| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /* |
| 16 | * position(g): set ND_coord(n) (x and y) for all nodes n of g, using GD_rank(g). |
| 17 | * (the graph may be modified by merging certain edges with a common endpoint.) |
| 18 | * the coordinates are computed by constructing and ranking an auxiliary graph. |
| 19 | * then leaf nodes are inserted in the fast graph. cluster boundary nodes are |
| 20 | * created and correctly separated. |
| 21 | */ |
| 22 | |
| 23 | #include "dot.h" |
| 24 | #include "aspect.h" |
| 25 | |
| 26 | static int nsiter2(graph_t * g); |
| 27 | static void create_aux_edges(graph_t * g); |
| 28 | static void remove_aux_edges(graph_t * g); |
| 29 | static void set_xcoords(graph_t * g); |
| 30 | static void set_ycoords(graph_t * g); |
| 31 | static void set_aspect(graph_t * g, aspect_t* ); |
| 32 | static void expand_leaves(graph_t * g); |
| 33 | static void make_lrvn(graph_t * g); |
| 34 | static void contain_nodes(graph_t * g); |
| 35 | static boolean idealsize(graph_t * g, double); |
| 36 | |
| 37 | #if DEBUG > 1 |
| 38 | static void |
| 39 | dumpNS (graph_t * g) |
| 40 | { |
| 41 | node_t* n = GD_nlist(g); |
| 42 | elist el; |
| 43 | edge_t* e; |
| 44 | int i; |
| 45 | |
| 46 | while (n) { |
| 47 | el = ND_out(n); |
| 48 | for (i = 0; i < el.size; i++) { |
| 49 | e = el.list[i]; |
| 50 | fprintf (stderr, "%s(%x) -> " , agnameof(agtail(e)),agtail(e)); |
| 51 | fprintf (stderr, "%s(%x) : %d\n" , agnameof(aghead(e)), aghead(e), |
| 52 | ED_minlen(e)); |
| 53 | } |
| 54 | n = ND_next(n); |
| 55 | } |
| 56 | } |
| 57 | #endif |
| 58 | |
| 59 | static double |
| 60 | largeMinlen (double l) |
| 61 | { |
| 62 | agerr (AGERR, "Edge length %f larger than maximum %u allowed.\nCheck for overwide node(s).\n" , l, USHRT_MAX); |
| 63 | return (double)USHRT_MAX; |
| 64 | } |
| 65 | |
| 66 | /* connectGraph: |
| 67 | * When source and/or sink nodes are defined, it is possible that |
| 68 | * after the auxiliary edges are added, the graph may still have 2 or |
| 69 | * 3 components. To fix this, we put trivial constraints connecting the |
| 70 | * first items of each rank. |
| 71 | */ |
| 72 | static void |
| 73 | connectGraph (graph_t* g) |
| 74 | { |
| 75 | int i, j, r, found; |
| 76 | node_t* tp; |
| 77 | node_t* hp; |
| 78 | node_t* sn; |
| 79 | edge_t* e; |
| 80 | rank_t* rp; |
| 81 | |
| 82 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 83 | rp = GD_rank(g)+r; |
| 84 | found =FALSE; |
| 85 | tp = NULL; |
| 86 | for (i = 0; i < rp->n; i++) { |
| 87 | tp = rp->v[i]; |
| 88 | if (ND_save_out(tp).list) { |
| 89 | for (j = 0; (e = ND_save_out(tp).list[j]); j++) { |
| 90 | if ((ND_rank(aghead(e)) > r) || (ND_rank(agtail(e)) > r)) { |
| 91 | found = TRUE; |
| 92 | break; |
| 93 | } |
| 94 | } |
| 95 | if (found) break; |
| 96 | } |
| 97 | if (ND_save_in(tp).list) { |
| 98 | for (j = 0; (e = ND_save_in(tp).list[j]); j++) { |
| 99 | if ((ND_rank(agtail(e)) > r) || (ND_rank(aghead(e)) > r)) { |
| 100 | found = TRUE; |
| 101 | break; |
| 102 | } |
| 103 | } |
| 104 | if (found) break; |
| 105 | } |
| 106 | } |
| 107 | if (found || !tp) continue; |
| 108 | tp = rp->v[0]; |
| 109 | if (r < GD_maxrank(g)) hp = (rp+1)->v[0]; |
| 110 | else hp = (rp-1)->v[0]; |
| 111 | assert (hp); |
| 112 | sn = virtual_node(g); |
| 113 | ND_node_type(sn) = SLACKNODE; |
| 114 | make_aux_edge(sn, tp, 0, 0); |
| 115 | make_aux_edge(sn, hp, 0, 0); |
| 116 | ND_rank(sn) = MIN(ND_rank(tp), ND_rank(hp)); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | void dot_position(graph_t * g, aspect_t* asp) |
| 121 | { |
| 122 | if (GD_nlist(g) == NULL) |
| 123 | return; /* ignore empty graph */ |
| 124 | mark_lowclusters(g); /* we could remove from splines.c now */ |
| 125 | set_ycoords(g); |
| 126 | if (Concentrate) |
| 127 | dot_concentrate(g); |
| 128 | expand_leaves(g); |
| 129 | if (flat_edges(g)) |
| 130 | set_ycoords(g); |
| 131 | create_aux_edges(g); |
| 132 | if (rank(g, 2, nsiter2(g))) { /* LR balance == 2 */ |
| 133 | connectGraph (g); |
| 134 | const int rank_result = rank(g, 2, nsiter2(g)); |
| 135 | assert(rank_result == 0); |
| 136 | } |
| 137 | set_xcoords(g); |
| 138 | set_aspect(g, asp); |
| 139 | remove_aux_edges(g); /* must come after set_aspect since we now |
| 140 | * use GD_ln and GD_rn for bbox width. |
| 141 | */ |
| 142 | } |
| 143 | |
| 144 | static int nsiter2(graph_t * g) |
| 145 | { |
| 146 | int maxiter = INT_MAX; |
| 147 | char *s; |
| 148 | |
| 149 | if ((s = agget(g, "nslimit" ))) |
| 150 | maxiter = atof(s) * agnnodes(g); |
| 151 | return maxiter; |
| 152 | } |
| 153 | |
| 154 | static int go(node_t * u, node_t * v) |
| 155 | { |
| 156 | int i; |
| 157 | edge_t *e; |
| 158 | |
| 159 | if (u == v) |
| 160 | return TRUE; |
| 161 | for (i = 0; (e = ND_out(u).list[i]); i++) { |
| 162 | if (go(aghead(e), v)) |
| 163 | return TRUE; |
| 164 | } |
| 165 | return FALSE; |
| 166 | } |
| 167 | |
| 168 | static int canreach(node_t * u, node_t * v) |
| 169 | { |
| 170 | return go(u, v); |
| 171 | } |
| 172 | |
| 173 | edge_t *make_aux_edge(node_t * u, node_t * v, double len, int wt) |
| 174 | { |
| 175 | edge_t *e; |
| 176 | |
| 177 | Agedgepair_t* e2 = NEW(Agedgepair_t); |
| 178 | AGTYPE(&(e2->in)) = AGINEDGE; |
| 179 | AGTYPE(&(e2->out)) = AGOUTEDGE; |
| 180 | e2->out.base.data = (Agrec_t*)NEW(Agedgeinfo_t); |
| 181 | e = &(e2->out); |
| 182 | |
| 183 | agtail(e) = u; |
| 184 | aghead(e) = v; |
| 185 | if (len > USHRT_MAX) |
| 186 | len = largeMinlen (len); |
| 187 | ED_minlen(e) = ROUND(len); |
| 188 | ED_weight(e) = wt; |
| 189 | fast_edge(e); |
| 190 | return e; |
| 191 | } |
| 192 | |
| 193 | static void allocate_aux_edges(graph_t * g) |
| 194 | { |
| 195 | int i, j, n_in; |
| 196 | node_t *n; |
| 197 | |
| 198 | /* allocate space for aux edge lists */ |
| 199 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 200 | ND_save_in(n) = ND_in(n); |
| 201 | ND_save_out(n) = ND_out(n); |
| 202 | for (i = 0; ND_out(n).list[i]; i++); |
| 203 | for (j = 0; ND_in(n).list[j]; j++); |
| 204 | n_in = i + j; |
| 205 | alloc_elist(n_in + 3, ND_in(n)); |
| 206 | alloc_elist(3, ND_out(n)); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /* make_LR_constraints: |
| 211 | */ |
| 212 | static void |
| 213 | make_LR_constraints(graph_t * g) |
| 214 | { |
| 215 | int i, j, k; |
| 216 | int sw; /* self width */ |
| 217 | int m0, m1; |
| 218 | double width; |
| 219 | int sep[2]; |
| 220 | int nodesep; /* separation between nodes on same rank */ |
| 221 | edge_t *e, *e0, *e1, *ff; |
| 222 | node_t *u, *v, *t0, *h0; |
| 223 | rank_t *rank = GD_rank(g); |
| 224 | |
| 225 | /* Use smaller separation on odd ranks if g has edge labels */ |
| 226 | if (GD_has_labels(g->root) & EDGE_LABEL) { |
| 227 | sep[0] = GD_nodesep(g); |
| 228 | sep[1] = 5; |
| 229 | } |
| 230 | else { |
| 231 | sep[1] = sep[0] = GD_nodesep(g); |
| 232 | } |
| 233 | /* make edges to constrain left-to-right ordering */ |
| 234 | for (i = GD_minrank(g); i <= GD_maxrank(g); i++) { |
| 235 | double last; |
| 236 | last = ND_rank(rank[i].v[0]) = 0; |
| 237 | nodesep = sep[i & 1]; |
| 238 | for (j = 0; j < rank[i].n; j++) { |
| 239 | u = rank[i].v[j]; |
| 240 | ND_mval(u) = ND_rw(u); /* keep it somewhere safe */ |
| 241 | if (ND_other(u).size > 0) { /* compute self size */ |
| 242 | /* FIX: dot assumes all self-edges go to the right. This |
| 243 | * is no longer true, though makeSelfEdge still attempts to |
| 244 | * put as many as reasonable on the right. The dot code |
| 245 | * should be modified to allow a box reflecting the placement |
| 246 | * of all self-edges, and use that to reposition the nodes. |
| 247 | * Note that this would not only affect left and right |
| 248 | * positioning but may also affect interrank spacing. |
| 249 | */ |
| 250 | sw = 0; |
| 251 | for (k = 0; (e = ND_other(u).list[k]); k++) { |
| 252 | if (agtail(e) == aghead(e)) { |
| 253 | sw += selfRightSpace (e); |
| 254 | } |
| 255 | } |
| 256 | ND_rw(u) += sw; /* increment to include self edges */ |
| 257 | } |
| 258 | v = rank[i].v[j + 1]; |
| 259 | if (v) { |
| 260 | width = ND_rw(u) + ND_lw(v) + nodesep; |
| 261 | e0 = make_aux_edge(u, v, width, 0); |
| 262 | last = (ND_rank(v) = last + width); |
| 263 | } |
| 264 | |
| 265 | /* constraints from labels of flat edges on previous rank */ |
| 266 | if ((e = (edge_t*)ND_alg(u))) { |
| 267 | e0 = ND_save_out(u).list[0]; |
| 268 | e1 = ND_save_out(u).list[1]; |
| 269 | if (ND_order(aghead(e0)) > ND_order(aghead(e1))) { |
| 270 | ff = e0; |
| 271 | e0 = e1; |
| 272 | e1 = ff; |
| 273 | } |
| 274 | m0 = (ED_minlen(e) * GD_nodesep(g)) / 2; |
| 275 | m1 = m0 + ND_rw(aghead(e0)) + ND_lw(agtail(e0)); |
| 276 | /* these guards are needed because the flat edges |
| 277 | * work very poorly with cluster layout */ |
| 278 | if (canreach(agtail(e0), aghead(e0)) == FALSE) |
| 279 | make_aux_edge(aghead(e0), agtail(e0), m1, |
| 280 | ED_weight(e)); |
| 281 | m1 = m0 + ND_rw(agtail(e1)) + ND_lw(aghead(e1)); |
| 282 | if (canreach(aghead(e1), agtail(e1)) == FALSE) |
| 283 | make_aux_edge(agtail(e1), aghead(e1), m1, |
| 284 | ED_weight(e)); |
| 285 | } |
| 286 | |
| 287 | /* position flat edge endpoints */ |
| 288 | for (k = 0; k < ND_flat_out(u).size; k++) { |
| 289 | e = ND_flat_out(u).list[k]; |
| 290 | if (ND_order(agtail(e)) < ND_order(aghead(e))) { |
| 291 | t0 = agtail(e); |
| 292 | h0 = aghead(e); |
| 293 | } else { |
| 294 | t0 = aghead(e); |
| 295 | h0 = agtail(e); |
| 296 | } |
| 297 | |
| 298 | width = ND_rw(t0) + ND_lw(h0); |
| 299 | m0 = ED_minlen(e) * GD_nodesep(g) + width; |
| 300 | |
| 301 | if ((e0 = find_fast_edge(t0, h0))) { |
| 302 | /* flat edge between adjacent neighbors |
| 303 | * ED_dist contains the largest label width. |
| 304 | */ |
| 305 | m0 = MAX(m0, width + GD_nodesep(g) + ROUND(ED_dist(e))); |
| 306 | if (m0 > USHRT_MAX) |
| 307 | m0 = largeMinlen (m0); |
| 308 | ED_minlen(e0) = MAX(ED_minlen(e0), m0); |
| 309 | ED_weight(e0) = MAX(ED_weight(e0), ED_weight(e)); |
| 310 | } |
| 311 | else if (!ED_label(e)) { |
| 312 | /* unlabeled flat edge between non-neighbors |
| 313 | * ED_minlen(e) is max of ED_minlen of all equivalent |
| 314 | * edges. |
| 315 | */ |
| 316 | make_aux_edge(t0, h0, m0, ED_weight(e)); |
| 317 | } |
| 318 | /* labeled flat edges between non-neighbors have already |
| 319 | * been constrained by the label above. |
| 320 | */ |
| 321 | } |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | /* make_edge_pairs: make virtual edge pairs corresponding to input edges */ |
| 327 | static void make_edge_pairs(graph_t * g) |
| 328 | { |
| 329 | int i, m0, m1; |
| 330 | node_t *n, *sn; |
| 331 | edge_t *e; |
| 332 | |
| 333 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 334 | if (ND_save_out(n).list) |
| 335 | for (i = 0; (e = ND_save_out(n).list[i]); i++) { |
| 336 | sn = virtual_node(g); |
| 337 | ND_node_type(sn) = SLACKNODE; |
| 338 | m0 = (ED_head_port(e).p.x - ED_tail_port(e).p.x); |
| 339 | if (m0 > 0) |
| 340 | m1 = 0; |
| 341 | else { |
| 342 | m1 = -m0; |
| 343 | m0 = 0; |
| 344 | } |
| 345 | #ifdef NOTDEF |
| 346 | /* was trying to improve LR balance */ |
| 347 | if ((ND_save_out(n).size % 2 == 0) |
| 348 | && (i == ND_save_out(n).size / 2 - 1)) { |
| 349 | node_t *u = ND_save_out(n).list[i]->head; |
| 350 | node_t *v = ND_save_out(n).list[i + 1]->head; |
| 351 | double width = ND_rw(u) + ND_lw(v) + GD_nodesep(g); |
| 352 | m0 = width / 2 - 1; |
| 353 | } |
| 354 | #endif |
| 355 | make_aux_edge(sn, agtail(e), m0 + 1, ED_weight(e)); |
| 356 | make_aux_edge(sn, aghead(e), m1 + 1, ED_weight(e)); |
| 357 | ND_rank(sn) = |
| 358 | MIN(ND_rank(agtail(e)) - m0 - 1, |
| 359 | ND_rank(aghead(e)) - m1 - 1); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | static void contain_clustnodes(graph_t * g) |
| 365 | { |
| 366 | int c; |
| 367 | edge_t *e; |
| 368 | |
| 369 | if (g != dot_root(g)) { |
| 370 | contain_nodes(g); |
| 371 | if ((e = find_fast_edge(GD_ln(g),GD_rn(g)))) /* maybe from lrvn()?*/ |
| 372 | ED_weight(e) += 128; |
| 373 | else |
| 374 | make_aux_edge(GD_ln(g), GD_rn(g), 1, 128); /* clust compaction edge */ |
| 375 | } |
| 376 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 377 | contain_clustnodes(GD_clust(g)[c]); |
| 378 | } |
| 379 | |
| 380 | static int vnode_not_related_to(graph_t * g, node_t * v) |
| 381 | { |
| 382 | edge_t *e; |
| 383 | |
| 384 | if (ND_node_type(v) != VIRTUAL) |
| 385 | return FALSE; |
| 386 | for (e = ND_save_out(v).list[0]; ED_to_orig(e); e = ED_to_orig(e)); |
| 387 | if (agcontains(g, agtail(e))) |
| 388 | return FALSE; |
| 389 | if (agcontains(g, aghead(e))) |
| 390 | return FALSE; |
| 391 | return TRUE; |
| 392 | } |
| 393 | |
| 394 | /* keepout_othernodes: |
| 395 | * Guarantee nodes outside the cluster g are placed outside of it. |
| 396 | * This is done by adding constraints to make sure such nodes have |
| 397 | * a gap of margin from the left or right bounding box node ln or rn. |
| 398 | * |
| 399 | * We could probably reduce some of these constraints by checking if |
| 400 | * the node is in a cluster, since elsewhere we make constrain a |
| 401 | * separate between clusters. Also, we should be able to skip the |
| 402 | * first loop if g is the root graph. |
| 403 | */ |
| 404 | static void keepout_othernodes(graph_t * g) |
| 405 | { |
| 406 | int i, c, r, margin; |
| 407 | node_t *u, *v; |
| 408 | |
| 409 | margin = late_int (g, G_margin, CL_OFFSET, 0); |
| 410 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 411 | if (GD_rank(g)[r].n == 0) |
| 412 | continue; |
| 413 | v = GD_rank(g)[r].v[0]; |
| 414 | if (v == NULL) |
| 415 | continue; |
| 416 | for (i = ND_order(v) - 1; i >= 0; i--) { |
| 417 | u = GD_rank(dot_root(g))[r].v[i]; |
| 418 | /* can't use "is_a_vnode_of" because elists are swapped */ |
| 419 | if ((ND_node_type(u) == NORMAL) || vnode_not_related_to(g, u)) { |
| 420 | make_aux_edge(u, GD_ln(g), margin + ND_rw(u), 0); |
| 421 | break; |
| 422 | } |
| 423 | } |
| 424 | for (i = ND_order(v) + GD_rank(g)[r].n; i < GD_rank(dot_root(g))[r].n; |
| 425 | i++) { |
| 426 | u = GD_rank(dot_root(g))[r].v[i]; |
| 427 | if ((ND_node_type(u) == NORMAL) || vnode_not_related_to(g, u)) { |
| 428 | make_aux_edge(GD_rn(g), u, margin + ND_lw(u), 0); |
| 429 | break; |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 435 | keepout_othernodes(GD_clust(g)[c]); |
| 436 | } |
| 437 | |
| 438 | /* contain_subclust: |
| 439 | * Make sure boxes of subclusters of g are offset from the |
| 440 | * box of g. This is done by a constraint between the left and |
| 441 | * right bounding box nodes ln and rn of g and a subcluster. |
| 442 | * The gap needs to include any left or right labels. |
| 443 | */ |
| 444 | static void contain_subclust(graph_t * g) |
| 445 | { |
| 446 | int margin, c; |
| 447 | graph_t *subg; |
| 448 | |
| 449 | margin = late_int (g, G_margin, CL_OFFSET, 0); |
| 450 | make_lrvn(g); |
| 451 | for (c = 1; c <= GD_n_cluster(g); c++) { |
| 452 | subg = GD_clust(g)[c]; |
| 453 | make_lrvn(subg); |
| 454 | make_aux_edge(GD_ln(g), GD_ln(subg), |
| 455 | margin + GD_border(g)[LEFT_IX].x, 0); |
| 456 | make_aux_edge(GD_rn(subg), GD_rn(g), |
| 457 | margin + GD_border(g)[RIGHT_IX].x, 0); |
| 458 | contain_subclust(subg); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | /* separate_subclust: |
| 463 | * Guarantee space between subcluster of g. |
| 464 | * This is done by adding a constraint between the right bbox node rn |
| 465 | * of the left cluster and the left bbox node ln of the right cluster. |
| 466 | * This is only done if the two clusters overlap in some rank. |
| 467 | */ |
| 468 | static void separate_subclust(graph_t * g) |
| 469 | { |
| 470 | int i, j, margin; |
| 471 | graph_t *low, *high; |
| 472 | graph_t *left, *right; |
| 473 | |
| 474 | margin = late_int (g, G_margin, CL_OFFSET, 0); |
| 475 | for (i = 1; i <= GD_n_cluster(g); i++) |
| 476 | make_lrvn(GD_clust(g)[i]); |
| 477 | for (i = 1; i <= GD_n_cluster(g); i++) { |
| 478 | for (j = i + 1; j <= GD_n_cluster(g); j++) { |
| 479 | low = GD_clust(g)[i]; |
| 480 | high = GD_clust(g)[j]; |
| 481 | if (GD_minrank(low) > GD_minrank(high)) { |
| 482 | graph_t *temp = low; |
| 483 | low = high; |
| 484 | high = temp; |
| 485 | } |
| 486 | if (GD_maxrank(low) < GD_minrank(high)) |
| 487 | continue; |
| 488 | if (ND_order(GD_rank(low)[GD_minrank(high)].v[0]) |
| 489 | < ND_order(GD_rank(high)[GD_minrank(high)].v[0])) { |
| 490 | left = low; |
| 491 | right = high; |
| 492 | } else { |
| 493 | left = high; |
| 494 | right = low; |
| 495 | } |
| 496 | make_aux_edge(GD_rn(left), GD_ln(right), margin, 0); |
| 497 | } |
| 498 | separate_subclust(GD_clust(g)[i]); |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | /* pos_clusters: create constraints for: |
| 503 | * node containment in clusters, |
| 504 | * cluster containment in clusters, |
| 505 | * separation of sibling clusters. |
| 506 | */ |
| 507 | static void pos_clusters(graph_t * g) |
| 508 | { |
| 509 | if (GD_n_cluster(g) > 0) { |
| 510 | contain_clustnodes(g); |
| 511 | keepout_othernodes(g); |
| 512 | contain_subclust(g); |
| 513 | separate_subclust(g); |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | static void compress_graph(graph_t * g) |
| 518 | { |
| 519 | double x; |
| 520 | pointf p; |
| 521 | |
| 522 | if (GD_drawing(g)->ratio_kind != R_COMPRESS) |
| 523 | return; |
| 524 | p = GD_drawing(g)->size; |
| 525 | if (p.x * p.y <= 1) |
| 526 | return; |
| 527 | contain_nodes(g); |
| 528 | if (GD_flip(g) == FALSE) |
| 529 | x = p.x; |
| 530 | else |
| 531 | x = p.y; |
| 532 | |
| 533 | /* Guard against huge size attribute since max. edge length is USHRT_MAX |
| 534 | * A warning might be called for. Also, one could check that the graph |
| 535 | * already fits GD_drawing(g)->size and return immediately. |
| 536 | */ |
| 537 | x = MIN(x,USHRT_MAX); |
| 538 | make_aux_edge(GD_ln(g), GD_rn(g), x, 1000); |
| 539 | } |
| 540 | |
| 541 | static void create_aux_edges(graph_t * g) |
| 542 | { |
| 543 | allocate_aux_edges(g); |
| 544 | make_LR_constraints(g); |
| 545 | make_edge_pairs(g); |
| 546 | pos_clusters(g); |
| 547 | compress_graph(g); |
| 548 | } |
| 549 | |
| 550 | static void remove_aux_edges(graph_t * g) |
| 551 | { |
| 552 | int i; |
| 553 | node_t *n, *nnext, *nprev; |
| 554 | edge_t *e; |
| 555 | |
| 556 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 557 | for (i = 0; (e = ND_out(n).list[i]); i++) { |
| 558 | free(e->base.data); |
| 559 | free(e); |
| 560 | } |
| 561 | free_list(ND_out(n)); |
| 562 | free_list(ND_in(n)); |
| 563 | ND_out(n) = ND_save_out(n); |
| 564 | ND_in(n) = ND_save_in(n); |
| 565 | } |
| 566 | /* cannot be merged with previous loop */ |
| 567 | nprev = NULL; |
| 568 | for (n = GD_nlist(g); n; n = nnext) { |
| 569 | nnext = ND_next(n); |
| 570 | if (ND_node_type(n) == SLACKNODE) { |
| 571 | if (nprev) |
| 572 | ND_next(nprev) = nnext; |
| 573 | else |
| 574 | GD_nlist(g) = nnext; |
| 575 | free(n->base.data); |
| 576 | free(n); |
| 577 | } else |
| 578 | nprev = n; |
| 579 | } |
| 580 | ND_prev(GD_nlist(g)) = NULL; |
| 581 | } |
| 582 | |
| 583 | /* set_xcoords: |
| 584 | * Set x coords of nodes. |
| 585 | */ |
| 586 | static void |
| 587 | set_xcoords(graph_t * g) |
| 588 | { |
| 589 | int i, j; |
| 590 | node_t *v; |
| 591 | rank_t *rank = GD_rank(g); |
| 592 | |
| 593 | for (i = GD_minrank(g); i <= GD_maxrank(g); i++) { |
| 594 | for (j = 0; j < rank[i].n; j++) { |
| 595 | v = rank[i].v[j]; |
| 596 | ND_coord(v).x = ND_rank(v); |
| 597 | ND_rank(v) = i; |
| 598 | } |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | /* adjustSimple: |
| 603 | * Expand cluster height by delta, adding half to top |
| 604 | * and half to bottom. If the bottom expansion exceeds the |
| 605 | * ht1 of the rank, shift the ranks in the cluster up. |
| 606 | * If the top expansion, including any shift from the bottom |
| 607 | * expansion, exceeds to ht2 of the rank, shift the ranks above |
| 608 | * the cluster up. |
| 609 | * |
| 610 | * FIX: There can be excess space between ranks. Not sure where this is |
| 611 | * coming from but it could be cleaned up. |
| 612 | */ |
| 613 | static void adjustSimple(graph_t * g, int delta, int margin_total) |
| 614 | { |
| 615 | int r, bottom, deltop, delbottom; |
| 616 | graph_t *root = dot_root(g); |
| 617 | rank_t *rank = GD_rank(root); |
| 618 | int maxr = GD_maxrank(g); |
| 619 | int minr = GD_minrank(g); |
| 620 | |
| 621 | bottom = (delta+1) / 2; |
| 622 | delbottom = GD_ht1(g) + bottom - (rank[maxr].ht1 - margin_total); |
| 623 | if (delbottom > 0) { |
| 624 | for (r = maxr; r >= minr; r--) { |
| 625 | if (rank[r].n > 0) |
| 626 | ND_coord(rank[r].v[0]).y += delbottom; |
| 627 | } |
| 628 | deltop = GD_ht2(g) + (delta-bottom) + delbottom - (rank[minr].ht2 - margin_total); |
| 629 | } |
| 630 | else |
| 631 | deltop = GD_ht2(g) + (delta-bottom) - (rank[minr].ht2 - margin_total); |
| 632 | if (deltop > 0) { |
| 633 | for (r = minr-1; r >= GD_minrank(root); r--) { |
| 634 | if (rank[r].n > 0) |
| 635 | ND_coord(rank[r].v[0]).y += deltop; |
| 636 | } |
| 637 | } |
| 638 | GD_ht2(g) += (delta - bottom); |
| 639 | GD_ht1(g) += bottom; |
| 640 | } |
| 641 | |
| 642 | /* adjustRanks: |
| 643 | * Recursively adjust ranks to take into account |
| 644 | * wide cluster labels when rankdir=LR. |
| 645 | * We divide the extra space between the top and bottom. |
| 646 | * Adjust the ht1 and ht2 values in the process. |
| 647 | */ |
| 648 | static void adjustRanks(graph_t * g, int margin_total) |
| 649 | { |
| 650 | double lht; /* label height */ |
| 651 | double rht; /* height between top and bottom ranks */ |
| 652 | int maxr, minr, margin; |
| 653 | int c; |
| 654 | double delta, ht1, ht2; |
| 655 | |
| 656 | rank_t *rank = GD_rank(dot_root(g)); |
| 657 | if (g == dot_root(g)) |
| 658 | margin = 0; |
| 659 | else |
| 660 | margin = late_int (g, G_margin, CL_OFFSET, 0); |
| 661 | |
| 662 | ht1 = GD_ht1(g); |
| 663 | ht2 = GD_ht2(g); |
| 664 | |
| 665 | for (c = 1; c <= GD_n_cluster(g); c++) { |
| 666 | graph_t *subg = GD_clust(g)[c]; |
| 667 | adjustRanks(subg, margin+margin_total); |
| 668 | if (GD_maxrank(subg) == GD_maxrank(g)) |
| 669 | ht1 = MAX(ht1, GD_ht1(subg) + margin); |
| 670 | if (GD_minrank(subg) == GD_minrank(g)) |
| 671 | ht2 = MAX(ht2, GD_ht2(subg) + margin); |
| 672 | } |
| 673 | |
| 674 | GD_ht1(g) = ht1; |
| 675 | GD_ht2(g) = ht2; |
| 676 | |
| 677 | if ((g != dot_root(g)) && GD_label(g)) { |
| 678 | lht = MAX(GD_border(g)[LEFT_IX].y, GD_border(g)[RIGHT_IX].y); |
| 679 | maxr = GD_maxrank(g); |
| 680 | minr = GD_minrank(g); |
| 681 | rht = ND_coord(rank[minr].v[0]).y - ND_coord(rank[maxr].v[0]).y; |
| 682 | delta = lht - (rht + ht1 + ht2); |
| 683 | if (delta > 0) { |
| 684 | adjustSimple(g, delta, margin_total); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | /* update the global ranks */ |
| 689 | if (g != dot_root(g)) { |
| 690 | rank[GD_minrank(g)].ht2 = MAX(rank[GD_minrank(g)].ht2, GD_ht2(g)); |
| 691 | rank[GD_maxrank(g)].ht1 = MAX(rank[GD_maxrank(g)].ht1, GD_ht1(g)); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | /* clust_ht: |
| 696 | * recursively compute cluster ht requirements. assumes GD_ht1(subg) and ht2 |
| 697 | * are computed from primitive nodes only. updates ht1 and ht2 to reflect |
| 698 | * cluster nesting and labels. also maintains global rank ht1 and ht2. |
| 699 | * Return true if some cluster has a label. |
| 700 | */ |
| 701 | static int clust_ht(Agraph_t * g) |
| 702 | { |
| 703 | int c; |
| 704 | double ht1, ht2; |
| 705 | graph_t *subg; |
| 706 | rank_t *rank = GD_rank(dot_root(g)); |
| 707 | int margin, haveClustLabel = 0; |
| 708 | |
| 709 | if (g == dot_root(g)) |
| 710 | margin = CL_OFFSET; |
| 711 | else |
| 712 | margin = late_int (g, G_margin, CL_OFFSET, 0); |
| 713 | |
| 714 | ht1 = GD_ht1(g); |
| 715 | ht2 = GD_ht2(g); |
| 716 | |
| 717 | /* account for sub-clusters */ |
| 718 | for (c = 1; c <= GD_n_cluster(g); c++) { |
| 719 | subg = GD_clust(g)[c]; |
| 720 | haveClustLabel |= clust_ht(subg); |
| 721 | if (GD_maxrank(subg) == GD_maxrank(g)) |
| 722 | ht1 = MAX(ht1, GD_ht1(subg) + margin); |
| 723 | if (GD_minrank(subg) == GD_minrank(g)) |
| 724 | ht2 = MAX(ht2, GD_ht2(subg) + margin); |
| 725 | } |
| 726 | |
| 727 | /* account for a possible cluster label in clusters */ |
| 728 | /* room for root graph label is handled in dotneato_postprocess */ |
| 729 | if ((g != dot_root(g)) && GD_label(g)) { |
| 730 | haveClustLabel = 1; |
| 731 | if (!GD_flip(agroot(g))) { |
| 732 | ht1 += GD_border(g)[BOTTOM_IX].y; |
| 733 | ht2 += GD_border(g)[TOP_IX].y; |
| 734 | } |
| 735 | } |
| 736 | GD_ht1(g) = ht1; |
| 737 | GD_ht2(g) = ht2; |
| 738 | |
| 739 | /* update the global ranks */ |
| 740 | if (g != dot_root(g)) { |
| 741 | rank[GD_minrank(g)].ht2 = MAX(rank[GD_minrank(g)].ht2, ht2); |
| 742 | rank[GD_maxrank(g)].ht1 = MAX(rank[GD_maxrank(g)].ht1, ht1); |
| 743 | } |
| 744 | |
| 745 | return haveClustLabel; |
| 746 | } |
| 747 | |
| 748 | /* set y coordinates of nodes, a rank at a time */ |
| 749 | static void set_ycoords(graph_t * g) |
| 750 | { |
| 751 | int i, j, r; |
| 752 | double ht2, maxht, delta, d0, d1; |
| 753 | node_t *n; |
| 754 | edge_t *e; |
| 755 | rank_t *rank = GD_rank(g); |
| 756 | graph_t *clust; |
| 757 | int lbl; |
| 758 | |
| 759 | ht2 = maxht = 0; |
| 760 | |
| 761 | /* scan ranks for tallest nodes. */ |
| 762 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 763 | for (i = 0; i < rank[r].n; i++) { |
| 764 | n = rank[r].v[i]; |
| 765 | |
| 766 | /* assumes symmetry, ht1 = ht2 */ |
| 767 | ht2 = ND_ht(n) / 2; |
| 768 | |
| 769 | |
| 770 | /* have to look for high self-edge labels, too */ |
| 771 | if (ND_other(n).list) |
| 772 | for (j = 0; (e = ND_other(n).list[j]); j++) { |
| 773 | if (agtail(e) == aghead(e)) { |
| 774 | if (ED_label(e)) |
| 775 | ht2 = MAX(ht2, ED_label(e)->dimen.y / 2); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | /* update global rank ht */ |
| 780 | if (rank[r].pht2 < ht2) |
| 781 | rank[r].pht2 = rank[r].ht2 = ht2; |
| 782 | if (rank[r].pht1 < ht2) |
| 783 | rank[r].pht1 = rank[r].ht1 = ht2; |
| 784 | |
| 785 | /* update nearest enclosing cluster rank ht */ |
| 786 | if ((clust = ND_clust(n))) { |
| 787 | int yoff = (clust == g ? 0 : late_int (clust, G_margin, CL_OFFSET, 0)); |
| 788 | if (ND_rank(n) == GD_minrank(clust)) |
| 789 | GD_ht2(clust) = MAX(GD_ht2(clust), ht2 + yoff); |
| 790 | if (ND_rank(n) == GD_maxrank(clust)) |
| 791 | GD_ht1(clust) = MAX(GD_ht1(clust), ht2 + yoff); |
| 792 | } |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | /* scan sub-clusters */ |
| 797 | lbl = clust_ht(g); |
| 798 | |
| 799 | /* make the initial assignment of ycoords to leftmost nodes by ranks */ |
| 800 | maxht = 0; |
| 801 | r = GD_maxrank(g); |
| 802 | (ND_coord(rank[r].v[0])).y = rank[r].ht1; |
| 803 | while (--r >= GD_minrank(g)) { |
| 804 | d0 = rank[r + 1].pht2 + rank[r].pht1 + GD_ranksep(g); /* prim node sep */ |
| 805 | d1 = rank[r + 1].ht2 + rank[r].ht1 + CL_OFFSET; /* cluster sep */ |
| 806 | delta = MAX(d0, d1); |
| 807 | if (rank[r].n > 0) /* this may reflect some problem */ |
| 808 | (ND_coord(rank[r].v[0])).y = (ND_coord(rank[r + 1].v[0])).y + delta; |
| 809 | #ifdef DEBUG |
| 810 | else |
| 811 | fprintf(stderr, "dot set_ycoords: rank %d is empty\n" , |
| 812 | rank[r].n); |
| 813 | #endif |
| 814 | maxht = MAX(maxht, delta); |
| 815 | } |
| 816 | |
| 817 | /* If there are cluster labels and the drawing is rotated, we need special processing to |
| 818 | * allocate enough room. We use adjustRanks for this, and then recompute the maxht if |
| 819 | * the ranks are to be equally spaced. This seems simpler and appears to work better than |
| 820 | * handling equal spacing as a special case. |
| 821 | */ |
| 822 | if (lbl && GD_flip(g)) { |
| 823 | adjustRanks(g, 0); |
| 824 | if (GD_exact_ranksep(g)) { /* recompute maxht */ |
| 825 | maxht = 0; |
| 826 | r = GD_maxrank(g); |
| 827 | d0 = (ND_coord(rank[r].v[0])).y; |
| 828 | while (--r >= GD_minrank(g)) { |
| 829 | d1 = (ND_coord(rank[r].v[0])).y; |
| 830 | delta = d1 - d0; |
| 831 | maxht = MAX(maxht, delta); |
| 832 | d0 = d1; |
| 833 | } |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | /* re-assign if ranks are equally spaced */ |
| 838 | if (GD_exact_ranksep(g)) { |
| 839 | for (r = GD_maxrank(g) - 1; r >= GD_minrank(g); r--) |
| 840 | if (rank[r].n > 0) /* this may reflect the same problem :-() */ |
| 841 | (ND_coord(rank[r].v[0])).y= |
| 842 | (ND_coord(rank[r + 1].v[0])).y + maxht; |
| 843 | } |
| 844 | |
| 845 | /* copy ycoord assignment from leftmost nodes to others */ |
| 846 | for (n = GD_nlist(g); n; n = ND_next(n)) |
| 847 | ND_coord(n).y = (ND_coord(rank[ND_rank(n)].v[0])).y; |
| 848 | } |
| 849 | |
| 850 | /* dot_compute_bb: |
| 851 | * Compute bounding box of g. |
| 852 | * The x limits of clusters are given by the x positions of ln and rn. |
| 853 | * This information is stored in the rank field, since it was calculated |
| 854 | * using network simplex. |
| 855 | * For the root graph, we don't enforce all the constraints on lr and |
| 856 | * rn, so we traverse the nodes and subclusters. |
| 857 | */ |
| 858 | static void dot_compute_bb(graph_t * g, graph_t * root) |
| 859 | { |
| 860 | int r, c; |
| 861 | double x, offset; |
| 862 | node_t *v; |
| 863 | pointf LL, UR; |
| 864 | |
| 865 | if (g == dot_root(g)) { |
| 866 | LL.x = (double)(INT_MAX); |
| 867 | UR.x = (double)(-INT_MAX); |
| 868 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 869 | int rnkn = GD_rank(g)[r].n; |
| 870 | if (rnkn == 0) |
| 871 | continue; |
| 872 | if ((v = GD_rank(g)[r].v[0]) == NULL) |
| 873 | continue; |
| 874 | for (c = 1; (ND_node_type(v) != NORMAL) && c < rnkn; c++) |
| 875 | v = GD_rank(g)[r].v[c]; |
| 876 | if (ND_node_type(v) == NORMAL) { |
| 877 | x = ND_coord(v).x - ND_lw(v); |
| 878 | LL.x = MIN(LL.x, x); |
| 879 | } |
| 880 | else continue; |
| 881 | /* At this point, we know the rank contains a NORMAL node */ |
| 882 | v = GD_rank(g)[r].v[rnkn - 1]; |
| 883 | for (c = rnkn-2; ND_node_type(v) != NORMAL; c--) |
| 884 | v = GD_rank(g)[r].v[c]; |
| 885 | x = ND_coord(v).x + ND_rw(v); |
| 886 | UR.x = MAX(UR.x, x); |
| 887 | } |
| 888 | offset = CL_OFFSET; |
| 889 | for (c = 1; c <= GD_n_cluster(g); c++) { |
| 890 | x = (double)(GD_bb(GD_clust(g)[c]).LL.x - offset); |
| 891 | LL.x = MIN(LL.x, x); |
| 892 | x = (double)(GD_bb(GD_clust(g)[c]).UR.x + offset); |
| 893 | UR.x = MAX(UR.x, x); |
| 894 | } |
| 895 | } else { |
| 896 | LL.x = (double)(ND_rank(GD_ln(g))); |
| 897 | UR.x = (double)(ND_rank(GD_rn(g))); |
| 898 | } |
| 899 | LL.y = ND_coord(GD_rank(root)[GD_maxrank(g)].v[0]).y - GD_ht1(g); |
| 900 | UR.y = ND_coord(GD_rank(root)[GD_minrank(g)].v[0]).y + GD_ht2(g); |
| 901 | GD_bb(g).LL = LL; |
| 902 | GD_bb(g).UR = UR; |
| 903 | } |
| 904 | |
| 905 | static void rec_bb(graph_t * g, graph_t * root) |
| 906 | { |
| 907 | int c; |
| 908 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 909 | rec_bb(GD_clust(g)[c], root); |
| 910 | dot_compute_bb(g, root); |
| 911 | } |
| 912 | |
| 913 | /* scale_bb: |
| 914 | * Recursively rescale all bounding boxes using scale factors |
| 915 | * xf and yf. We assume all the bboxes have been computed. |
| 916 | */ |
| 917 | static void scale_bb(graph_t * g, graph_t * root, double xf, double yf) |
| 918 | { |
| 919 | int c; |
| 920 | |
| 921 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 922 | scale_bb(GD_clust(g)[c], root, xf, yf); |
| 923 | GD_bb(g).LL.x *= xf; |
| 924 | GD_bb(g).LL.y *= yf; |
| 925 | GD_bb(g).UR.x *= xf; |
| 926 | GD_bb(g).UR.y *= yf; |
| 927 | } |
| 928 | |
| 929 | /* adjustAspectRatio: |
| 930 | */ |
| 931 | static void adjustAspectRatio (graph_t* g, aspect_t* asp) |
| 932 | { |
| 933 | double AR = (GD_bb(g).UR.x - GD_bb(g).LL.x)/(GD_bb(g).UR.y - GD_bb(g).LL.y); |
| 934 | if (Verbose) { |
| 935 | fprintf(stderr, "AR=%0.4lf\t Area= %0.4lf\t" , AR, (double)(GD_bb(g).UR.x - GD_bb(g).LL.x)*(GD_bb(g).UR.y - GD_bb(g).LL.y)/10000.0); |
| 936 | fprintf(stderr, "Dummy=%d\n" , countDummyNodes(g)); |
| 937 | } |
| 938 | if (AR > 1.1*asp->targetAR) { |
| 939 | asp->nextIter = (int)(asp->targetAR * (double)(asp->curIterations - asp->prevIterations)/(AR)); |
| 940 | } |
| 941 | else if (AR <= 0.8 * asp->targetAR) { |
| 942 | asp->nextIter = -1; |
| 943 | if (Verbose) |
| 944 | fprintf(stderr, "Going to apply another expansion.\n" ); |
| 945 | } |
| 946 | else { |
| 947 | asp->nextIter = 0; |
| 948 | } |
| 949 | if (Verbose) |
| 950 | fprintf(stderr, "next#iter=%d\n" , asp->nextIter); |
| 951 | } |
| 952 | |
| 953 | /* set_aspect: |
| 954 | * Set bounding boxes and, if ratio is set, rescale graph. |
| 955 | * Note that if some dimension shrinks, there may be problems |
| 956 | * with labels. |
| 957 | */ |
| 958 | static void set_aspect(graph_t * g, aspect_t* asp) |
| 959 | { |
| 960 | double xf = 0.0, yf = 0.0, actual, desired; |
| 961 | node_t *n; |
| 962 | boolean scale_it, filled; |
| 963 | point sz; |
| 964 | |
| 965 | rec_bb(g, g); |
| 966 | if ((GD_maxrank(g) > 0) && (GD_drawing(g)->ratio_kind)) { |
| 967 | sz.x = GD_bb(g).UR.x - GD_bb(g).LL.x; |
| 968 | sz.y = GD_bb(g).UR.y - GD_bb(g).LL.y; /* normalize */ |
| 969 | if (GD_flip(g)) { |
| 970 | int t = sz.x; |
| 971 | sz.x = sz.y; |
| 972 | sz.y = t; |
| 973 | } |
| 974 | scale_it = TRUE; |
| 975 | if (GD_drawing(g)->ratio_kind == R_AUTO) |
| 976 | filled = idealsize(g, .5); |
| 977 | else |
| 978 | filled = (GD_drawing(g)->ratio_kind == R_FILL); |
| 979 | if (filled) { |
| 980 | /* fill is weird because both X and Y can stretch */ |
| 981 | if (GD_drawing(g)->size.x <= 0) |
| 982 | scale_it = FALSE; |
| 983 | else { |
| 984 | xf = (double) GD_drawing(g)->size.x / (double) sz.x; |
| 985 | yf = (double) GD_drawing(g)->size.y / (double) sz.y; |
| 986 | if ((xf < 1.0) || (yf < 1.0)) { |
| 987 | if (xf < yf) { |
| 988 | yf = yf / xf; |
| 989 | xf = 1.0; |
| 990 | } else { |
| 991 | xf = xf / yf; |
| 992 | yf = 1.0; |
| 993 | } |
| 994 | } |
| 995 | } |
| 996 | } else if (GD_drawing(g)->ratio_kind == R_EXPAND) { |
| 997 | if (GD_drawing(g)->size.x <= 0) |
| 998 | scale_it = FALSE; |
| 999 | else { |
| 1000 | xf = (double) GD_drawing(g)->size.x / |
| 1001 | (double) GD_bb(g).UR.x; |
| 1002 | yf = (double) GD_drawing(g)->size.y / |
| 1003 | (double) GD_bb(g).UR.y; |
| 1004 | if ((xf > 1.0) && (yf > 1.0)) { |
| 1005 | double scale = MIN(xf, yf); |
| 1006 | xf = yf = scale; |
| 1007 | } else |
| 1008 | scale_it = FALSE; |
| 1009 | } |
| 1010 | } else if (GD_drawing(g)->ratio_kind == R_VALUE) { |
| 1011 | desired = GD_drawing(g)->ratio; |
| 1012 | actual = ((double) sz.y) / ((double) sz.x); |
| 1013 | if (actual < desired) { |
| 1014 | yf = desired / actual; |
| 1015 | xf = 1.0; |
| 1016 | } else { |
| 1017 | xf = actual / desired; |
| 1018 | yf = 1.0; |
| 1019 | } |
| 1020 | } else |
| 1021 | scale_it = FALSE; |
| 1022 | if (scale_it) { |
| 1023 | if (GD_flip(g)) { |
| 1024 | double t = xf; |
| 1025 | xf = yf; |
| 1026 | yf = t; |
| 1027 | } |
| 1028 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 1029 | ND_coord(n).x = ROUND(ND_coord(n).x * xf); |
| 1030 | ND_coord(n).y = ROUND(ND_coord(n).y * yf); |
| 1031 | } |
| 1032 | scale_bb(g, g, xf, yf); |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | if (asp) adjustAspectRatio (g, asp); |
| 1037 | } |
| 1038 | |
| 1039 | static point resize_leaf(node_t * leaf, point lbound) |
| 1040 | { |
| 1041 | gv_nodesize(leaf, GD_flip(agraphof(leaf))); |
| 1042 | ND_coord(leaf).y = lbound.y; |
| 1043 | ND_coord(leaf).x = lbound.x + ND_lw(leaf); |
| 1044 | lbound.x = lbound.x + ND_lw(leaf) + ND_rw(leaf) + GD_nodesep(agraphof(leaf)); |
| 1045 | return lbound; |
| 1046 | } |
| 1047 | |
| 1048 | static point place_leaf(graph_t* ing, node_t * leaf, point lbound, int order) |
| 1049 | { |
| 1050 | node_t *leader; |
| 1051 | graph_t *g = dot_root(ing); |
| 1052 | |
| 1053 | leader = UF_find(leaf); |
| 1054 | if (leaf != leader) |
| 1055 | fast_nodeapp(leader, leaf); |
| 1056 | ND_order(leaf) = order; |
| 1057 | ND_rank(leaf) = ND_rank(leader); |
| 1058 | GD_rank(g)[ND_rank(leaf)].v[ND_order(leaf)] = leaf; |
| 1059 | return resize_leaf(leaf, lbound); |
| 1060 | } |
| 1061 | |
| 1062 | /* make space for the leaf nodes of each rank */ |
| 1063 | static void make_leafslots(graph_t * g) |
| 1064 | { |
| 1065 | int i, j, r; |
| 1066 | node_t *v; |
| 1067 | |
| 1068 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 1069 | j = 0; |
| 1070 | for (i = 0; i < GD_rank(g)[r].n; i++) { |
| 1071 | v = GD_rank(g)[r].v[i]; |
| 1072 | ND_order(v) = j; |
| 1073 | if (ND_ranktype(v) == LEAFSET) |
| 1074 | j = j + ND_UF_size(v); |
| 1075 | else |
| 1076 | j++; |
| 1077 | } |
| 1078 | if (j <= GD_rank(g)[r].n) |
| 1079 | continue; |
| 1080 | GD_rank(g)[r].v = ALLOC(j + 1, GD_rank(g)[r].v, node_t *); |
| 1081 | for (i = GD_rank(g)[r].n - 1; i >= 0; i--) { |
| 1082 | v = GD_rank(g)[r].v[i]; |
| 1083 | GD_rank(g)[r].v[ND_order(v)] = v; |
| 1084 | } |
| 1085 | GD_rank(g)[r].n = j; |
| 1086 | GD_rank(g)[r].v[j] = NULL; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | static void do_leaves(graph_t * g, node_t * leader) |
| 1091 | { |
| 1092 | int j; |
| 1093 | point lbound; |
| 1094 | node_t *n; |
| 1095 | edge_t *e; |
| 1096 | |
| 1097 | if (ND_UF_size(leader) <= 1) |
| 1098 | return; |
| 1099 | lbound.x = ND_coord(leader).x - ND_lw(leader); |
| 1100 | lbound.y = ND_coord(leader).y; |
| 1101 | lbound = resize_leaf(leader, lbound); |
| 1102 | if (ND_out(leader).size > 0) { /* in-edge leaves */ |
| 1103 | n = aghead(ND_out(leader).list[0]); |
| 1104 | j = ND_order(leader) + 1; |
| 1105 | for (e = agfstin(g, n); e; e = agnxtin(g, e)) { |
| 1106 | edge_t *e1 = AGMKOUT(e); |
| 1107 | if ((agtail(e1) != leader) && (UF_find(agtail(e1)) == leader)) { |
| 1108 | lbound = place_leaf(g, agtail(e1), lbound, j++); |
| 1109 | unmerge_oneway(e1); |
| 1110 | elist_append(e1, ND_in(aghead(e1))); |
| 1111 | } |
| 1112 | } |
| 1113 | } else { /* out edge leaves */ |
| 1114 | n = agtail(ND_in(leader).list[0]); |
| 1115 | j = ND_order(leader) + 1; |
| 1116 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 1117 | if ((aghead(e) != leader) && (UF_find(aghead(e)) == leader)) { |
| 1118 | lbound = place_leaf(g, aghead(e), lbound, j++); |
| 1119 | unmerge_oneway(e); |
| 1120 | elist_append(e, ND_out(agtail(e))); |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | int ports_eq(edge_t * e, edge_t * f) |
| 1127 | { |
| 1128 | return ((ED_head_port(e).defined == ED_head_port(f).defined) |
| 1129 | && (((ED_head_port(e).p.x == ED_head_port(f).p.x) && |
| 1130 | (ED_head_port(e).p.y == ED_head_port(f).p.y)) |
| 1131 | || (ED_head_port(e).defined == FALSE)) |
| 1132 | && (((ED_tail_port(e).p.x == ED_tail_port(f).p.x) && |
| 1133 | (ED_tail_port(e).p.y == ED_tail_port(f).p.y)) |
| 1134 | || (ED_tail_port(e).defined == FALSE)) |
| 1135 | ); |
| 1136 | } |
| 1137 | |
| 1138 | static void expand_leaves(graph_t * g) |
| 1139 | { |
| 1140 | int i, d; |
| 1141 | node_t *n; |
| 1142 | edge_t *e, *f; |
| 1143 | |
| 1144 | make_leafslots(g); |
| 1145 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 1146 | if (ND_inleaf(n)) |
| 1147 | do_leaves(g, ND_inleaf(n)); |
| 1148 | if (ND_outleaf(n)) |
| 1149 | do_leaves(g, ND_outleaf(n)); |
| 1150 | if (ND_other(n).list) |
| 1151 | for (i = 0; (e = ND_other(n).list[i]); i++) { |
| 1152 | if ((d = ND_rank(aghead(e)) - ND_rank(aghead(e))) == 0) |
| 1153 | continue; |
| 1154 | f = ED_to_orig(e); |
| 1155 | if (ports_eq(e, f) == FALSE) { |
| 1156 | zapinlist(&(ND_other(n)), e); |
| 1157 | if (d == 1) |
| 1158 | fast_edge(e); |
| 1159 | /*else unitize(e); ### */ |
| 1160 | i--; |
| 1161 | } |
| 1162 | } |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | /* make_lrvn: |
| 1167 | * Add left and right slacknodes to a cluster which |
| 1168 | * are used in the LP to constrain nodes not in g but |
| 1169 | * sharing its ranks to be to the left or right of g |
| 1170 | * by a specified amount. |
| 1171 | * The slacknodes ln and rn give the x position of the |
| 1172 | * left and right side of the cluster's bounding box. In |
| 1173 | * particular, any cluster labels on the left or right side |
| 1174 | * are inside. |
| 1175 | * If a cluster has a label, and we have rankdir!=LR, we make |
| 1176 | * sure the cluster is wide enough for the label. Note that |
| 1177 | * if the label is wider than the cluster, the nodes in the |
| 1178 | * cluster may not be centered. |
| 1179 | */ |
| 1180 | static void make_lrvn(graph_t * g) |
| 1181 | { |
| 1182 | node_t *ln, *rn; |
| 1183 | |
| 1184 | if (GD_ln(g)) |
| 1185 | return; |
| 1186 | ln = virtual_node(dot_root(g)); |
| 1187 | ND_node_type(ln) = SLACKNODE; |
| 1188 | rn = virtual_node(dot_root(g)); |
| 1189 | ND_node_type(rn) = SLACKNODE; |
| 1190 | |
| 1191 | if (GD_label(g) && (g != dot_root(g)) && !GD_flip(agroot(g))) { |
| 1192 | int w = MAX(GD_border(g)[BOTTOM_IX].x, GD_border(g)[TOP_IX].x); |
| 1193 | make_aux_edge(ln, rn, w, 0); |
| 1194 | } |
| 1195 | |
| 1196 | GD_ln(g) = ln; |
| 1197 | GD_rn(g) = rn; |
| 1198 | } |
| 1199 | |
| 1200 | /* contain_nodes: |
| 1201 | * make left and right bounding box virtual nodes ln and rn |
| 1202 | * constrain interior nodes |
| 1203 | */ |
| 1204 | static void contain_nodes(graph_t * g) |
| 1205 | { |
| 1206 | int margin, r; |
| 1207 | node_t *ln, *rn, *v; |
| 1208 | |
| 1209 | margin = late_int (g, G_margin, CL_OFFSET, 0); |
| 1210 | make_lrvn(g); |
| 1211 | ln = GD_ln(g); |
| 1212 | rn = GD_rn(g); |
| 1213 | for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { |
| 1214 | if (GD_rank(g)[r].n == 0) |
| 1215 | continue; |
| 1216 | v = GD_rank(g)[r].v[0]; |
| 1217 | if (v == NULL) { |
| 1218 | agerr(AGERR, "contain_nodes clust %s rank %d missing node\n" , |
| 1219 | agnameof(g), r); |
| 1220 | continue; |
| 1221 | } |
| 1222 | make_aux_edge(ln, v, |
| 1223 | ND_lw(v) + margin + GD_border(g)[LEFT_IX].x, 0); |
| 1224 | v = GD_rank(g)[r].v[GD_rank(g)[r].n - 1]; |
| 1225 | make_aux_edge(v, rn, |
| 1226 | ND_rw(v) + margin + GD_border(g)[RIGHT_IX].x, 0); |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | /* idealsize: |
| 1231 | * set g->drawing->size to a reasonable default. |
| 1232 | * returns a boolean to indicate if drawing is to |
| 1233 | * be scaled and filled */ |
| 1234 | static boolean idealsize(graph_t * g, double minallowed) |
| 1235 | { |
| 1236 | double xf, yf, f, R; |
| 1237 | pointf b, relpage, margin; |
| 1238 | |
| 1239 | /* try for one page */ |
| 1240 | relpage = GD_drawing(g)->page; |
| 1241 | if (relpage.x < 0.001 || relpage.y < 0.001) |
| 1242 | return FALSE; /* no page was specified */ |
| 1243 | margin = GD_drawing(g)->margin; |
| 1244 | relpage = sub_pointf(relpage, margin); |
| 1245 | relpage = sub_pointf(relpage, margin); |
| 1246 | b.x = GD_bb(g).UR.x; |
| 1247 | b.y = GD_bb(g).UR.y; |
| 1248 | xf = relpage.x / b.x; |
| 1249 | yf = relpage.y / b.y; |
| 1250 | if ((xf >= 1.0) && (yf >= 1.0)) |
| 1251 | return FALSE; /* fits on one page */ |
| 1252 | |
| 1253 | f = MIN(xf, yf); |
| 1254 | xf = yf = MAX(f, minallowed); |
| 1255 | |
| 1256 | R = ceil((xf * b.x) / relpage.x); |
| 1257 | xf = ((R * relpage.x) / b.x); |
| 1258 | R = ceil((yf * b.y) / relpage.y); |
| 1259 | yf = ((R * relpage.y) / b.y); |
| 1260 | GD_drawing(g)->size.x = b.x * xf; |
| 1261 | GD_drawing(g)->size.y = b.y * yf; |
| 1262 | return TRUE; |
| 1263 | } |
| 1264 | |