 | qsort(sortedLayerIndex, agnnodes(g), sizeof(int), compFunction); |
| 295 | } |
| 296 | |
| 297 | #ifdef UNUSED |
| 298 | /* getMaxDummyNodes: |
| 299 | * get the max # of dummy nodes on the incoming edges to a nodeGroup |
| 300 | */ |
| 301 | static int getMaxDummyNodes(nodeGroup_t * ng) |
| 302 | { |
| 303 | int i, max = 0, cnt = 0; |
| 304 | for (i = 0; i < ng->nNodes; i++) { |
| 305 | node_t *n = ng->nodes[i]; |
| 306 | edge_t *e; |
| 307 | graph_t *g = agraphof(n); |
| 308 | for (e = agfstin(g, n); e; e = agnxtin(g, e)) { |
| 309 | cnt += ND_rank(aghead(e)) - ND_rank(agtail(e)); // it's 1 more than the original count |
| 310 | if (ND_rank(aghead(e)) - ND_rank(agtail(e)) > max) |
| 311 | max = ND_rank(aghead(e)) - ND_rank(agtail(e)); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | return max; |
| 316 | } |
| 317 | #endif |
| 318 | |
| 319 | /* getOutDegree: |
| 320 | * Return the sum of out degrees of the nodes in a node group. |
| 321 | */ |
| 322 | static int getOutDegree(nodeGroup_t * ng) |
| 323 | { |
| 324 | int i, cnt = 0; |
| 325 | for (i = 0; i < ng->nNodes; i++) { |
| 326 | node_t *n = ng->nodes[i]; |
| 327 | edge_t *e; |
| 328 | graph_t *g = agraphof(n); |
| 329 | |
| 330 | /* count outdegree. This loop might be unnecessary. */ |
| 331 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 332 | cnt++; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | return cnt; |
| 337 | } |
| 338 | |
| 339 | /* compFunction2: |
| 340 | * Comparison function to be used in qsort. |
| 341 | * For sorting the node groups by their out degrees (nondecreasing) |
| 342 | */ |
| 343 | static int compFunction2(const void *a, const void *b) |
| 344 | { |
| 345 | nodeGroup_t **ind1 = (nodeGroup_t **) a, **ind2 = (nodeGroup_t **) b; |
| 346 | |
| 347 | int cnt1 = getOutDegree(*ind1); |
| 348 | int cnt2 = getOutDegree(*ind2); |
| 349 | |
| 350 | return (cnt2 < cnt1) - (cnt2 > cnt1); |
| 351 | } |
| 352 | |
| 353 | #ifdef UNUSED |
| 354 | /* compFunction3: |
| 355 | * Comparison function to be used in qsort. |
| 356 | * For sorting the node groups by their height & width |
| 357 | */ |
| 358 | static int compFunction3(const void *a, const void *b) |
| 359 | { |
| 360 | nodeGroup_t **ind1 = (nodeGroup_t **) a, **ind2 = (nodeGroup_t **) b; |
| 361 | if ((*ind2)->height == (*ind1)->height) |
| 362 | return ((*ind2)->width < (*ind1)->width) - ((*ind2)->width > |
| 363 | (*ind1)->width); |
| 364 | |
| 365 | return ((*ind2)->height < (*ind1)->height) - ((*ind2)->height > |
| 366 | (*ind1)->height); |
| 367 | } |
| 368 | |
| 369 | /***************************************************************** |
| 370 | * The following commented codes are no longer used |
| 371 | * Originally used in the cocktail tool. |
| 372 | *****************************************************************/ |
| 373 | /* checkLayerConstraints: |
| 374 | * check if there is any node group in the layer |
| 375 | * that is not constrained by MIN/MAX/SOURCE/SINK-RANK constraints. |
| 376 | */ |
| 377 | static int checkLayerConstraints(layerWidthInfo_t lwi) |
| 378 | { |
| 379 | int i; |
| 380 | for (i = 0; i < lwi.nNodeGroupsInLayer; i++) { |
| 381 | if (lwi.nodeGroupsInLayer[i]->nNodes > 0) { |
| 382 | int rtype = ND_ranktype(lwi.nodeGroupsInLayer[i]->nodes[0]); |
| 383 | if (rtype != MINRANK && rtype != MAXRANK && rtype != SOURCERANK |
| 384 | && rtype != SINKRANK) |
| 385 | return 1; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | /* checkLayerConstraints: |
| 393 | * check if all the node groups in the layer are |
| 394 | * constrained by MIN/MAX/SOURCE/SINK-RANK constraints |
| 395 | */ |
| 396 | static int checkLayerConstraints(layerWidthInfo_t lwi) |
| 397 | { |
| 398 | int i; |
| 399 | for (i = 0; i < lwi.nNodeGroupsInLayer; i++) { |
| 400 | if (lwi.nodeGroupsInLayer[i]->nNodes > 0) { |
| 401 | int rtype = ND_ranktype(lwi.nodeGroupsInLayer[i]->nodes[0]); |
| 402 | if (rtype != MINRANK && rtype != MAXRANK && rtype != SOURCERANK |
| 403 | && rtype != SINKRANK) |
| 404 | return 0; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | return 1; |
| 409 | } |
| 410 | |
| 411 | /* checkNodeGroupConstraints: |
| 412 | * check if the node group is not constrained by |
| 413 | * MIN/MAX/SOURCE/SINK-RANK constraints |
| 414 | * Only used in the cocktail tool. |
| 415 | */ |
| 416 | static int checkNodeGroupConstraints(nodeGroup_t * ndg) |
| 417 | { |
| 418 | int i; |
| 419 | int rtype = ND_ranktype(ndg->nodes[0]); |
| 420 | |
| 421 | if (rtype != MINRANK && rtype != MAXRANK && rtype != SOURCERANK |
| 422 | && rtype != SINKRANK) |
| 423 | return 1; |
| 424 | |
| 425 | return 0; |
| 426 | } |
| 427 | |
| 428 | /* checkHorizontalEdge: |
| 429 | * check if there is an edge from ng to a node in |
| 430 | * layerWidthInfo[nextLayerIndex]. |
| 431 | * Only used in the cocktail tool. |
| 432 | */ |
| 433 | static int |
| 434 | checkHorizontalEdge(graph_t * g, nodeGroup_t * ng, int nextLayerIndex) |
| 435 | { |
| 436 | int i; |
| 437 | edge_t *e; |
| 438 | |
| 439 | for (i = 0; i < ng->nNodes; i++) { |
| 440 | for (e = agfstout(g, ng->nodes[i]); e; e = agnxtout(g, e)) { |
| 441 | if (layerWidthInfo[nextLayerIndex].layerNumber == |
| 442 | ND_rank(aghead(e))) { |
| 443 | return 1; |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | |
| 449 | return 0; |
| 450 | } |
| 451 | |
| 452 | /* hasMaxOrSinkNodes: |
| 453 | * check if the the layer lwi has MAX or SINK nodes |
| 454 | * Only used in the cocktail tool. |
| 455 | */ |
| 456 | static int hasMaxOrSinkNodes(layerWidthInfo_t * lwi) |
| 457 | { |
| 458 | int i, j; |
| 459 | |
| 460 | for (i = 0; i < lwi->nNodeGroupsInLayer; i++) { |
| 461 | if (lwi->removed[i]) |
| 462 | continue; |
| 463 | for (j = 0; j < lwi->nodeGroupsInLayer[i]->nNodes; j++) { |
| 464 | if (ND_ranktype(lwi->nodeGroupsInLayer[i]->nodes[j]) == MAXRANK |
| 465 | || ND_ranktype(lwi->nodeGroupsInLayer[i]->nodes[j]) == |
| 466 | SINKRANK) |
| 467 | return 1; |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | return 0; |
| 472 | } |
| 473 | |
| 474 | /* reduceMaxWidth: |
| 475 | * The following function is no longer used. |
| 476 | * Originally used for FFDH packing heuristic |
| 477 | * FFDH procedure |
| 478 | */ |
| 479 | static void reduceMaxWidth(graph_t * g) |
| 480 | { |
| 481 | int i; |
| 482 | int maxLayerIndex; // = sortedLayerIndex[0]; |
| 483 | double nextMaxWidth; // = (nLayers > 1) ? layerWidthInfo[sortedLayerIndex[1]].width : 0; |
| 484 | double w = 0; |
| 485 | Agnode_t *v; |
| 486 | |
| 487 | for (i = 0; i < nLayers; i++) { |
| 488 | if (layerWidthInfo[sortedLayerIndex[i]].nNodeGroupsInLayer <= 1) // || !checkLayerConstraints(layerWidthInfo[sortedLayerIndex[i]])) |
| 489 | continue; |
| 490 | else { |
| 491 | maxLayerIndex = sortedLayerIndex[i]; |
| 492 | nextMaxWidth = |
| 493 | (nLayers > |
| 494 | i + 1) ? layerWidthInfo[sortedLayerIndex[i + |
| 495 | 1]].width : 0; |
| 496 | break; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | if (i == nLayers) |
| 501 | return; //reduction of layerwidth is not possible. |
| 502 | |
| 503 | |
| 504 | //sort the node groups in maxLayerIndex layer by height and then width, nonincreasing |
| 505 | qsort(layerWidthInfo[maxLayerIndex].nodeGroupsInLayer, |
| 506 | layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer, |
| 507 | sizeof(nodeGroup_t *), compFunction2); |
| 508 | //printf("ht0 = %lf, ht1 = %lf\n", ND_height(layerWidthInfo[maxLayerIndex].nodes[0]), ND_height(layerWidthInfo[maxLayerIndex].nodes[1])); |
| 509 | |
| 510 | |
| 511 | if (nextMaxWidth <= layerWidthInfo[maxLayerIndex].width / 2 |
| 512 | || nextMaxWidth == layerWidthInfo[maxLayerIndex].width) |
| 513 | nextMaxWidth = layerWidthInfo[maxLayerIndex].width / 2; |
| 514 | |
| 515 | double targetWidth = nextMaxWidth; //layerWidthInfo[maxLayerIndex].width/2; |
| 516 | |
| 517 | //printf("max = %lf, target = %lf\n", layerWidthInfo[maxLayerIndex].width, targetWidth);//, w + (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])->width ); |
| 518 | //getchar(); |
| 519 | |
| 520 | |
| 521 | //packing by node demotion |
| 522 | int nextLayerIndex = -1; |
| 523 | for (i = 0; i < nLayers; i++) { |
| 524 | if (layerWidthInfo[i].layerNumber == |
| 525 | layerWidthInfo[maxLayerIndex].layerNumber + 1) |
| 526 | nextLayerIndex = i; |
| 527 | } |
| 528 | |
| 529 | if (nextLayerIndex > -1) { |
| 530 | //if (layerWidthInfo[nextLayerIndex].width <= 0.5*layerWidthInfo[maxLayerIndex].width) |
| 531 | //{ |
| 532 | int changed = 0; |
| 533 | //demote nodes to the next layer |
| 534 | for (i = 0; i < layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer; |
| 535 | i++) { |
| 536 | if (layerWidthInfo[maxLayerIndex].removed[i]) |
| 537 | continue; |
| 538 | |
| 539 | if (!checkHorizontalEdge |
| 540 | (g, layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i], |
| 541 | nextLayerIndex) |
| 542 | && w + layerWidthInfo[nextLayerIndex].width + |
| 543 | (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])-> |
| 544 | width <= targetWidth) { |
| 545 | w += (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])-> |
| 546 | width; |
| 547 | changed++; |
| 548 | |
| 549 | int j; |
| 550 | nodeGroup_t *ng = |
| 551 | layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]; |
| 552 | |
| 553 | layerWidthInfo[maxLayerIndex].removed[i] = 1; |
| 554 | layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer--; |
| 555 | layerWidthInfo[maxLayerIndex].width -= ng->width; |
| 556 | for (j = 0; j < ng->nNodes; j++) |
| 557 | ND_rank(ng->nodes[j])++; |
| 558 | |
| 559 | |
| 560 | layerWidthInfo[nextLayerIndex]. |
| 561 | nodeGroupsInLayer[layerWidthInfo[nextLayerIndex]. |
| 562 | nNodeGroupsInLayer] = ng; |
| 563 | layerWidthInfo[nextLayerIndex]. |
| 564 | removed[layerWidthInfo[nextLayerIndex]. |
| 565 | nNodeGroupsInLayer] = 0; |
| 566 | layerWidthInfo[nextLayerIndex].nNodeGroupsInLayer++; |
| 567 | layerWidthInfo[nextLayerIndex].width += ng->width; |
| 568 | |
| 569 | //int jj; |
| 570 | //for (jj = 0; jj < layerWidthInfo[nextLayerIndex].nNodeGroupsInLayer; jj++) { |
| 571 | //Agnode_t *node = layerWidthInfo[nextLayerIndex].nodeGroupsInLayer[jj]->nodes[0]; |
| 572 | //printf("%s\n", agnameof(node)); |
| 573 | //} |
| 574 | } |
| 575 | |
| 576 | } |
| 577 | |
| 578 | if (changed) { |
| 579 | //printf("Demoted %d nodes\n", changed); |
| 580 | return; |
| 581 | } |
| 582 | //} |
| 583 | } |
| 584 | //packing by creating new layers. Must be commented out if packing by demotion is used |
| 585 | |
| 586 | //going to create a new layer. increase the rank of all higher ranked nodes. (to be modified...) |
| 587 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 588 | if (ND_rank(v) > layerWidthInfo[maxLayerIndex].layerNumber) ///////////******** +1 |
| 589 | ND_rank(v)++; |
| 590 | } |
| 591 | |
| 592 | for (i = 0; i < nLayers; i++) { |
| 593 | if (layerWidthInfo[i].layerNumber > |
| 594 | layerWidthInfo[maxLayerIndex].layerNumber) |
| 595 | layerWidthInfo[i].layerNumber++; |
| 596 | } |
| 597 | |
| 598 | //now partition the current layer into two layers (to be modified to support general case of > 2 layers) |
| 599 | int flag = 0; //is a new layer created? |
| 600 | int alt = 0; |
| 601 | for (i = 0; i < layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer; i++) { |
| 602 | if (layerWidthInfo[maxLayerIndex].removed[i]) |
| 603 | continue; |
| 604 | |
| 605 | //nodesep-> only if there are > 1 nodes******************************* |
| 606 | if ((w + |
| 607 | (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])->width * |
| 608 | DPI + (w > 0) * GD_nodesep(g) <= targetWidth && alt == 0 |
| 609 | && ND_ranktype(layerWidthInfo[maxLayerIndex]. |
| 610 | nodeGroupsInLayer[i]->nodes[0]) != SINKRANK |
| 611 | && ND_ranktype(layerWidthInfo[maxLayerIndex]. |
| 612 | nodeGroupsInLayer[i]->nodes[0]) != MAXRANK) |
| 613 | || |
| 614 | (ND_ranktype |
| 615 | (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]-> |
| 616 | nodes[0]) != SINKRANK |
| 617 | && ND_ranktype(layerWidthInfo[maxLayerIndex]. |
| 618 | nodeGroupsInLayer[i]->nodes[0]) != MAXRANK |
| 619 | && hasMaxOrSinkNodes(&layerWidthInfo[maxLayerIndex])) |
| 620 | ) |
| 621 | //&& ND_pinned(layerWidthInfo[maxLayerIndex].nodes[i]) == 0 ) |
| 622 | { |
| 623 | w += (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])-> |
| 624 | width * DPI + (w > 0) * GD_nodesep(g); |
| 625 | alt = 1; |
| 626 | } else { |
| 627 | int j; |
| 628 | nodeGroup_t *ng = |
| 629 | layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]; |
| 630 | |
| 631 | flag = 1; |
| 632 | |
| 633 | layerWidthInfo[maxLayerIndex].removed[i] = 1; |
| 634 | layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer--; |
| 635 | layerWidthInfo[maxLayerIndex].nDummyNodes++; /////************** SHOULD BE INCREASED BY THE SUM OF INDEG OF ALL NODES IN GROUP |
| 636 | layerWidthInfo[maxLayerIndex].width -= |
| 637 | (ng->width * DPI + GD_nodesep(g)); |
| 638 | for (j = 0; j < ng->nNodes; j++) |
| 639 | ND_rank(ng->nodes[j])++; |
| 640 | |
| 641 | //create new layer |
| 642 | layerWidthInfo[nLayers]. |
| 643 | nodeGroupsInLayer[layerWidthInfo[nLayers]. |
| 644 | nNodeGroupsInLayer] = ng; |
| 645 | layerWidthInfo[nLayers].nNodeGroupsInLayer++; |
| 646 | layerWidthInfo[nLayers].layerNumber = ND_rank(ng->nodes[0]); |
| 647 | |
| 648 | layerWidthInfo[nLayers].width += (ng->width * DPI + (layerWidthInfo[nLayers].nNodeGroupsInLayer > 1) * GD_nodesep(g)); // just add the node widths now. |
| 649 | |
| 650 | alt = 0; |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | if (flag) { |
| 655 | //calculate number of dummy nodes |
| 656 | node_t *n; |
| 657 | edge_t *e; |
| 658 | int nDummy = 0; |
| 659 | |
| 660 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 661 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 662 | if ((ND_rank(aghead(e)) > layerWidthInfo[nLayers].layerNumber |
| 663 | && ND_rank(agtail(e)) < |
| 664 | layerWidthInfo[nLayers].layerNumber) |
| 665 | || (ND_rank(aghead(e)) < |
| 666 | layerWidthInfo[nLayers].layerNumber |
| 667 | && ND_rank(agtail(e)) > |
| 668 | layerWidthInfo[nLayers].layerNumber) |
| 669 | ) |
| 670 | nDummy++; |
| 671 | } |
| 672 | |
| 673 | layerWidthInfo[nLayers].nDummyNodes = nDummy; |
| 674 | layerWidthInfo[nLayers].width += |
| 675 | (layerWidthInfo[nLayers].nDummyNodes - 1) * GD_nodesep(g); |
| 676 | nLayers++; |
| 677 | } |
| 678 | |
| 679 | else { |
| 680 | //undo increment of ranks and layerNumbers.***************** |
| 681 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 682 | if (ND_rank(v) > layerWidthInfo[maxLayerIndex].layerNumber + 1) |
| 683 | ND_rank(v)--; |
| 684 | } |
| 685 | |
| 686 | for (i = 0; i < nLayers; i++) { |
| 687 | if (layerWidthInfo[i].layerNumber > |
| 688 | layerWidthInfo[maxLayerIndex].layerNumber + 1) |
| 689 | layerWidthInfo[i].layerNumber--; |
| 690 | } |
| 691 | } |
| 692 | } |
| 693 | #endif |
| 694 | |
| 695 | /* reduceMaxWidth2: |
| 696 | * This is the main heuristic for partitioning the widest layer. |
| 697 | * Partitioning is based on outdegrees of nodes. |
| 698 | * Replace compFunction2 by compFunction3 if you want to partition |
| 699 | * by node widths and heights. |
| 700 | * FFDH procedure |
| 701 | */ |
| 702 | static void reduceMaxWidth2(graph_t * g) |
| 703 | { |
| 704 | int i; |
| 705 | int maxLayerIndex = 0; |
| 706 | double nextMaxWidth = 0.0; |
| 707 | double w = 0; |
| 708 | double targetWidth; |
| 709 | int fst; |
| 710 | nodeGroup_t *fstNdGrp; |
| 711 | int ndem; |
| 712 | int p, q; |
| 713 | int limit; |
| 714 | int rem; |
| 715 | int rem2; |
| 716 | |
| 717 | |
| 718 | /* Find the widest layer. it must have at least 2 nodes. */ |
| 719 | for (i = 0; i < nLayers; i++) { |
| 720 | if (layerWidthInfo[sortedLayerIndex[i]].nNodeGroupsInLayer <= 1) |
| 721 | continue; |
| 722 | else { |
| 723 | maxLayerIndex = sortedLayerIndex[i]; |
| 724 | /* get the width of the next widest layer */ |
| 725 | nextMaxWidth = |
| 726 | (nLayers > |
| 727 | i + 1) ? layerWidthInfo[sortedLayerIndex[i + |
| 728 | 1]].width : 0; |
| 729 | break; |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | if (i == nLayers) |
| 734 | return; /* reduction of layerwidth is not possible. */ |
| 735 | |
| 736 | /* sort the node groups in maxLayerIndex layer by height and |
| 737 | * then width, nonincreasing |
| 738 | */ |
| 739 | qsort(layerWidthInfo[maxLayerIndex].nodeGroupsInLayer, |
| 740 | layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer, |
| 741 | sizeof(nodeGroup_t *), compFunction2); |
| 742 | |
| 743 | #if 0 |
| 744 | printf("\nSorted nodes in mx layer:\n---------------------------\n" ); |
| 745 | for (i = 0; i < layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer; i++) { |
| 746 | Agnode_t *node = layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]->nodes[0]; |
| 747 | printf("%s. width=%lf, height=%lf\n" , |
| 748 | agnameof(node), node->width, node->height); |
| 749 | } |
| 750 | #endif |
| 751 | |
| 752 | if (nextMaxWidth <= layerWidthInfo[maxLayerIndex].width / 4 |
| 753 | || nextMaxWidth >= layerWidthInfo[maxLayerIndex].width * 3 / 4) |
| 754 | nextMaxWidth = layerWidthInfo[maxLayerIndex].width / 2; |
| 755 | |
| 756 | targetWidth = nextMaxWidth; /* layerWidthInfo[maxLayerIndex].width/2; */ |
| 757 | |
| 758 | /* now partition the current layer into two or more |
| 759 | * layers (determined by the ranking algorithm) |
| 760 | */ |
| 761 | fst = 0; |
| 762 | ndem = 0; |
| 763 | limit = layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer; |
| 764 | rem = 0; |
| 765 | rem2 = 0; |
| 766 | |
| 767 | /* initialize w, the width of the widest layer after partitioning */ |
| 768 | w = 0; |
| 769 | |
| 770 | for (i = 0; i < limit + rem; i++) { |
| 771 | if (layerWidthInfo[maxLayerIndex].removed[i]) { |
| 772 | rem++; |
| 773 | continue; |
| 774 | } |
| 775 | |
| 776 | if ((w + |
| 777 | layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]->width * |
| 778 | DPI + (w > 0) * GD_nodesep(g) <= targetWidth) |
| 779 | || !fst) { |
| 780 | w += (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])-> |
| 781 | width * DPI + (w > 0) * GD_nodesep(g); |
| 782 | if (!fst) { |
| 783 | fstNdGrp = |
| 784 | layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]; |
| 785 | fst = 1; |
| 786 | } |
| 787 | } else { |
| 788 | nodeGroup_t *ng = |
| 789 | layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]; |
| 790 | |
| 791 | |
| 792 | #ifdef UNUSED |
| 793 | /* The following code corrects w by adding dummy node spacing. |
| 794 | * It's no longer used |
| 795 | */ |
| 796 | int l; |
| 797 | for (l = 0; l < ng->nNodes; l++) { |
| 798 | w += (ND_in(ng->nodes[l]).size - 1) * GD_nodesep(g); |
| 799 | } |
| 800 | #endif |
| 801 | |
| 802 | for (p = 0; p < fstNdGrp->nNodes; p++) |
| 803 | for (q = 0; q < ng->nNodes; q++) { |
| 804 | //printf("Trying to add virtual edge: %s -> %s\n", |
| 805 | // agnameof(fstNdGrp->nodes[p]), agnameof(ng->nodes[q])); |
| 806 | |
| 807 | /* The following code is for deletion of long virtual edges. |
| 808 | * It's no longer used. |
| 809 | */ |
| 810 | #ifdef UNUSED |
| 811 | for (s = ND_in(ng->nodes[q]).size - 1; s >= 0; s--) { |
| 812 | ev = ND_in(ng->nodes[q]).list[s]; |
| 813 | |
| 814 | edge_t *et; |
| 815 | int fail = 0; |
| 816 | cnt = 0; |
| 817 | |
| 818 | for (et = agfstin(g, aghead(ev)); et; |
| 819 | et = agnxtin(g, et)) { |
| 820 | if (aghead(et) == aghead(ev) |
| 821 | && agtail(et) == agtail(ev)) { |
| 822 | fail = 1; |
| 823 | break; |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | if (fail) { |
| 828 | //printf("FAIL DETECTED\n"); |
| 829 | continue; |
| 830 | } |
| 831 | |
| 832 | |
| 833 | if (ED_edge_type(ev) == VIRTUAL |
| 834 | && ND_rank(aghead(ev)) > ND_rank(agtail(ev)) + 1) { |
| 835 | //printf("%d. inNode= %s.deleted: %s->%s\n", |
| 836 | // test++, agnameof(ng->nodes[q]), |
| 837 | // agnameof(agtail(ev)), agnameof(aghead(ev))); |
| 838 | |
| 839 | delete_fast_edge(ev); |
| 840 | free(ev); |
| 841 | } |
| 842 | } |
| 843 | #endif |
| 844 | |
| 845 | /* add a new virtual edge */ |
| 846 | edge_t *newVEdge = |
| 847 | virtual_edge(fstNdGrp->nodes[p], ng->nodes[q], |
| 848 | NULL); |
| 849 | ED_edge_type(newVEdge) = VIRTUAL; |
| 850 | ndem++; /* increase number of node demotions */ |
| 851 | } |
| 852 | |
| 853 | /* the following code updates the layer width information. The |
| 854 | * update is not useful in the current version of the heuristic. |
| 855 | */ |
| 856 | layerWidthInfo[maxLayerIndex].removed[i] = 1; |
| 857 | rem2++; |
| 858 | layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer--; |
| 859 | /* SHOULD BE INCREASED BY THE SUM OF INDEG OF ALL NODES IN GROUP */ |
| 860 | layerWidthInfo[maxLayerIndex].nDummyNodes++; |
| 861 | layerWidthInfo[maxLayerIndex].width -= |
| 862 | (ng->width * DPI + GD_nodesep(g)); |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | #ifdef UNUSED |
| 868 | /* balanceLayers: |
| 869 | * The following is the layer balancing heuristic. |
| 870 | * Balance the widths of the layers as much as possible. |
| 871 | * It's no longer used. |
| 872 | */ |
| 873 | static void balanceLayers(graph_t * g) |
| 874 | { |
| 875 | int maxLayerIndex, nextLayerIndex, i; |
| 876 | double maxWidth, w; |
| 877 | |
| 878 | //get the max width layer number |
| 879 | |
| 880 | for (i = 0; i < nLayers; i++) { |
| 881 | if (layerWidthInfo[sortedLayerIndex[i]].nNodeGroupsInLayer <= 1 |
| 882 | || |
| 883 | layerWidthInfo[sortedLayerIndex[i]].layerNumber + 1 == nLayers) |
| 884 | continue; |
| 885 | else { |
| 886 | maxLayerIndex = sortedLayerIndex[i]; |
| 887 | maxWidth = layerWidthInfo[maxLayerIndex].width; |
| 888 | printf("Balancing: maxLayerIndex = %d\n" , maxLayerIndex); |
| 889 | break; |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | if (i == nLayers) |
| 894 | return; //reduction of layerwidth is not possible. |
| 895 | |
| 896 | //balancing ~~ packing by node demotion |
| 897 | nextLayerIndex = -1; |
| 898 | for (i = 0; i < nLayers; i++) { |
| 899 | if (layerWidthInfo[i].layerNumber == |
| 900 | layerWidthInfo[maxLayerIndex].layerNumber + 1) { |
| 901 | nextLayerIndex = i; |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | if (nextLayerIndex > -1) { |
| 906 | //if (layerWidthInfo[nextLayerIndex].width <= 0.5*layerWidthInfo[maxLayerIndex].width) |
| 907 | //{ |
| 908 | int changed = 0; |
| 909 | w = 0; |
| 910 | |
| 911 | //demote nodes to the next layer |
| 912 | for (i = 0; i < layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer; |
| 913 | i++) { |
| 914 | if (layerWidthInfo[maxLayerIndex].removed[i]) |
| 915 | continue; |
| 916 | |
| 917 | if (!checkHorizontalEdge |
| 918 | (g, layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i], |
| 919 | nextLayerIndex) |
| 920 | && layerWidthInfo[nextLayerIndex].width |
| 921 | /*+ (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])->width */ |
| 922 | <= layerWidthInfo[maxLayerIndex].width |
| 923 | /*- (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])->width*/ |
| 924 | ) { |
| 925 | w += (layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i])-> |
| 926 | width; |
| 927 | changed++; |
| 928 | |
| 929 | int j; |
| 930 | nodeGroup_t *ng = |
| 931 | layerWidthInfo[maxLayerIndex].nodeGroupsInLayer[i]; |
| 932 | |
| 933 | layerWidthInfo[maxLayerIndex].removed[i] = 1; |
| 934 | layerWidthInfo[maxLayerIndex].nNodeGroupsInLayer--; |
| 935 | layerWidthInfo[maxLayerIndex].width -= (ng->width); |
| 936 | layerWidthInfo[maxLayerIndex].nDummyNodes++; |
| 937 | for (j = 0; j < ng->nNodes; j++) |
| 938 | ND_rank(ng->nodes[j])++; |
| 939 | |
| 940 | |
| 941 | layerWidthInfo[nextLayerIndex]. |
| 942 | nodeGroupsInLayer[layerWidthInfo[nextLayerIndex]. |
| 943 | nNodeGroupsInLayer] = ng; |
| 944 | layerWidthInfo[nextLayerIndex]. |
| 945 | removed[layerWidthInfo[nextLayerIndex]. |
| 946 | nNodeGroupsInLayer] = 0; |
| 947 | layerWidthInfo[nextLayerIndex].nNodeGroupsInLayer++; |
| 948 | layerWidthInfo[nextLayerIndex].width += |
| 949 | (ng->width + GD_nodesep(g)); |
| 950 | } |
| 951 | |
| 952 | } |
| 953 | |
| 954 | if (changed) { |
| 955 | //printf("Demoted %d nodes\n", changed); |
| 956 | return; |
| 957 | } |
| 958 | //} |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | /* applyPacking: |
| 963 | * The following is the initial packing heuristic |
| 964 | * It's no longer used. |
| 965 | */ |
| 966 | static void applyPacking(graph_t * g, double targetAR) |
| 967 | { |
| 968 | int i; |
| 969 | |
| 970 | sortedLayerIndex = N_NEW(agnnodes(g), int); |
| 971 | |
| 972 | for (i = 0; i < agnnodes(g); i++) { |
| 973 | sortedLayerIndex[i] = i; |
| 974 | } |
| 975 | |
| 976 | |
| 977 | node_t *v; |
| 978 | |
| 979 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 980 | //printf("%s, rank = %d, ranktype = %d\n", agnameof(v), ND_rank(v), ND_ranktype(v)); |
| 981 | } |
| 982 | |
| 983 | //GD_nodesep(g) = 0.25; |
| 984 | //GD_ranksep(g) = 0.25; |
| 985 | //////////////////// |
| 986 | //printf("Nodesep = %d, Ranksep = %d\n",GD_nodesep(g), GD_ranksep(g)); |
| 987 | |
| 988 | |
| 989 | for (i = 0; i < 1; i++) { |
| 990 | //printf("iteration = %d\n----------------------\n", i); |
| 991 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 992 | //printf("%s rank = %d\n", agnameof(v), ND_rank(v)); |
| 993 | } |
| 994 | |
| 995 | computeLayerWidths(g); |
| 996 | sortLayers(g); |
| 997 | reduceMaxWidth(g); |
| 998 | |
| 999 | //printf("====================\n"); |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | int k; |
| 1004 | |
| 1005 | for (k = 0; k < nLayers - 1; k++) { |
| 1006 | int cnt = 0, tg; |
| 1007 | if (layerWidthInfo[k].nNodeGroupsInLayer > 7) { |
| 1008 | |
| 1009 | cnt = 0; |
| 1010 | tg = layerWidthInfo[k].nNodeGroupsInLayer - 7; |
| 1011 | |
| 1012 | for (i = layerWidthInfo[k].nNodeGroupsInLayer - 1; i >= 0; i--) { |
| 1013 | |
| 1014 | if (layerWidthInfo[k].removed[i]) |
| 1015 | continue; |
| 1016 | |
| 1017 | int j; |
| 1018 | nodeGroup_t *ng = layerWidthInfo[k].nodeGroupsInLayer[i]; |
| 1019 | |
| 1020 | |
| 1021 | layerWidthInfo[k].removed[i] = 1; |
| 1022 | layerWidthInfo[k].nNodeGroupsInLayer--; |
| 1023 | layerWidthInfo[k].nDummyNodes++; |
| 1024 | layerWidthInfo[k].width -= |
| 1025 | (ng->width * DPI + GD_nodesep(g)); |
| 1026 | for (j = 0; j < ng->nNodes; j++) |
| 1027 | ND_rank(ng->nodes[j])++; |
| 1028 | |
| 1029 | //create new layer |
| 1030 | layerWidthInfo[k + |
| 1031 | 1].nodeGroupsInLayer[layerWidthInfo[k + |
| 1032 | 1]. |
| 1033 | nNodeGroupsInLayer] = |
| 1034 | ng; |
| 1035 | layerWidthInfo[k + 1].nNodeGroupsInLayer++; |
| 1036 | //layerWidthInfo[k+1].layerNumber = ND_rank(ng->nodes[0]); |
| 1037 | |
| 1038 | //layerWidthInfo[k+1].width += ( ng->width*DPI + (layerWidthInfo[nLayers].nNodeGroupsInLayer > 1) * GD_nodesep(g) ); // just add the node widths now. |
| 1039 | |
| 1040 | cnt++; |
| 1041 | |
| 1042 | if (cnt == tg) |
| 1043 | break; |
| 1044 | |
| 1045 | } |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | //calcualte the max width |
| 1050 | int maxW = 0; |
| 1051 | int nNodeG = 0, l, nDummy = 0; |
| 1052 | int index; |
| 1053 | |
| 1054 | for (k = 0; k < nLayers; k++) { |
| 1055 | //printf("Layer#=%d, #dumNd=%d, width=%0.1lf, node=%s\n", layerWidthInfo[k].layerNumber, layerWidthInfo[k].nDummyNodes, layerWidthInfo[k].width, |
| 1056 | // agnameof(layerWidthInfo[k].nodeGroupsInLayer[0]->nodes[0])); |
| 1057 | if (layerWidthInfo[k].width > maxW) // && layerWidthInfo[k].nNodeGroupsInLayer > 0) |
| 1058 | { |
| 1059 | maxW = layerWidthInfo[k].width; |
| 1060 | nNodeG = layerWidthInfo[k].nNodeGroupsInLayer; |
| 1061 | l = layerWidthInfo[k].layerNumber; |
| 1062 | nDummy = layerWidthInfo[k].nDummyNodes; |
| 1063 | index = k; |
| 1064 | } |
| 1065 | } |
| 1066 | //printf("Ht=%d, MxW=%d, #ndGr=%d, #dumNd=%d, lyr#=%d, 1stNd=%s\n", (nLayers-1)*DPI, maxW, nNodeG, nDummy, l, agnameof(layerWidthInfo[index].nodeGroupsInLayer[0]->nodes[0])); |
| 1067 | |
| 1068 | // printf("Finally...\n------------------\n"); |
| 1069 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 1070 | //printf("%s, rank = %d, ranktype = %d\n", agnameof(v, ND_rank(v), ND_ranktype(v)); |
| 1071 | } |
| 1072 | |
| 1073 | } |
| 1074 | #endif |
| 1075 | |
| 1076 | /* applyPacking2: |
| 1077 | * The following is the packing heuristic for wide layout. |
| 1078 | */ |
| 1079 | static void applyPacking2(graph_t * g) |
| 1080 | { |
| 1081 | int i; |
| 1082 | |
| 1083 | sortedLayerIndex = N_NEW(agnnodes(g), int); |
| 1084 | |
| 1085 | for (i = 0; i < agnnodes(g); i++) { |
| 1086 | sortedLayerIndex[i] = i; |
| 1087 | } |
| 1088 | |
| 1089 | computeLayerWidths(g); |
| 1090 | sortLayers(g); |
| 1091 | reduceMaxWidth2(g); |
| 1092 | |
| 1093 | } |
| 1094 | |
| 1095 | #ifdef UNUSED |
| 1096 | /* applyPacking4: |
| 1097 | * The following is the packing heuristic for wide layout. |
| 1098 | * It's used with Nikolov-Healy healy heuristic. |
| 1099 | */ |
| 1100 | void applyPacking4(graph_t * g) |
| 1101 | { |
| 1102 | int i; |
| 1103 | |
| 1104 | sortedLayerIndex = N_NEW(agnnodes(g), int); |
| 1105 | |
| 1106 | for (i = 0; i < agnnodes(g); i++) { |
| 1107 | sortedLayerIndex[i] = i; |
| 1108 | } |
| 1109 | |
| 1110 | |
| 1111 | for (i = 0; i < 1; i++) { |
| 1112 | /* printf("iteration = %d\n----------------------\n", i); |
| 1113 | for (v = agfstnode(g); v; v = agnxtnode(g,v)) |
| 1114 | { |
| 1115 | printf("%s rank = %d\n", agnameof(v), ND_rank(v)); |
| 1116 | } |
| 1117 | */ |
| 1118 | |
| 1119 | |
| 1120 | computeLayerWidths(g); |
| 1121 | sortLayers(g); |
| 1122 | reduceMaxWidth2(g); |
| 1123 | //printf("====================\n"); |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * NOCOLOV & HEALY'S NODE PROMOTION HEURISTIC |
| 1129 | */ |
| 1130 | |
| 1131 | /**************************************************************** |
| 1132 | * This data structure is needed for backing up node information |
| 1133 | * during node promotion |
| 1134 | ****************************************************************/ |
| 1135 | typedef struct myNodeInfo_t { |
| 1136 | int indegree; |
| 1137 | int outdegree; |
| 1138 | int rank; |
| 1139 | Agnode_t *node; |
| 1140 | } myNodeInfo_t; |
| 1141 | |
| 1142 | myNodeInfo_t *myNodeInfo; |
| 1143 | |
| 1144 | |
| 1145 | /* getMaxLevelNumber: |
| 1146 | * return the maximum level number assigned |
| 1147 | */ |
| 1148 | int getMaxLevelNumber(graph_t * g) |
| 1149 | { |
| 1150 | int max; |
| 1151 | Agnode_t *n; |
| 1152 | |
| 1153 | max = ND_rank(agfstnode(g)); |
| 1154 | |
| 1155 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1156 | if (ND_rank(n) > max) |
| 1157 | max = ND_rank(n); |
| 1158 | } |
| 1159 | |
| 1160 | return max; |
| 1161 | } |
| 1162 | |
| 1163 | /* countDummyDiff: |
| 1164 | * return the difference in the count of dummy nodes before |
| 1165 | * and after promoting the node v |
| 1166 | */ |
| 1167 | static int countDummyDiff(graph_t * g, Agnode_t * v, int max) |
| 1168 | { |
| 1169 | int dummydiff = 0; |
| 1170 | Agedge_t *e; |
| 1171 | Agnode_t *u; |
| 1172 | int maxR = 0; |
| 1173 | int j; |
| 1174 | |
| 1175 | for (j = 0; j < ND_in(v).size; j++) { |
| 1176 | e = ND_in(v).list[j]; |
| 1177 | u = agtail(e); |
| 1178 | |
| 1179 | if (myNodeInfo[ND_id(u)].rank == myNodeInfo[ND_id(v)].rank + 1) { |
| 1180 | dummydiff += countDummyDiff(g, u, max); |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | if (myNodeInfo[ND_id(v)].rank + 1 < max |
| 1185 | || (ND_in(v).size == 0 && myNodeInfo[ND_id(v)].rank + 1 <= max)) |
| 1186 | myNodeInfo[ND_id(v)].rank += 1; |
| 1187 | |
| 1188 | dummydiff = dummydiff - ND_in(v).size + ND_out(v).size; |
| 1189 | |
| 1190 | |
| 1191 | return dummydiff; |
| 1192 | } |
| 1193 | |
| 1194 | /* applyPromotionHeuristic: |
| 1195 | * Node Promotion Heuristic |
| 1196 | * by Nikolov and Healy |
| 1197 | */ |
| 1198 | static void applyPromotionHeuristic(graph_t * g) |
| 1199 | { |
| 1200 | graph_t graphBkup = *g; |
| 1201 | Agnode_t *v; |
| 1202 | int promotions; |
| 1203 | |
| 1204 | int max = getMaxLevelNumber(g); |
| 1205 | int count = 0; |
| 1206 | int nNodes = agnnodes(g); |
| 1207 | int i, j; |
| 1208 | |
| 1209 | myNodeInfo = N_NEW(nNodes, myNodeInfo_t); |
| 1210 | myNodeInfo_t *myNodeInfoBak = N_NEW(nNodes, myNodeInfo_t); |
| 1211 | |
| 1212 | for (v = agfstnode(g), i = 0; v; v = agnxtnode(g, v), i++) { |
| 1213 | myNodeInfo[i].indegree = ND_in(v).size; |
| 1214 | myNodeInfo[i].outdegree = ND_out(v).size; |
| 1215 | myNodeInfo[i].rank = ND_rank(v); |
| 1216 | myNodeInfo[i].node = v; |
| 1217 | ND_id(v) = i; |
| 1218 | |
| 1219 | myNodeInfoBak[i] = myNodeInfo[i]; |
| 1220 | } |
| 1221 | |
| 1222 | do { |
| 1223 | promotions = 0; |
| 1224 | |
| 1225 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 1226 | if (ND_in(v).size > 0) { |
| 1227 | if (countDummyDiff(g, v, max) <= 0) { |
| 1228 | promotions++; |
| 1229 | |
| 1230 | for (j = 0; j < nNodes; j++) { |
| 1231 | myNodeInfoBak[j] = myNodeInfo[j]; |
| 1232 | } |
| 1233 | |
| 1234 | } else { |
| 1235 | for (j = 0; j < nNodes; j++) { |
| 1236 | myNodeInfo[j] = myNodeInfoBak[j]; |
| 1237 | } |
| 1238 | } |
| 1239 | } |
| 1240 | } |
| 1241 | count++; |
| 1242 | } while (count < max); |
| 1243 | |
| 1244 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 1245 | ND_rank(v) = myNodeInfo[ND_id(v)].rank; |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * LONGEST PATH ALGORITHM |
| 1251 | */ |
| 1252 | |
| 1253 | /* allNeighborsAreBelow: |
| 1254 | * Return 1 if all the neighbors of n already ranked, else 0 |
| 1255 | */ |
| 1256 | static int allNeighborsAreBelow(Agnode_t * n) |
| 1257 | { |
| 1258 | Agedge_t *e; |
| 1259 | /* graph_t *g = agraphof(n); */ |
| 1260 | int i; |
| 1261 | |
| 1262 | //for (e = agfstout(g,n); e; e = agnxtout(g,e)) |
| 1263 | for (i = 0; i < ND_out(n).size; i++) { |
| 1264 | e = ND_out(n).list[i]; |
| 1265 | if (ED_edge_type(e) == VIRTUAL) { |
| 1266 | if (ED_to_orig(e) != NULL) |
| 1267 | e = ED_to_orig(e); |
| 1268 | else if (ND_node_type(aghead(e)) == VIRTUAL) |
| 1269 | continue; |
| 1270 | } |
| 1271 | |
| 1272 | if (ND_pinned(aghead(e)) != 2) //neighbor of n is not below |
| 1273 | { |
| 1274 | return 0; |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | return 1; |
| 1279 | } |
| 1280 | |
| 1281 | /* reverseLevelNumbers: |
| 1282 | * In Nikolov and Healy ranking, bottom layer ranking is 0 and |
| 1283 | * top layer ranking is the maximum. |
| 1284 | * Graphviz does the opposite. |
| 1285 | * This function does the reversing from Nikolov to Graphviz. |
| 1286 | */ |
| 1287 | static void reverseLevelNumbers(graph_t * g) |
| 1288 | { |
| 1289 | Agnode_t *n; |
| 1290 | int max; |
| 1291 | |
| 1292 | max = getMaxLevelNumber(g); |
| 1293 | |
| 1294 | //printf("max = %d\n", max); |
| 1295 | |
| 1296 | //return; |
| 1297 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1298 | ND_rank(n) = max - ND_rank(n); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | /* doSameRank: |
| 1303 | * Maintain the same ranking constraint. |
| 1304 | * Can only be used with the Nikolov and Healy algorithm |
| 1305 | */ |
| 1306 | static void doSameRank(graph_t * g) |
| 1307 | { |
| 1308 | int i; |
| 1309 | for (i = 0; i < nNodeGroups; i++) { |
| 1310 | int j; |
| 1311 | |
| 1312 | for (j = 0; j < nodeGroups[i].nNodes; j++) { |
| 1313 | if (ND_ranktype(nodeGroups[i].nodes[j]) == SAMERANK) //once we find a SAMERANK node in a group- make all the members of the group SAMERANK |
| 1314 | { |
| 1315 | int k; |
| 1316 | int r = ND_rank(UF_find(nodeGroups[i].nodes[j])); |
| 1317 | for (k = 0; k < nodeGroups[i].nNodes; k++) { |
| 1318 | ND_rank(nodeGroups[i]. |
| 1319 | nodes[(j + k) % nodeGroups[i].nNodes]) = r; |
| 1320 | } |
| 1321 | |
| 1322 | break; |
| 1323 | } |
| 1324 | } |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | /* doMinRank: |
| 1329 | * Maintain the MIN ranking constraint. |
| 1330 | * Can only be used with the Nikolov and Healy algorithm |
| 1331 | */ |
| 1332 | void doMinRank(graph_t * g) |
| 1333 | { |
| 1334 | int i; |
| 1335 | for (i = 0; i < nNodeGroups; i++) { |
| 1336 | int j; |
| 1337 | |
| 1338 | for (j = 0; j < nodeGroups[i].nNodes; j++) { |
| 1339 | if (ND_ranktype(nodeGroups[i].nodes[j]) == MINRANK) //once we find a MINRANK node in a group- make the rank of all the members of the group 0 |
| 1340 | { |
| 1341 | int k; |
| 1342 | for (k = 0; k < nodeGroups[i].nNodes; k++) { |
| 1343 | ND_rank(nodeGroups[i]. |
| 1344 | nodes[(j + k) % nodeGroups[i].nNodes]) = 0; |
| 1345 | if (ND_ranktype |
| 1346 | (nodeGroups[i]. |
| 1347 | nodes[(j + k) % nodeGroups[i].nNodes]) != |
| 1348 | SOURCERANK) |
| 1349 | ND_ranktype(nodeGroups[i]. |
| 1350 | nodes[(j + |
| 1351 | k) % nodeGroups[i].nNodes]) = |
| 1352 | MINRANK; |
| 1353 | } |
| 1354 | |
| 1355 | break; |
| 1356 | } |
| 1357 | } |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | /* getMaxRank: |
| 1362 | * Return the maximum rank among all nodes. |
| 1363 | */ |
| 1364 | static int getMaxRank(graph_t * g) |
| 1365 | { |
| 1366 | int i; |
| 1367 | node_t *v; |
| 1368 | int maxR = ND_rank(agfstnode(g)); |
| 1369 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 1370 | if (ND_rank(v) > maxR) |
| 1371 | maxR = ND_rank(v); |
| 1372 | } |
| 1373 | |
| 1374 | return maxR; |
| 1375 | } |
| 1376 | |
| 1377 | /* doMaxRank: |
| 1378 | * Maintain the MAX ranking constraint. |
| 1379 | * Can only be used with the Nikolov and Healy algorithm |
| 1380 | */ |
| 1381 | static void doMaxRank(graph_t * g) |
| 1382 | { |
| 1383 | int i; |
| 1384 | for (i = 0; i < nNodeGroups; i++) { |
| 1385 | int j; |
| 1386 | int maxR = getMaxRank(g); |
| 1387 | |
| 1388 | for (j = 0; j < nodeGroups[i].nNodes; j++) { |
| 1389 | if (ND_ranktype(nodeGroups[i].nodes[j]) == MAXRANK) //once we find a MAXRANK node in a group- make the rank of all the members of the group MAX |
| 1390 | { |
| 1391 | int k; |
| 1392 | for (k = 0; k < nodeGroups[i].nNodes; k++) { |
| 1393 | ND_rank(nodeGroups[i]. |
| 1394 | nodes[(j + k) % nodeGroups[i].nNodes]) = maxR; |
| 1395 | if (ND_ranktype |
| 1396 | (nodeGroups[i]. |
| 1397 | nodes[(j + k) % nodeGroups[i].nNodes]) != |
| 1398 | SINKRANK) |
| 1399 | ND_ranktype(nodeGroups[i]. |
| 1400 | nodes[(j + |
| 1401 | k) % nodeGroups[i].nNodes]) = |
| 1402 | MAXRANK; |
| 1403 | } |
| 1404 | |
| 1405 | break; |
| 1406 | } |
| 1407 | } |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | /* doSourceRank: |
| 1412 | * Maintain the SOURCE ranking constraint. |
| 1413 | * Can only be used with the Nikolov and Healy algorithm |
| 1414 | */ |
| 1415 | static void doSourceRank(graph_t * g) |
| 1416 | { |
| 1417 | int i; |
| 1418 | int flag = 0; |
| 1419 | |
| 1420 | for (i = 0; i < nNodeGroups; i++) { |
| 1421 | int j; |
| 1422 | |
| 1423 | for (j = 0; j < nodeGroups[i].nNodes; j++) { |
| 1424 | //once we find a SOURCERANK node in a group- make the rank of all the members of the group 0 |
| 1425 | if (ND_ranktype(nodeGroups[i].nodes[j]) == SOURCERANK) { |
| 1426 | int k; |
| 1427 | for (k = 0; k < nodeGroups[i].nNodes; k++) { |
| 1428 | ND_rank(nodeGroups[i]. |
| 1429 | nodes[(j + k) % nodeGroups[i].nNodes]) = 0; |
| 1430 | ND_ranktype(nodeGroups[i]. |
| 1431 | nodes[(j + k) % nodeGroups[i].nNodes]) = |
| 1432 | SOURCERANK; |
| 1433 | } |
| 1434 | |
| 1435 | flag = 1; |
| 1436 | break; |
| 1437 | } |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | if (!flag) |
| 1442 | return; |
| 1443 | |
| 1444 | flag = 0; |
| 1445 | |
| 1446 | //The SourceRank group might be the only group having rank 0. Check if increment of ranking of other nodes is necessary at all. |
| 1447 | for (i = 0; i < nNodeGroups; i++) { |
| 1448 | if (nodeGroups[i].nNodes > 0 |
| 1449 | && ND_ranktype(nodeGroups[i].nodes[0]) != SOURCERANK |
| 1450 | && ND_rank(nodeGroups[i].nodes[0]) == 0) { |
| 1451 | flag = 1; |
| 1452 | break; |
| 1453 | } |
| 1454 | } |
| 1455 | |
| 1456 | |
| 1457 | if (!flag) |
| 1458 | return; |
| 1459 | |
| 1460 | //Now make all NON-SourceRank nodes' ranking nonzero (increment) |
| 1461 | for (i = 0; i < nNodeGroups; i++) { |
| 1462 | if (nodeGroups[i].nNodes > 0 |
| 1463 | && ND_ranktype(nodeGroups[i].nodes[0]) != SOURCERANK) { |
| 1464 | int j; |
| 1465 | |
| 1466 | for (j = 0; j < nodeGroups[i].nNodes; j++) { |
| 1467 | ND_rank(nodeGroups[i].nodes[j])++; |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | /* doSinkRank: |
| 1474 | * Maintain the SINK ranking constraint. |
| 1475 | * Can only be used with the Nikolov and Healy algorithm |
| 1476 | */ |
| 1477 | static void doSinkRank(graph_t * g) |
| 1478 | { |
| 1479 | int i, max; |
| 1480 | int flag = 0; |
| 1481 | |
| 1482 | max = getMaxRank(g); |
| 1483 | |
| 1484 | |
| 1485 | //Check if any non-sink node has rank = max |
| 1486 | for (i = 0; i < nNodeGroups; i++) { |
| 1487 | if (nodeGroups[i].nNodes > 0 |
| 1488 | && ND_ranktype(nodeGroups[i].nodes[0]) != SINKRANK |
| 1489 | && ND_rank(nodeGroups[i].nodes[0]) == max) { |
| 1490 | flag = 1; |
| 1491 | break; |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | if (!flag) |
| 1496 | return; |
| 1497 | |
| 1498 | for (i = 0; i < nNodeGroups; i++) { |
| 1499 | int j; |
| 1500 | |
| 1501 | for (j = 0; j < nodeGroups[i].nNodes; j++) { |
| 1502 | if (ND_ranktype(nodeGroups[i].nodes[j]) == SINKRANK) //once we find a SINKRANK node in a group- make the rank of all the members of the group: max+1 |
| 1503 | { |
| 1504 | int k; |
| 1505 | for (k = 0; k < nodeGroups[i].nNodes; k++) { |
| 1506 | ND_rank(nodeGroups[i]. |
| 1507 | nodes[(j + k) % nodeGroups[i].nNodes]) = |
| 1508 | max + 1; |
| 1509 | ND_ranktype(nodeGroups[i]. |
| 1510 | nodes[(j + k) % nodeGroups[i].nNodes]) = |
| 1511 | SINKRANK; |
| 1512 | } |
| 1513 | |
| 1514 | break; |
| 1515 | } |
| 1516 | } |
| 1517 | } |
| 1518 | } |
| 1519 | |
| 1520 | /* rank2: |
| 1521 | * Initial codes for ranking (Nikolov-Healy). |
| 1522 | * It's no longer used. |
| 1523 | */ |
| 1524 | void rank2(graph_t * g) |
| 1525 | { |
| 1526 | int currentLayer = 1; |
| 1527 | int nNodes = agnnodes(g); |
| 1528 | int nEdges = agnedges(g); |
| 1529 | int nPinnedNodes = 0, nSelected = 0; |
| 1530 | Agnode_t *n, **UArray; |
| 1531 | int USize = 0; |
| 1532 | int i, prevSize = 0; |
| 1533 | |
| 1534 | UArray = N_NEW(nEdges * 2, Agnode_t *); |
| 1535 | |
| 1536 | /* make all pinning values 0 */ |
| 1537 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1538 | ND_pinned(n) = 0; |
| 1539 | } |
| 1540 | |
| 1541 | while (nPinnedNodes != nNodes) { |
| 1542 | for (nSelected = 0, n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1543 | if (ND_pinned(n) == 0) { |
| 1544 | if (allNeighborsAreBelow(n)) { |
| 1545 | ND_pinned(n) = 1; |
| 1546 | |
| 1547 | UArray[USize] = n; |
| 1548 | USize++; |
| 1549 | |
| 1550 | ND_rank(n) = currentLayer; |
| 1551 | nPinnedNodes++; |
| 1552 | nSelected++; |
| 1553 | } |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | if (nSelected == 0) //no node has been selected |
| 1558 | { |
| 1559 | currentLayer++; |
| 1560 | for (i = prevSize; i < USize; i++) { |
| 1561 | ND_pinned(UArray[i]) = 2; //pinning value of 2 indicates this node is below the current node under consideration |
| 1562 | } |
| 1563 | |
| 1564 | prevSize = USize; |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | //Apply Nikolov's node promotion heuristic |
| 1569 | applyPromotionHeuristic(g); |
| 1570 | |
| 1571 | //this is for the sake of graphViz layer numbering scheme |
| 1572 | reverseLevelNumbers(g); |
| 1573 | |
| 1574 | computeNodeGroups(g); //groups of UF DS nodes |
| 1575 | |
| 1576 | //modify the ranking to respect the same ranking constraint |
| 1577 | doSameRank(g); |
| 1578 | |
| 1579 | //satisfy min ranking constraints |
| 1580 | doMinRank(g); |
| 1581 | doMaxRank(g); |
| 1582 | |
| 1583 | //satisfy source ranking constraints |
| 1584 | doSourceRank(g); |
| 1585 | doSinkRank(g); |
| 1586 | |
| 1587 | //Apply the FFDH algorithm to achieve better aspect ratio; |
| 1588 | applyPacking(g, 1); //achieve an aspect ratio of 1 |
| 1589 | } |
| 1590 | #endif |
| 1591 | |
| 1592 | /**************************************************************** |
| 1593 | * Initialize all the edge types to NORMAL |
| 1594 | ****************************************************************/ |
| 1595 | void initEdgeTypes(graph_t * g) |
| 1596 | { |
| 1597 | edge_t *e; |
| 1598 | node_t *n; |
| 1599 | int lc; |
| 1600 | |
| 1601 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1602 | for (lc = 0; lc < ND_in(n).size; lc++) { |
| 1603 | e = ND_in(n).list[lc]; |
| 1604 | ED_edge_type(e) = NORMAL; |
| 1605 | } |
| 1606 | } |
| 1607 | } |
| 1608 | |
| 1609 | /* computeCombiAR: |
| 1610 | * Compute and return combinatorial aspect ratio |
| 1611 | * = |
| 1612 | * Width of the widest layer / Height |
| 1613 | * (in ranking phase) |
| 1614 | */ |
| 1615 | static double computeCombiAR(graph_t * g) |
| 1616 | { |
| 1617 | int i, maxLayerIndex; |
| 1618 | double maxW = 0; |
| 1619 | double maxH; |
| 1620 | double ratio; |
| 1621 | |
| 1622 | computeLayerWidths(g); |
| 1623 | maxH = (nLayers - 1) * GD_ranksep(g); |
| 1624 | |
| 1625 | for (i = 0; i < nLayers; i++) { |
| 1626 | if (maxW < |
| 1627 | layerWidthInfo[i].width + |
| 1628 | layerWidthInfo[i].nDummyNodes * GD_nodesep(g)) { |
| 1629 | maxW = |
| 1630 | layerWidthInfo[i].width + |
| 1631 | layerWidthInfo[i].nDummyNodes * GD_nodesep(g); |
| 1632 | maxLayerIndex = i; |
| 1633 | } |
| 1634 | maxH += layerWidthInfo[i].height; |
| 1635 | } |
| 1636 | |
| 1637 | ratio = maxW / maxH; |
| 1638 | |
| 1639 | return ratio; |
| 1640 | } |
| 1641 | |
| 1642 | #ifdef UNUSED |
| 1643 | /* applyExpansion: |
| 1644 | * Heuristic for expanding very narrow graphs by edge reversal. |
| 1645 | * Needs improvement. |
| 1646 | */ |
| 1647 | void applyExpansion(graph_t * g) |
| 1648 | { |
| 1649 | node_t *sink = NULL; |
| 1650 | int i, k; |
| 1651 | edge_t *e; |
| 1652 | |
| 1653 | computeLayerWidths(g); |
| 1654 | |
| 1655 | for (i = 0; i < nLayers; i++) { |
| 1656 | if (layerWidthInfo[i].layerNumber == nLayers / 2) { |
| 1657 | k = i; |
| 1658 | break; |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | //now reverse the edges, from the k-th layer nodes to their parents |
| 1663 | for (i = 0; i < layerWidthInfo[k].nNodeGroupsInLayer; i++) { |
| 1664 | int p; |
| 1665 | nodeGroup_t *ng = layerWidthInfo[k].nodeGroupsInLayer[i]; |
| 1666 | for (p = 0; p < ng->nNodes; p++) { |
| 1667 | node_t *nd = ng->nodes[p]; |
| 1668 | |
| 1669 | while (e = ND_in(nd).list[0]) { |
| 1670 | printf("Reversing edge: %s->%s\n" , agnemeof(agtail(e)), |
| 1671 | agnameof(aghead(e))); |
| 1672 | reverse_edge(e); |
| 1673 | } |
| 1674 | |
| 1675 | int j, l; |
| 1676 | node_t *v3; |
| 1677 | edge_t *e3; |
| 1678 | for (v3 = agfstnode(g); v3; v3 = agnxtnode(g, v3)) { |
| 1679 | for (e3 = agfstout(g, v3); e3; e3 = agnxtout(g, e3)) { |
| 1680 | if (ND_rank(aghead(e3)) > k && ND_rank(agtail(e3)) < k) { |
| 1681 | printf("Reversing long edge: %s->%s\n" , |
| 1682 | agnameof(agtail(e3)), agnameof(aghead(e3))); |
| 1683 | reverse_edge(e3); |
| 1684 | } |
| 1685 | |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | /*for (l = 0; l < nLayers; l++) { |
| 1690 | if (layerWidthInfo[l].layerNumber <= k) |
| 1691 | continue; |
| 1692 | |
| 1693 | for (j = 0; j < layerWidthInfo[l].nNodeGroupsInLayer; j++) { |
| 1694 | int q; |
| 1695 | nodeGroup_t *ng2 = layerWidthInfo[l].nodeGroupsInLayer[j]; |
| 1696 | for (q = 0; q < ng2->nNodes; q++) { |
| 1697 | node_t *nd2 = ng2->nodes[q]; |
| 1698 | edge_t *e2; |
| 1699 | int s = 0; |
| 1700 | while (e2 = ND_in(nd2).list[s]) { |
| 1701 | if (ND_rank(agtail(e2)) < k) { |
| 1702 | printf("Reversing edge: %s->%s\n", |
| 1703 | agnameof(agtail(e2)), agnameof(aghead(e2))); |
| 1704 | getchar(); |
| 1705 | //reverse_edge(e2); |
| 1706 | } |
| 1707 | else s++; |
| 1708 | } |
| 1709 | } |
| 1710 | } |
| 1711 | } */ |
| 1712 | |
| 1713 | if (sink == NULL) { |
| 1714 | int brFlag = 1; |
| 1715 | for (l = 0; l < nLayers && brFlag; l++) { |
| 1716 | for (j = 0; |
| 1717 | j < layerWidthInfo[l].nNodeGroupsInLayer |
| 1718 | && brFlag; j++) { |
| 1719 | int q; |
| 1720 | nodeGroup_t *ng2 = |
| 1721 | layerWidthInfo[l].nodeGroupsInLayer[j]; |
| 1722 | for (q = 0; q < ng2->nNodes && brFlag; q++) { |
| 1723 | node_t *nd2 = ng2->nodes[q]; |
| 1724 | if (ND_in(nd2).size == 0) { |
| 1725 | sink = nd2; |
| 1726 | brFlag = 0; |
| 1727 | } |
| 1728 | } |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | } |
| 1733 | |
| 1734 | virtual_edge(nd, /*sink */ |
| 1735 | layerWidthInfo[0].nodeGroupsInLayer[0]->nodes[0], |
| 1736 | NULL); |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | //collapse_sets(g); |
| 1741 | } |
| 1742 | #endif |
| 1743 | |
| 1744 | /* zapLayers: |
| 1745 | * After applying the expansion heuristic, some layers are |
| 1746 | * found to be empty. |
| 1747 | * This function removes the empty layers. |
| 1748 | */ |
| 1749 | static void zapLayers(graph_t * g) |
| 1750 | { |
| 1751 | int i, j; |
| 1752 | int start = 0; |
| 1753 | int count = 0; |
| 1754 | |
| 1755 | /* the layers are sorted by the layer number. now zap the empty layers */ |
| 1756 | |
| 1757 | for (i = 0; i < nLayers; i++) { |
| 1758 | if (layerWidthInfo[i].nNodeGroupsInLayer == 0) { |
| 1759 | if (count == 0) |
| 1760 | start = layerWidthInfo[i].layerNumber; |
| 1761 | count++; |
| 1762 | } else if (count && layerWidthInfo[i].layerNumber > start) { |
| 1763 | for (j = 0; j < layerWidthInfo[i].nNodeGroupsInLayer; j++) { |
| 1764 | int q; |
| 1765 | nodeGroup_t *ng = layerWidthInfo[i].nodeGroupsInLayer[j]; |
| 1766 | for (q = 0; q < ng->nNodes; q++) { |
| 1767 | node_t *nd = ng->nodes[q]; |
| 1768 | ND_rank(nd) -= count; |
| 1769 | } |
| 1770 | } |
| 1771 | } |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | /* rank3: |
| 1776 | * ranking function for dealing with wide/narrow graphs, |
| 1777 | * or graphs with varying node widths and heights. |
| 1778 | * This function iteratively calls dot's rank1() function and |
| 1779 | * applies packing (by calling the applyPacking2 function. |
| 1780 | * applyPacking2 function calls the reduceMaxWidth2 function |
| 1781 | * for partitioning the widest layer). |
| 1782 | * Initially the iterations argument is -1, for which rank3 |
| 1783 | * callse applyPacking2 function until the combinatorial aspect |
| 1784 | * ratio is <= the desired aspect ratio. |
| 1785 | */ |
| 1786 | void rank3(graph_t * g, aspect_t * asp) |
| 1787 | { |
| 1788 | Agnode_t *n; |
| 1789 | int i; |
| 1790 | int iterations = asp->nextIter; |
| 1791 | double lastAR = MAXDOUBLE; |
| 1792 | |
| 1793 | computeNodeGroups(g); /* groups of UF DS nodes */ |
| 1794 | |
| 1795 | for (i = 0; (i < iterations) || (iterations == -1); i++) { |
| 1796 | /* initialize all ranks to be 0 */ |
| 1797 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1798 | ND_rank(n) = 0; |
| 1799 | } |
| 1800 | |
| 1801 | /* need to compute ranking first--- by Network flow */ |
| 1802 | |
| 1803 | rank1(g); |
| 1804 | |
| 1805 | asp->combiAR = computeCombiAR(g); |
| 1806 | if (Verbose) |
| 1807 | fprintf(stderr, "combiAR = %lf\n" , asp->combiAR); |
| 1808 | |
| 1809 | |
| 1810 | /* Uncomment the following codes, for working with narrow graphs */ |
| 1811 | #ifdef UNUSED |
| 1812 | if (combiAR < 0.8 * targetAR) { |
| 1813 | char str[20]; |
| 1814 | printf("Apply expansion? (y/n):" ); |
| 1815 | scanf("%s" , str); |
| 1816 | if (strcmp(str, "y" ) == 0) |
| 1817 | applyExpansion(g); |
| 1818 | break; |
| 1819 | } else |
| 1820 | #endif |
| 1821 | /* Success or if no improvement */ |
| 1822 | if ((asp->combiAR <= asp->targetAR) || ((iterations == -1) && (lastAR <= asp->combiAR))) { |
| 1823 | asp->prevIterations = asp->curIterations; |
| 1824 | asp->curIterations = i; |
| 1825 | |
| 1826 | break; |
| 1827 | } |
| 1828 | lastAR = asp->combiAR; |
| 1829 | /* Apply the FFDH algorithm to reduce the aspect ratio; */ |
| 1830 | applyPacking2(g); |
| 1831 | } |
| 1832 | |
| 1833 | /* do network flow once again... incorporating the added edges */ |
| 1834 | rank1(g); |
| 1835 | |
| 1836 | computeLayerWidths(g); |
| 1837 | zapLayers(g); |
| 1838 | asp->combiAR = computeCombiAR(g); |
| 1839 | } |
| 1840 | |
| 1841 | #ifdef UNUSED |
| 1842 | /* NikolovHealy: |
| 1843 | * Nikolov-Healy approach to ranking. |
| 1844 | * First, use longest path algorithm. |
| 1845 | * Then use node promotion heuristic. |
| 1846 | * This function is called by rank4 function. |
| 1847 | */ |
| 1848 | static void NikolovHealy(graph_t * g) |
| 1849 | { |
| 1850 | int currentLayer = 1; |
| 1851 | int nNodes = agnnodes(g); |
| 1852 | int nEdges = agnedges(g); |
| 1853 | int nPinnedNodes = 0, nSelected = 0; |
| 1854 | Agnode_t *n, **UArray; |
| 1855 | int USize = 0; |
| 1856 | int i, prevSize = 0; |
| 1857 | |
| 1858 | /************************************************************************ |
| 1859 | * longest path algorithm |
| 1860 | ************************************************************************/ |
| 1861 | UArray = N_NEW(nEdges * 2, Agnode_t *); |
| 1862 | |
| 1863 | /* make all pinning values 0 */ |
| 1864 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1865 | ND_pinned(n) = 0; |
| 1866 | } |
| 1867 | |
| 1868 | while (nPinnedNodes != nNodes) { |
| 1869 | for (nSelected = 0, n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1870 | if (ND_pinned(n) == 0) { |
| 1871 | if (allNeighborsAreBelow(n)) { |
| 1872 | ND_pinned(n) = 1; |
| 1873 | |
| 1874 | UArray[USize] = n; |
| 1875 | USize++; |
| 1876 | |
| 1877 | ND_rank(n) = currentLayer; |
| 1878 | nPinnedNodes++; |
| 1879 | nSelected++; |
| 1880 | } |
| 1881 | } |
| 1882 | } |
| 1883 | |
| 1884 | if (nSelected == 0) //no node has been selected |
| 1885 | { |
| 1886 | currentLayer++; |
| 1887 | for (i = prevSize; i < USize; i++) { |
| 1888 | ND_pinned(UArray[i]) = 2; //pinning value of 2 indicates this node is below the current node under consideration |
| 1889 | } |
| 1890 | |
| 1891 | prevSize = USize; |
| 1892 | } |
| 1893 | |
| 1894 | } |
| 1895 | |
| 1896 | /************************************************************************ |
| 1897 | * end of longest path algorithm |
| 1898 | ************************************************************************/ |
| 1899 | |
| 1900 | //Apply node promotion heuristic |
| 1901 | applyPromotionHeuristic(g); |
| 1902 | |
| 1903 | //this is for the sake of graphViz layer numbering scheme |
| 1904 | reverseLevelNumbers(g); |
| 1905 | |
| 1906 | } |
| 1907 | |
| 1908 | |
| 1909 | /* rank4: |
| 1910 | * This function is calls the NikolovHealy function |
| 1911 | * for ranking in the Nikolov-Healy approach. |
| 1912 | */ |
| 1913 | void rank4(graph_t * g, int iterations) |
| 1914 | { |
| 1915 | int currentLayer = 1; |
| 1916 | int nNodes = agnnodes(g); |
| 1917 | int nEdges = agnedges(g); |
| 1918 | int nPinnedNodes = 0, nSelected = 0; |
| 1919 | Agnode_t *n, **UArray; |
| 1920 | int USize = 0; |
| 1921 | int i, prevSize = 0; |
| 1922 | |
| 1923 | int it; |
| 1924 | printf("# of interations of packing: " ); |
| 1925 | scanf("%d" , &it); |
| 1926 | printf("it=%d\n" , it); |
| 1927 | |
| 1928 | computeNodeGroups(g); //groups of UF DS nodes |
| 1929 | |
| 1930 | for (i = 0; i < it; i++) { |
| 1931 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1932 | ND_rank(n) = 0; |
| 1933 | } |
| 1934 | |
| 1935 | NikolovHealy(g); |
| 1936 | |
| 1937 | edge_t *e; |
| 1938 | int cnt = 0; |
| 1939 | int lc; |
| 1940 | |
| 1941 | |
| 1942 | combiAR = computeCombiAR(g); |
| 1943 | printf("%d. combiAR = %lf\n" , i, combiAR); |
| 1944 | |
| 1945 | /* |
| 1946 | //modify the ranking to respect the same ranking constraint |
| 1947 | doSameRank(g); |
| 1948 | |
| 1949 | //satisfy min ranking constraints |
| 1950 | doMinRank(g); |
| 1951 | doMaxRank(g); |
| 1952 | |
| 1953 | //satisfy source ranking constraints |
| 1954 | doSourceRank(g); |
| 1955 | doSinkRank(g); |
| 1956 | */ |
| 1957 | |
| 1958 | //Apply the FFDH algorithm to achieve better aspect ratio; |
| 1959 | applyPacking4(g); |
| 1960 | |
| 1961 | } |
| 1962 | |
| 1963 | } |
| 1964 | #endif |
| 1965 | |
| 1966 | /* init_UF_size: |
| 1967 | * Initialize the Union Find data structure |
| 1968 | */ |
| 1969 | void init_UF_size(graph_t * g) |
| 1970 | { |
| 1971 | node_t *n; |
| 1972 | |
| 1973 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1974 | ND_UF_size(n) = 0; |
| 1975 | } |
| 1976 | |
| 1977 | aspect_t* |
| 1978 | setAspect (Agraph_t * g, aspect_t* adata) |
| 1979 | { |
| 1980 | double rv; |
| 1981 | char *p; |
| 1982 | int r, passes = DEF_PASSES; |
| 1983 | |
| 1984 | p = agget (g, "aspect" ); |
| 1985 | |
| 1986 | if (!p || ((r = sscanf (p, "%lf,%d" , &rv, &passes)) <= 0)) { |
| 1987 | adata->nextIter = 0; |
| 1988 | adata->badGraph = 0; |
| 1989 | return NULL; |
| 1990 | } |
| 1991 | agerr (AGWARN, "the aspect attribute has been disabled due to implementation flaws - attribute ignored.\n" ); |
| 1992 | adata->nextIter = 0; |
| 1993 | adata->badGraph = 0; |
| 1994 | return NULL; |
| 1995 | |
| 1996 | if (rv < MIN_AR) rv = MIN_AR; |
| 1997 | else if (rv > MAX_AR) rv = MAX_AR; |
| 1998 | adata->targetAR = rv; |
| 1999 | adata->nextIter = -1; |
| 2000 | adata->nPasses = passes; |
| 2001 | adata->badGraph = 0; |
| 2002 | |
| 2003 | if (Verbose) |
| 2004 | fprintf(stderr, "Target AR = %g\n" , adata->targetAR); |
| 2005 | |
| 2006 | return adata; |
| 2007 | } |
| 2008 | |