| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "dot.h" |
| 16 | |
| 17 | static node_t* |
| 18 | map_interclust_node(node_t * n) |
| 19 | { |
| 20 | node_t *rv; |
| 21 | |
| 22 | if ((ND_clust(n) == NULL) || ( GD_expanded(ND_clust(n))) ) |
| 23 | rv = n; |
| 24 | else |
| 25 | rv = GD_rankleader(ND_clust(n))[ND_rank(n)]; |
| 26 | return rv; |
| 27 | } |
| 28 | |
| 29 | /* make d slots starting at position pos (where 1 already exists) */ |
| 30 | static void |
| 31 | make_slots(graph_t * root, int r, int pos, int d) |
| 32 | { |
| 33 | int i; |
| 34 | node_t *v, **vlist; |
| 35 | vlist = GD_rank(root)[r].v; |
| 36 | if (d <= 0) { |
| 37 | for (i = pos - d + 1; i < GD_rank(root)[r].n; i++) { |
| 38 | v = vlist[i]; |
| 39 | ND_order(v) = i + d - 1; |
| 40 | vlist[ND_order(v)] = v; |
| 41 | } |
| 42 | for (i = GD_rank(root)[r].n + d - 1; i < GD_rank(root)[r].n; i++) |
| 43 | vlist[i] = NULL; |
| 44 | } else { |
| 45 | /*assert(ND_rank(root)[r].n + d - 1 <= ND_rank(root)[r].an);*/ |
| 46 | for (i = GD_rank(root)[r].n - 1; i > pos; i--) { |
| 47 | v = vlist[i]; |
| 48 | ND_order(v) = i + d - 1; |
| 49 | vlist[ND_order(v)] = v; |
| 50 | } |
| 51 | for (i = pos + 1; i < pos + d; i++) |
| 52 | vlist[i] = NULL; |
| 53 | } |
| 54 | GD_rank(root)[r].n += d - 1; |
| 55 | } |
| 56 | |
| 57 | static node_t* |
| 58 | clone_vn(graph_t * g, node_t * vn) |
| 59 | { |
| 60 | node_t *rv; |
| 61 | int r; |
| 62 | |
| 63 | r = ND_rank(vn); |
| 64 | make_slots(g, r, ND_order(vn), 2); |
| 65 | rv = virtual_node(g); |
| 66 | ND_lw(rv) = ND_lw(vn); |
| 67 | ND_rw(rv) = ND_rw(vn); |
| 68 | ND_rank(rv) = ND_rank(vn); |
| 69 | ND_order(rv) = ND_order(vn) + 1; |
| 70 | GD_rank(g)[r].v[ND_order(rv)] = rv; |
| 71 | return rv; |
| 72 | } |
| 73 | |
| 74 | static void |
| 75 | map_path(node_t * from, node_t * to, edge_t * orig, edge_t * ve, int type) |
| 76 | { |
| 77 | int r; |
| 78 | node_t *u, *v; |
| 79 | edge_t *e; |
| 80 | |
| 81 | assert(ND_rank(from) < ND_rank(to)); |
| 82 | |
| 83 | if ((agtail(ve) == from) && (aghead(ve) == to)) |
| 84 | return; |
| 85 | |
| 86 | if (ED_count(ve) > 1) { |
| 87 | ED_to_virt(orig) = NULL; |
| 88 | if (ND_rank(to) - ND_rank(from) == 1) { |
| 89 | if ((e = find_fast_edge(from, to)) && (ports_eq(orig, e))) { |
| 90 | merge_oneway(orig, e); |
| 91 | if ((ND_node_type(from) == NORMAL) |
| 92 | && (ND_node_type(to) == NORMAL)) |
| 93 | other_edge(orig); |
| 94 | return; |
| 95 | } |
| 96 | } |
| 97 | u = from; |
| 98 | for (r = ND_rank(from); r < ND_rank(to); r++) { |
| 99 | if (r < ND_rank(to) - 1) |
| 100 | v = clone_vn(dot_root(from), aghead(ve)); |
| 101 | else |
| 102 | v = to; |
| 103 | e = virtual_edge(u, v, orig); |
| 104 | ED_edge_type(e) = type; |
| 105 | u = v; |
| 106 | ED_count(ve)--; |
| 107 | ve = ND_out(aghead(ve)).list[0]; |
| 108 | } |
| 109 | } else { |
| 110 | if (ND_rank(to) - ND_rank(from) == 1) { |
| 111 | if ((ve = find_fast_edge(from, to)) && (ports_eq(orig, ve))) { |
| 112 | /*ED_to_orig(ve) = orig; */ |
| 113 | ED_to_virt(orig) = ve; |
| 114 | ED_edge_type(ve) = type; |
| 115 | ED_count(ve)++; |
| 116 | if ((ND_node_type(from) == NORMAL) |
| 117 | && (ND_node_type(to) == NORMAL)) |
| 118 | other_edge(orig); |
| 119 | } else { |
| 120 | ED_to_virt(orig) = NULL; |
| 121 | ve = virtual_edge(from, to, orig); |
| 122 | ED_edge_type(ve) = type; |
| 123 | } |
| 124 | } |
| 125 | if (ND_rank(to) - ND_rank(from) > 1) { |
| 126 | e = ve; |
| 127 | if (agtail(ve) != from) { |
| 128 | ED_to_virt(orig) = NULL; |
| 129 | e = ED_to_virt(orig) = virtual_edge(from, aghead(ve), orig); |
| 130 | delete_fast_edge(ve); |
| 131 | } else |
| 132 | e = ve; |
| 133 | while (ND_rank(aghead(e)) != ND_rank(to)) |
| 134 | e = ND_out(aghead(e)).list[0]; |
| 135 | if (aghead(e) != to) { |
| 136 | ve = e; |
| 137 | e = virtual_edge(agtail(e), to, orig); |
| 138 | ED_edge_type(e) = type; |
| 139 | delete_fast_edge(ve); |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | static void |
| 146 | make_interclust_chain(graph_t * g, node_t * from, node_t * to, edge_t * orig) |
| 147 | { |
| 148 | int newtype; |
| 149 | node_t *u, *v; |
| 150 | |
| 151 | u = map_interclust_node(from); |
| 152 | v = map_interclust_node(to); |
| 153 | if ((u == from) && (v == to)) |
| 154 | newtype = VIRTUAL; |
| 155 | else |
| 156 | newtype = CLUSTER_EDGE; |
| 157 | map_path(u, v, orig, ED_to_virt(orig), newtype); |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * attach and install edges between clusters. |
| 162 | * essentially, class2() for interclust edges. |
| 163 | */ |
| 164 | void interclexp(graph_t * subg) |
| 165 | { |
| 166 | graph_t *g; |
| 167 | node_t *n; |
| 168 | edge_t *e, *prev, *next; |
| 169 | |
| 170 | g = dot_root(subg); |
| 171 | for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) { |
| 172 | |
| 173 | /* N.B. n may be in a sub-cluster of subg */ |
| 174 | prev = NULL; |
| 175 | for (e = agfstedge(g, n); e; e = next) { |
| 176 | next = agnxtedge(g, e, n); |
| 177 | if (agcontains(subg, e)) |
| 178 | continue; |
| 179 | |
| 180 | /* canonicalize edge */ |
| 181 | e = AGMKOUT(e); |
| 182 | /* short/flat multi edges */ |
| 183 | if (mergeable(prev, e)) { |
| 184 | if (ND_rank(agtail(e)) == ND_rank(aghead(e))) |
| 185 | ED_to_virt(e) = prev; |
| 186 | else |
| 187 | ED_to_virt(e) = NULL; |
| 188 | if (ED_to_virt(prev) == NULL) |
| 189 | continue; /* internal edge */ |
| 190 | merge_chain(subg, e, ED_to_virt(prev), FALSE); |
| 191 | safe_other_edge(e); |
| 192 | continue; |
| 193 | } |
| 194 | |
| 195 | /* flat edges */ |
| 196 | if (ND_rank(agtail(e)) == ND_rank(aghead(e))) { |
| 197 | edge_t* fe; |
| 198 | if ((fe = find_flat_edge(agtail(e), aghead(e))) == NULL) { |
| 199 | flat_edge(g, e); |
| 200 | prev = e; |
| 201 | } else if (e != fe) { |
| 202 | safe_other_edge(e); |
| 203 | if (!ED_to_virt(e)) merge_oneway(e, fe); |
| 204 | } |
| 205 | continue; |
| 206 | } |
| 207 | |
| 208 | /* forward edges */ |
| 209 | if (ND_rank(aghead(e)) > ND_rank(agtail(e))) { |
| 210 | make_interclust_chain(g, agtail(e), aghead(e), e); |
| 211 | prev = e; |
| 212 | continue; |
| 213 | } |
| 214 | |
| 215 | /* backward edges */ |
| 216 | else { |
| 217 | /* |
| 218 | I think that make_interclust_chain should create call other_edge(e) anyway |
| 219 | if (agcontains(subg,agtail(e)) |
| 220 | && agfindedge(g,aghead(e),agtail(e))) other_edge(e); |
| 221 | */ |
| 222 | make_interclust_chain(g, aghead(e), agtail(e), e); |
| 223 | prev = e; |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | static void |
| 230 | merge_ranks(graph_t * subg) |
| 231 | { |
| 232 | int i, d, r, pos, ipos; |
| 233 | node_t *v; |
| 234 | graph_t *root; |
| 235 | |
| 236 | root = dot_root(subg); |
| 237 | if (GD_minrank(subg) > 0) |
| 238 | GD_rank(root)[GD_minrank(subg) - 1].valid = FALSE; |
| 239 | for (r = GD_minrank(subg); r <= GD_maxrank(subg); r++) { |
| 240 | d = GD_rank(subg)[r].n; |
| 241 | ipos = pos = ND_order(GD_rankleader(subg)[r]); |
| 242 | make_slots(root, r, pos, d); |
| 243 | for (i = 0; i < GD_rank(subg)[r].n; i++) { |
| 244 | v = GD_rank(root)[r].v[pos] = GD_rank(subg)[r].v[i]; |
| 245 | ND_order(v) = pos++; |
| 246 | /* real nodes automatically have v->root = root graph */ |
| 247 | if (ND_node_type(v) == VIRTUAL) |
| 248 | v->root = agroot(root); |
| 249 | delete_fast_node(subg, v); |
| 250 | fast_node(root, v); |
| 251 | GD_n_nodes(root)++; |
| 252 | } |
| 253 | GD_rank(subg)[r].v = GD_rank(root)[r].v + ipos; |
| 254 | GD_rank(root)[r].valid = FALSE; |
| 255 | } |
| 256 | if (r < GD_maxrank(root)) |
| 257 | GD_rank(root)[r].valid = FALSE; |
| 258 | GD_expanded(subg) = TRUE; |
| 259 | } |
| 260 | |
| 261 | static void |
| 262 | remove_rankleaders(graph_t * g) |
| 263 | { |
| 264 | int r; |
| 265 | node_t *v; |
| 266 | edge_t *e; |
| 267 | |
| 268 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 269 | v = GD_rankleader(g)[r]; |
| 270 | |
| 271 | /* remove the entire chain */ |
| 272 | while ((e = ND_out(v).list[0])) |
| 273 | delete_fast_edge(e); |
| 274 | while ((e = ND_in(v).list[0])) |
| 275 | delete_fast_edge(e); |
| 276 | delete_fast_node(dot_root(g), v); |
| 277 | GD_rankleader(g)[r] = NULL; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | /* delete virtual nodes of a cluster, and install real nodes or sub-clusters */ |
| 282 | void expand_cluster(graph_t * subg) |
| 283 | { |
| 284 | /* build internal structure of the cluster */ |
| 285 | class2(subg); |
| 286 | GD_comp(subg).size = 1; |
| 287 | GD_comp(subg).list[0] = GD_nlist(subg); |
| 288 | allocate_ranks(subg); |
| 289 | build_ranks(subg, 0); |
| 290 | merge_ranks(subg); |
| 291 | |
| 292 | /* build external structure of the cluster */ |
| 293 | interclexp(subg); |
| 294 | remove_rankleaders(subg); |
| 295 | } |
| 296 | |
| 297 | /* this function marks every node in <g> with its top-level cluster under <g> */ |
| 298 | void mark_clusters(graph_t * g) |
| 299 | { |
| 300 | int c; |
| 301 | node_t *n, *nn, *vn; |
| 302 | edge_t *orig, *e; |
| 303 | graph_t *clust; |
| 304 | |
| 305 | /* remove sub-clusters below this level */ |
| 306 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 307 | if (ND_ranktype(n) == CLUSTER) |
| 308 | UF_singleton(n); |
| 309 | ND_clust(n) = NULL; |
| 310 | } |
| 311 | |
| 312 | for (c = 1; c <= GD_n_cluster(g); c++) { |
| 313 | clust = GD_clust(g)[c]; |
| 314 | for (n = agfstnode(clust); n; n = nn) { |
| 315 | nn = agnxtnode(clust,n); |
| 316 | if (ND_ranktype(n) != NORMAL) { |
| 317 | agerr(AGWARN, |
| 318 | "%s was already in a rankset, deleted from cluster %s\n" , |
| 319 | agnameof(n), agnameof(g)); |
| 320 | agdelete(clust,n); |
| 321 | continue; |
| 322 | } |
| 323 | UF_setname(n, GD_leader(clust)); |
| 324 | ND_clust(n) = clust; |
| 325 | ND_ranktype(n) = CLUSTER; |
| 326 | |
| 327 | /* here we mark the vnodes of edges in the cluster */ |
| 328 | for (orig = agfstout(clust, n); orig; |
| 329 | orig = agnxtout(clust, orig)) { |
| 330 | if ((e = ED_to_virt(orig))) { |
| 331 | while (e && ND_node_type(vn =aghead(e)) == VIRTUAL) { |
| 332 | ND_clust(vn) = clust; |
| 333 | e = ND_out(aghead(e)).list[0]; |
| 334 | /* trouble if concentrators and clusters are mixed */ |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | void build_skeleton(graph_t * g, graph_t * subg) |
| 343 | { |
| 344 | int r; |
| 345 | node_t *v, *prev, *rl; |
| 346 | edge_t *e; |
| 347 | |
| 348 | prev = NULL; |
| 349 | GD_rankleader(subg) = N_NEW(GD_maxrank(subg) + 2, node_t *); |
| 350 | for (r = GD_minrank(subg); r <= GD_maxrank(subg); r++) { |
| 351 | v = GD_rankleader(subg)[r] = virtual_node(g); |
| 352 | ND_rank(v) = r; |
| 353 | ND_ranktype(v) = CLUSTER; |
| 354 | ND_clust(v) = subg; |
| 355 | if (prev) { |
| 356 | e = virtual_edge(prev, v, NULL); |
| 357 | ED_xpenalty(e) *= CL_CROSS; |
| 358 | } |
| 359 | prev = v; |
| 360 | } |
| 361 | |
| 362 | /* set the counts on virtual edges of the cluster skeleton */ |
| 363 | for (v = agfstnode(subg); v; v = agnxtnode(subg, v)) { |
| 364 | rl = GD_rankleader(subg)[ND_rank(v)]; |
| 365 | ND_UF_size(rl)++; |
| 366 | for (e = agfstout(subg, v); e; e = agnxtout(subg, e)) { |
| 367 | for (r = ND_rank(agtail(e)); r < ND_rank(aghead(e)); r++) { |
| 368 | ED_count(ND_out(rl).list[0])++; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | for (r = GD_minrank(subg); r <= GD_maxrank(subg); r++) { |
| 373 | rl = GD_rankleader(subg)[r]; |
| 374 | if (ND_UF_size(rl) > 1) |
| 375 | ND_UF_size(rl)--; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | void install_cluster(graph_t * g, node_t * n, int pass, nodequeue * q) |
| 380 | { |
| 381 | int r; |
| 382 | graph_t *clust; |
| 383 | |
| 384 | clust = ND_clust(n); |
| 385 | if (GD_installed(clust) != pass + 1) { |
| 386 | for (r = GD_minrank(clust); r <= GD_maxrank(clust); r++) |
| 387 | install_in_rank(g, GD_rankleader(clust)[r]); |
| 388 | for (r = GD_minrank(clust); r <= GD_maxrank(clust); r++) |
| 389 | enqueue_neighbors(q, GD_rankleader(clust)[r], pass); |
| 390 | GD_installed(clust) = pass + 1; |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | static void mark_lowcluster_basic(Agraph_t * g); |
| 395 | void mark_lowclusters(Agraph_t * root) |
| 396 | { |
| 397 | Agnode_t *n, *vn; |
| 398 | Agedge_t *orig, *e; |
| 399 | |
| 400 | /* first, zap any previous cluster labelings */ |
| 401 | for (n = agfstnode(root); n; n = agnxtnode(root, n)) { |
| 402 | ND_clust(n) = NULL; |
| 403 | for (orig = agfstout(root, n); orig; orig = agnxtout(root, orig)) { |
| 404 | if ((e = ED_to_virt(orig))) { |
| 405 | while (e && (ND_node_type(vn = aghead(e))) == VIRTUAL) { |
| 406 | ND_clust(vn) = NULL; |
| 407 | e = ND_out(aghead(e)).list[0]; |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | /* do the recursion */ |
| 414 | mark_lowcluster_basic(root); |
| 415 | } |
| 416 | |
| 417 | static void mark_lowcluster_basic(Agraph_t * g) |
| 418 | { |
| 419 | Agraph_t *clust; |
| 420 | Agnode_t *n, *vn; |
| 421 | Agedge_t *orig, *e; |
| 422 | int c; |
| 423 | |
| 424 | for (c = 1; c <= GD_n_cluster(g); c++) { |
| 425 | clust = GD_clust(g)[c]; |
| 426 | mark_lowcluster_basic(clust); |
| 427 | } |
| 428 | /* see what belongs to this graph that wasn't already marked */ |
| 429 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 430 | if (ND_clust(n) == NULL) |
| 431 | ND_clust(n) = g; |
| 432 | for (orig = agfstout(g, n); orig; orig = agnxtout(g, orig)) { |
| 433 | if ((e = ED_to_virt(orig))) { |
| 434 | while (e && (ND_node_type(vn = aghead(e))) == VIRTUAL) { |
| 435 | if (ND_clust(vn) == NULL) |
| 436 | ND_clust(vn) = g; |
| 437 | e = ND_out(aghead(e)).list[0]; |
| 438 | } |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | |