| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /* |
| 16 | * Rank the nodes of a directed graph, subject to user-defined |
| 17 | * sets of nodes to be kept on the same, min, or max rank. |
| 18 | * The temporary acyclic fast graph is constructed and ranked |
| 19 | * by a network-simplex technique. Then ranks are propagated |
| 20 | * to non-leader nodes and temporary edges are deleted. |
| 21 | * Leaf nodes and top-level clusters are left collapsed, though. |
| 22 | * Assigns global minrank and maxrank of graph and all clusters. |
| 23 | * |
| 24 | * TODO: safety code. must not be in two clusters at same level. |
| 25 | * must not be in same/min/max/rank and a cluster at the same time. |
| 26 | * watch out for interactions between leaves and clusters. |
| 27 | */ |
| 28 | |
| 29 | #include "dot.h" |
| 30 | |
| 31 | static void dot1_rank(graph_t * g, aspect_t* asp); |
| 32 | static void dot2_rank(graph_t * g, aspect_t* asp); |
| 33 | |
| 34 | static void |
| 35 | renewlist(elist * L) |
| 36 | { |
| 37 | int i; |
| 38 | for (i = L->size; i >= 0; i--) |
| 39 | L->list[i] = NULL; |
| 40 | L->size = 0; |
| 41 | } |
| 42 | |
| 43 | static void |
| 44 | cleanup1(graph_t * g) |
| 45 | { |
| 46 | node_t *n; |
| 47 | edge_t *e, *f; |
| 48 | int c; |
| 49 | |
| 50 | for (c = 0; c < GD_comp(g).size; c++) { |
| 51 | GD_nlist(g) = GD_comp(g).list[c]; |
| 52 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 53 | renewlist(&ND_in(n)); |
| 54 | renewlist(&ND_out(n)); |
| 55 | ND_mark(n) = FALSE; |
| 56 | } |
| 57 | } |
| 58 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 59 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 60 | f = ED_to_virt(e); |
| 61 | /* Null out any other references to f to make sure we don't |
| 62 | * handle it a second time. For example, parallel multiedges |
| 63 | * share a virtual edge. |
| 64 | */ |
| 65 | if (f && (e == ED_to_orig(f))) { |
| 66 | edge_t *e1, *f1; |
| 67 | node_t *n1; |
| 68 | for (n1 = agfstnode(g); n1; n1 = agnxtnode(g, n1)) { |
| 69 | for (e1 = agfstout(g, n1); e1; e1 = agnxtout(g, e1)) { |
| 70 | if (e != e1) { |
| 71 | f1 = ED_to_virt(e1); |
| 72 | if (f1 && (f == f1)) { |
| 73 | ED_to_virt(e1) = NULL; |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | free(f->base.data); |
| 79 | free(f); |
| 80 | } |
| 81 | ED_to_virt(e) = NULL; |
| 82 | } |
| 83 | } |
| 84 | free(GD_comp(g).list); |
| 85 | GD_comp(g).list = NULL; |
| 86 | GD_comp(g).size = 0; |
| 87 | } |
| 88 | |
| 89 | /* When there are edge labels, extra ranks are reserved here for the virtual |
| 90 | * nodes of the labels. This is done by doubling the input edge lengths. |
| 91 | * The input rank separation is adjusted to compensate. |
| 92 | */ |
| 93 | static void |
| 94 | edgelabel_ranks(graph_t * g) |
| 95 | { |
| 96 | node_t *n; |
| 97 | edge_t *e; |
| 98 | |
| 99 | if (GD_has_labels(g) & EDGE_LABEL) { |
| 100 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 101 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) |
| 102 | ED_minlen(e) *= 2; |
| 103 | GD_ranksep(g) = (GD_ranksep(g) + 1) / 2; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | /* Merge the nodes of a min, max, or same rank set. */ |
| 108 | static void |
| 109 | collapse_rankset(graph_t * g, graph_t * subg, int kind) |
| 110 | { |
| 111 | node_t *u, *v; |
| 112 | |
| 113 | u = v = agfstnode(subg); |
| 114 | if (u) { |
| 115 | ND_ranktype(u) = kind; |
| 116 | while ((v = agnxtnode(subg, v))) { |
| 117 | UF_union(u, v); |
| 118 | ND_ranktype(v) = ND_ranktype(u); |
| 119 | } |
| 120 | switch (kind) { |
| 121 | case MINRANK: |
| 122 | case SOURCERANK: |
| 123 | if (GD_minset(g) == NULL) |
| 124 | GD_minset(g) = u; |
| 125 | else |
| 126 | GD_minset(g) = UF_union(GD_minset(g), u); |
| 127 | break; |
| 128 | case MAXRANK: |
| 129 | case SINKRANK: |
| 130 | if (GD_maxset(g) == NULL) |
| 131 | GD_maxset(g) = u; |
| 132 | else |
| 133 | GD_maxset(g) = UF_union(GD_maxset(g), u); |
| 134 | break; |
| 135 | } |
| 136 | switch (kind) { |
| 137 | case SOURCERANK: |
| 138 | ND_ranktype(GD_minset(g)) = kind; |
| 139 | break; |
| 140 | case SINKRANK: |
| 141 | ND_ranktype(GD_maxset(g)) = kind; |
| 142 | break; |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | static int |
| 148 | rank_set_class(graph_t * g) |
| 149 | { |
| 150 | static char *name[] = { "same" , "min" , "source" , "max" , "sink" , NULL }; |
| 151 | static int class[] = |
| 152 | { SAMERANK, MINRANK, SOURCERANK, MAXRANK, SINKRANK, 0 }; |
| 153 | int val; |
| 154 | |
| 155 | if (is_cluster(g)) |
| 156 | return CLUSTER; |
| 157 | val = maptoken(agget(g, "rank" ), name, class); |
| 158 | GD_set_type(g) = val; |
| 159 | return val; |
| 160 | } |
| 161 | |
| 162 | static int |
| 163 | make_new_cluster(graph_t * g, graph_t * subg) |
| 164 | { |
| 165 | int cno; |
| 166 | cno = ++(GD_n_cluster(g)); |
| 167 | GD_clust(g) = ZALLOC(cno + 1, GD_clust(g), graph_t *, GD_n_cluster(g)); |
| 168 | GD_clust(g)[cno] = subg; |
| 169 | do_graph_label(subg); |
| 170 | return cno; |
| 171 | } |
| 172 | |
| 173 | static void |
| 174 | node_induce(graph_t * par, graph_t * g) |
| 175 | { |
| 176 | node_t *n, *nn; |
| 177 | edge_t *e; |
| 178 | int i; |
| 179 | |
| 180 | /* enforce that a node is in at most one cluster at this level */ |
| 181 | for (n = agfstnode(g); n; n = nn) { |
| 182 | nn = agnxtnode(g, n); |
| 183 | if (ND_ranktype(n)) { |
| 184 | agdelete(g, n); |
| 185 | continue; |
| 186 | } |
| 187 | for (i = 1; i < GD_n_cluster(par); i++) |
| 188 | if (agcontains(GD_clust(par)[i], n)) |
| 189 | break; |
| 190 | if (i < GD_n_cluster(par)) |
| 191 | agdelete(g, n); |
| 192 | ND_clust(n) = NULL; |
| 193 | } |
| 194 | |
| 195 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 196 | for (e = agfstout(dot_root(g), n); e; e = agnxtout(dot_root(g), e)) { |
| 197 | if (agcontains(g, aghead(e))) |
| 198 | agsubedge(g,e,1); |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | void |
| 204 | dot_scan_ranks(graph_t * g) |
| 205 | { |
| 206 | node_t *n, *leader = NULL; |
| 207 | GD_minrank(g) = MAXSHORT; |
| 208 | GD_maxrank(g) = -1; |
| 209 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 210 | if (GD_maxrank(g) < ND_rank(n)) |
| 211 | GD_maxrank(g) = ND_rank(n); |
| 212 | if (GD_minrank(g) > ND_rank(n)) |
| 213 | GD_minrank(g) = ND_rank(n); |
| 214 | if (leader == NULL) |
| 215 | leader = n; |
| 216 | else { |
| 217 | if (ND_rank(n) < ND_rank(leader)) |
| 218 | leader = n; |
| 219 | } |
| 220 | } |
| 221 | GD_leader(g) = leader; |
| 222 | } |
| 223 | |
| 224 | static void |
| 225 | cluster_leader(graph_t * clust) |
| 226 | { |
| 227 | node_t *leader, *n; |
| 228 | int maxrank = 0; |
| 229 | |
| 230 | /* find number of ranks and select a leader */ |
| 231 | leader = NULL; |
| 232 | for (n = GD_nlist(clust); n; n = ND_next(n)) { |
| 233 | if ((ND_rank(n) == 0) && (ND_node_type(n) == NORMAL)) |
| 234 | leader = n; |
| 235 | if (maxrank < ND_rank(n)) |
| 236 | maxrank = ND_rank(n); |
| 237 | } |
| 238 | assert(leader != NULL); |
| 239 | GD_leader(clust) = leader; |
| 240 | |
| 241 | for (n = agfstnode(clust); n; n = agnxtnode(clust, n)) { |
| 242 | assert((ND_UF_size(n) <= 1) || (n == leader)); |
| 243 | UF_union(n, leader); |
| 244 | ND_ranktype(n) = CLUSTER; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * A cluster is collapsed in three steps. |
| 250 | * 1) The nodes of the cluster are ranked locally. |
| 251 | * 2) The cluster is collapsed into one node on the least rank. |
| 252 | * 3) In class1(), any inter-cluster edges are converted using |
| 253 | * the "virtual node + 2 edges" trick. |
| 254 | */ |
| 255 | static void |
| 256 | collapse_cluster(graph_t * g, graph_t * subg) |
| 257 | { |
| 258 | if (GD_parent(subg)) { |
| 259 | return; |
| 260 | } |
| 261 | GD_parent(subg) = g; |
| 262 | node_induce(g, subg); |
| 263 | if (agfstnode(subg) == NULL) |
| 264 | return; |
| 265 | make_new_cluster(g, subg); |
| 266 | if (CL_type == LOCAL) { |
| 267 | dot1_rank(subg, 0); |
| 268 | cluster_leader(subg); |
| 269 | } else |
| 270 | dot_scan_ranks(subg); |
| 271 | } |
| 272 | |
| 273 | /* Execute union commands for "same rank" subgraphs and clusters. */ |
| 274 | static void |
| 275 | collapse_sets(graph_t *rg, graph_t *g) |
| 276 | { |
| 277 | int c; |
| 278 | graph_t *subg; |
| 279 | #ifdef OBSOLETE |
| 280 | node_t *n; |
| 281 | #endif |
| 282 | |
| 283 | for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) { |
| 284 | c = rank_set_class(subg); |
| 285 | if (c) { |
| 286 | if ((c == CLUSTER) && CL_type == LOCAL) |
| 287 | collapse_cluster(rg, subg); |
| 288 | else |
| 289 | collapse_rankset(rg, subg, c); |
| 290 | } |
| 291 | else collapse_sets(rg, subg); |
| 292 | |
| 293 | #ifdef OBSOLETE |
| 294 | Collapsing leaves is currently obsolete |
| 295 | |
| 296 | /* mark nodes with ordered edges so their leaves are not collapsed */ |
| 297 | if (agget(subg, "ordering" )) |
| 298 | for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) |
| 299 | ND_order(n) = 1; |
| 300 | #endif |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | static void |
| 305 | find_clusters(graph_t * g) |
| 306 | { |
| 307 | graph_t *subg; |
| 308 | for (subg = agfstsubg(dot_root(g)); subg; subg = agnxtsubg(subg)) { |
| 309 | if (GD_set_type(subg) == CLUSTER) |
| 310 | collapse_cluster(g, subg); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | static void |
| 315 | set_minmax(graph_t * g) |
| 316 | { |
| 317 | int c; |
| 318 | |
| 319 | GD_minrank(g) += ND_rank(GD_leader(g)); |
| 320 | GD_maxrank(g) += ND_rank(GD_leader(g)); |
| 321 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 322 | set_minmax(GD_clust(g)[c]); |
| 323 | } |
| 324 | |
| 325 | /* To ensure that min and max rank nodes always have the intended rank |
| 326 | * assignment, reverse any incompatible edges. |
| 327 | */ |
| 328 | static point |
| 329 | minmax_edges(graph_t * g) |
| 330 | { |
| 331 | node_t *n; |
| 332 | edge_t *e; |
| 333 | point slen; |
| 334 | |
| 335 | slen.x = slen.y = 0; |
| 336 | if ((GD_maxset(g) == NULL) && (GD_minset(g) == NULL)) |
| 337 | return slen; |
| 338 | if (GD_minset(g) != NULL) |
| 339 | GD_minset(g) = UF_find(GD_minset(g)); |
| 340 | if (GD_maxset(g) != NULL) |
| 341 | GD_maxset(g) = UF_find(GD_maxset(g)); |
| 342 | |
| 343 | if ((n = GD_maxset(g))) { |
| 344 | slen.y = (ND_ranktype(GD_maxset(g)) == SINKRANK); |
| 345 | while ((e = ND_out(n).list[0])) { |
| 346 | assert(aghead(e) == UF_find(aghead(e))); |
| 347 | reverse_edge(e); |
| 348 | } |
| 349 | } |
| 350 | if ((n = GD_minset(g))) { |
| 351 | slen.x = (ND_ranktype(GD_minset(g)) == SOURCERANK); |
| 352 | while ((e = ND_in(n).list[0])) { |
| 353 | assert(agtail(e) == UF_find(agtail(e))); |
| 354 | reverse_edge(e); |
| 355 | } |
| 356 | } |
| 357 | return slen; |
| 358 | } |
| 359 | |
| 360 | static int |
| 361 | minmax_edges2(graph_t * g, point slen) |
| 362 | { |
| 363 | node_t *n; |
| 364 | edge_t *e = 0; |
| 365 | |
| 366 | if ((GD_maxset(g)) || (GD_minset(g))) { |
| 367 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 368 | if (n != UF_find(n)) |
| 369 | continue; |
| 370 | if ((ND_out(n).size == 0) && GD_maxset(g) && (n != GD_maxset(g))) { |
| 371 | e = virtual_edge(n, GD_maxset(g), NULL); |
| 372 | ED_minlen(e) = slen.y; |
| 373 | ED_weight(e) = 0; |
| 374 | } |
| 375 | if ((ND_in(n).size == 0) && GD_minset(g) && (n != GD_minset(g))) { |
| 376 | e = virtual_edge(GD_minset(g), n, NULL); |
| 377 | ED_minlen(e) = slen.x; |
| 378 | ED_weight(e) = 0; |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | return (e != 0); |
| 383 | } |
| 384 | |
| 385 | /* Run the network simplex algorithm on each component. */ |
| 386 | void rank1(graph_t * g) |
| 387 | { |
| 388 | int maxiter = INT_MAX; |
| 389 | int c; |
| 390 | char *s; |
| 391 | |
| 392 | if ((s = agget(g, "nslimit1" ))) |
| 393 | maxiter = atof(s) * agnnodes(g); |
| 394 | for (c = 0; c < GD_comp(g).size; c++) { |
| 395 | GD_nlist(g) = GD_comp(g).list[c]; |
| 396 | rank(g, (GD_n_cluster(g) == 0 ? 1 : 0), maxiter); /* TB balance */ |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * Assigns ranks of non-leader nodes. |
| 402 | * Expands same, min, max rank sets. |
| 403 | * Leaf sets and clusters remain merged. |
| 404 | * Sets minrank and maxrank appropriately. |
| 405 | */ |
| 406 | static void expand_ranksets(graph_t * g, aspect_t* asp) |
| 407 | { |
| 408 | int c; |
| 409 | node_t *n, *leader; |
| 410 | |
| 411 | if ((n = agfstnode(g))) { |
| 412 | GD_minrank(g) = MAXSHORT; |
| 413 | GD_maxrank(g) = -1; |
| 414 | while (n) { |
| 415 | leader = UF_find(n); |
| 416 | /* The following works because ND_rank(n) == 0 if n is not in a |
| 417 | * cluster, and ND_rank(n) = the local rank offset if n is in |
| 418 | * a cluster. */ |
| 419 | if ((leader != n) && (!asp || (ND_rank(n) == 0))) |
| 420 | ND_rank(n) += ND_rank(leader); |
| 421 | |
| 422 | if (GD_maxrank(g) < ND_rank(n)) |
| 423 | GD_maxrank(g) = ND_rank(n); |
| 424 | if (GD_minrank(g) > ND_rank(n)) |
| 425 | GD_minrank(g) = ND_rank(n); |
| 426 | |
| 427 | if (ND_ranktype(n) && (ND_ranktype(n) != LEAFSET)) |
| 428 | UF_singleton(n); |
| 429 | n = agnxtnode(g, n); |
| 430 | } |
| 431 | if (g == dot_root(g)) { |
| 432 | if (CL_type == LOCAL) { |
| 433 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 434 | set_minmax(GD_clust(g)[c]); |
| 435 | } else { |
| 436 | find_clusters(g); |
| 437 | } |
| 438 | } |
| 439 | } else { |
| 440 | GD_minrank(g) = GD_maxrank(g) = 0; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | #ifdef ALLOW_LEVELS |
| 445 | void |
| 446 | setRanks (graph_t* g, attrsym_t* lsym) |
| 447 | { |
| 448 | node_t* n; |
| 449 | char* s; |
| 450 | char* ep; |
| 451 | long v; |
| 452 | |
| 453 | for (n = agfstnode(g); n; n = agnxtnode(g,n)) { |
| 454 | s = agxget (n, lsym); |
| 455 | v = strtol (s, &ep, 10); |
| 456 | if (ep == s) |
| 457 | agerr(AGWARN, "no level attribute for node \"%s\"\n" , agnameof(n)); |
| 458 | ND_rank(n) = v; |
| 459 | } |
| 460 | } |
| 461 | #endif |
| 462 | |
| 463 | #ifdef UNUSED |
| 464 | static node_t **virtualEdgeHeadList = NULL; |
| 465 | static node_t **virtualEdgeTailList = NULL; |
| 466 | static int nVirtualEdges = 0; |
| 467 | |
| 468 | static void |
| 469 | saveVirtualEdges(graph_t *g) |
| 470 | { |
| 471 | edge_t *e; |
| 472 | node_t *n; |
| 473 | int cnt = 0; |
| 474 | int lc; |
| 475 | |
| 476 | if (virtualEdgeHeadList != NULL) { |
| 477 | free(virtualEdgeHeadList); |
| 478 | } |
| 479 | if (virtualEdgeTailList != NULL) { |
| 480 | free(virtualEdgeTailList); |
| 481 | } |
| 482 | |
| 483 | /* allocate memory */ |
| 484 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 485 | for (lc = 0; lc < ND_in(n).size; lc++) { |
| 486 | e = ND_in(n).list[lc]; |
| 487 | if (ED_edge_type(e) == VIRTUAL) cnt++; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | nVirtualEdges = cnt; |
| 492 | virtualEdgeHeadList = N_GNEW(cnt, node_t*); |
| 493 | virtualEdgeTailList = N_GNEW(cnt, node_t*); |
| 494 | |
| 495 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 496 | for (lc = 0, cnt = 0; lc < ND_in(n).size; lc++) { |
| 497 | e = ND_in(n).list[lc]; |
| 498 | if (ED_edge_type(e) == VIRTUAL) { |
| 499 | virtualEdgeHeadList[cnt] = e->head; |
| 500 | virtualEdgeTailList[cnt] = e->tail; |
| 501 | if (Verbose) |
| 502 | printf("saved virtual edge: %s->%s\n" , |
| 503 | virtualEdgeTailList[cnt]->name, |
| 504 | virtualEdgeHeadList[cnt]->name); |
| 505 | cnt++; |
| 506 | } |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | static void |
| 512 | restoreVirtualEdges(graph_t *g) |
| 513 | { |
| 514 | int i; |
| 515 | edge_t e; |
| 516 | |
| 517 | for (i = 0; i < nVirtualEdges; i++) { |
| 518 | if (virtualEdgeTailList[i] && virtualEdgeHeadList[i]) { |
| 519 | if (Verbose) |
| 520 | printf("restoring virtual edge: %s->%s\n" , |
| 521 | virtualEdgeTailList[i]->name, virtualEdgeHeadList[i]->name); |
| 522 | virtual_edge(virtualEdgeTailList[i], virtualEdgeHeadList[i], NULL); |
| 523 | } |
| 524 | } |
| 525 | if (Verbose) |
| 526 | printf("restored %d virt edges\n" , nVirtualEdges); |
| 527 | } |
| 528 | #endif |
| 529 | |
| 530 | /* dot1_rank: |
| 531 | * asp != NULL => g is root |
| 532 | */ |
| 533 | static void dot1_rank(graph_t * g, aspect_t* asp) |
| 534 | { |
| 535 | point p; |
| 536 | #ifdef ALLOW_LEVELS |
| 537 | attrsym_t* N_level; |
| 538 | #endif |
| 539 | edgelabel_ranks(g); |
| 540 | |
| 541 | if (asp) { |
| 542 | init_UF_size(g); |
| 543 | initEdgeTypes(g); |
| 544 | } |
| 545 | |
| 546 | collapse_sets(g,g); |
| 547 | /*collapse_leaves(g); */ |
| 548 | class1(g); |
| 549 | p = minmax_edges(g); |
| 550 | decompose(g, 0); |
| 551 | if (asp && ((GD_comp(g).size > 1)||(GD_n_cluster(g) > 0))) { |
| 552 | asp->badGraph = 1; |
| 553 | asp = NULL; |
| 554 | } |
| 555 | acyclic(g); |
| 556 | if (minmax_edges2(g, p)) |
| 557 | decompose(g, 0); |
| 558 | #ifdef ALLOW_LEVELS |
| 559 | if ((N_level = agattr(g,AGNODE,"level" ,NULL))) |
| 560 | setRanks(g, N_level); |
| 561 | else |
| 562 | #endif |
| 563 | |
| 564 | if (asp) |
| 565 | rank3(g, asp); |
| 566 | else |
| 567 | rank1(g); |
| 568 | |
| 569 | expand_ranksets(g, asp); |
| 570 | cleanup1(g); |
| 571 | } |
| 572 | |
| 573 | void dot_rank(graph_t * g, aspect_t* asp) |
| 574 | { |
| 575 | if (agget (g, "newrank" )) { |
| 576 | GD_flags(g) |= NEW_RANK; |
| 577 | dot2_rank (g, asp); |
| 578 | } |
| 579 | else |
| 580 | dot1_rank (g, asp); |
| 581 | if (Verbose) |
| 582 | fprintf (stderr, "Maxrank = %d, minrank = %d\n" , GD_maxrank(g), GD_minrank(g)); |
| 583 | } |
| 584 | |
| 585 | int is_cluster(graph_t * g) |
| 586 | { |
| 587 | //return (strncmp(agnameof(g), "cluster", 7) == 0); |
| 588 | return is_a_cluster(g); // from utils.c |
| 589 | } |
| 590 | |
| 591 | #ifdef OBSOLETE |
| 592 | static node_t* |
| 593 | merge_leaves(graph_t * g, node_t * cur, node_t * new) |
| 594 | { |
| 595 | node_t *rv; |
| 596 | |
| 597 | if (cur == NULL) |
| 598 | rv = new; |
| 599 | else { |
| 600 | rv = UF_union(cur, new); |
| 601 | ND_ht(rv) = MAX(ND_ht(cur), ND_ht(new)); |
| 602 | ND_lw(rv) = ND_lw(cur) + ND_lw(new) + GD_nodesep(g) / 2; |
| 603 | ND_rw(rv) = ND_rw(cur) + ND_rw(new) + GD_nodesep(g) / 2; |
| 604 | } |
| 605 | return rv; |
| 606 | } |
| 607 | |
| 608 | static void |
| 609 | potential_leaf(graph_t * g, edge_t * e, node_t * leaf) |
| 610 | { |
| 611 | node_t *par; |
| 612 | |
| 613 | if ((ED_tail_port(e).p.x) || (ED_head_port(e).p.x)) |
| 614 | return; |
| 615 | if ((ED_minlen(e) != 1) || (ND_order(agtail(e)) > 0)) |
| 616 | return; |
| 617 | par = ((leaf != aghead(e)) ? aghead(e) : agtail(e)); |
| 618 | ND_ranktype(leaf) = LEAFSET; |
| 619 | if (par == agtail(e)) |
| 620 | GD_outleaf(par) = merge_leaves(g, GD_outleaf(par), leaf); |
| 621 | else |
| 622 | GD_inleaf(par) = merge_leaves(g, GD_inleaf(par), leaf); |
| 623 | } |
| 624 | |
| 625 | static void |
| 626 | collapse_leaves(graph_t * g) |
| 627 | { |
| 628 | node_t *n; |
| 629 | edge_t *e; |
| 630 | |
| 631 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 632 | |
| 633 | /* consider n as a potential leaf of some other node. */ |
| 634 | if ((ND_ranktype(n) != NOCMD) || (ND_order(n))) |
| 635 | continue; |
| 636 | if (agfstout(g, n) == NULL) { |
| 637 | if ((e = agfstin(g, n)) && (agnxtin(g, e) == NULL)) { |
| 638 | potential_leaf(g, AGMKOUT(e), n); |
| 639 | continue; |
| 640 | } |
| 641 | } |
| 642 | if (agfstin(g, n) == NULL) { |
| 643 | if ((e = agfstout(g, n)) && (agnxtout(g, e) == NULL)) { |
| 644 | potential_leaf(g, e, n); |
| 645 | continue; |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | } |
| 650 | #endif |
| 651 | |
| 652 | /* new ranking code: |
| 653 | * Allows more constraints |
| 654 | * Copy of level.c in dotgen2 |
| 655 | * Many of the utility functions are simpler or gone with |
| 656 | * cgraph library. |
| 657 | */ |
| 658 | #define BACKWARD_PENALTY 1000 |
| 659 | #define STRONG_CLUSTER_WEIGHT 1000 |
| 660 | #define NORANK 6 |
| 661 | #define ROOT "\177root" |
| 662 | #define TOPNODE "\177top" |
| 663 | #define BOTNODE "\177bot" |
| 664 | |
| 665 | /* hops is not used in dot, so we overload it to |
| 666 | * contain the index of the connected component |
| 667 | */ |
| 668 | #define ND_comp(n) ND_hops(n) |
| 669 | |
| 670 | extern int rank2(Agraph_t *, int, int, int); |
| 671 | |
| 672 | static void set_parent(graph_t* g, graph_t* p) |
| 673 | { |
| 674 | GD_parent(g) = p; |
| 675 | make_new_cluster(p, g); |
| 676 | node_induce(p, g); |
| 677 | } |
| 678 | |
| 679 | static int is_empty(graph_t * g) |
| 680 | { |
| 681 | return (!agfstnode(g)); |
| 682 | } |
| 683 | |
| 684 | static int is_a_strong_cluster(graph_t * g) |
| 685 | { |
| 686 | int rv; |
| 687 | char *str = agget(g, "compact" ); |
| 688 | /* rv = mapBool((str), TRUE); */ |
| 689 | rv = mapBool((str), FALSE); |
| 690 | return rv; |
| 691 | } |
| 692 | |
| 693 | static int rankset_kind(graph_t * g) |
| 694 | { |
| 695 | char *str = agget(g, "rank" ); |
| 696 | |
| 697 | if (str && str[0]) { |
| 698 | if (!strcmp(str, "min" )) |
| 699 | return MINRANK; |
| 700 | if (!strcmp(str, "source" )) |
| 701 | return SOURCERANK; |
| 702 | if (!strcmp(str, "max" )) |
| 703 | return MAXRANK; |
| 704 | if (!strcmp(str, "sink" )) |
| 705 | return SINKRANK; |
| 706 | if (!strcmp(str, "same" )) |
| 707 | return SAMERANK; |
| 708 | } |
| 709 | return NORANK; |
| 710 | } |
| 711 | |
| 712 | static int is_nonconstraint(edge_t * e) |
| 713 | { |
| 714 | char *constr; |
| 715 | |
| 716 | if (E_constr && (constr = agxget(e, E_constr))) { |
| 717 | if (constr[0] && mapbool(constr) == FALSE) |
| 718 | return TRUE; |
| 719 | } |
| 720 | return FALSE; |
| 721 | } |
| 722 | |
| 723 | static node_t *find(node_t * n) |
| 724 | { |
| 725 | node_t *set; |
| 726 | if ((set = ND_set(n))) { |
| 727 | if (set != n) |
| 728 | set = ND_set(n) = find(set); |
| 729 | } else |
| 730 | set = ND_set(n) = n; |
| 731 | return set; |
| 732 | } |
| 733 | |
| 734 | static node_t *union_one(node_t * leader, node_t * n) |
| 735 | { |
| 736 | if (n) |
| 737 | return (ND_set(find(n)) = find(leader)); |
| 738 | else |
| 739 | return leader; |
| 740 | } |
| 741 | |
| 742 | static node_t *union_all(graph_t * g) |
| 743 | { |
| 744 | node_t *n, *leader; |
| 745 | |
| 746 | n = agfstnode(g); |
| 747 | if (!n) |
| 748 | return n; |
| 749 | leader = find(n); |
| 750 | while ((n = agnxtnode(g, n))) |
| 751 | union_one(leader, n); |
| 752 | return leader; |
| 753 | } |
| 754 | |
| 755 | static void compile_samerank(graph_t * ug, graph_t * parent_clust) |
| 756 | { |
| 757 | graph_t *s; /* subgraph being scanned */ |
| 758 | graph_t *clust; /* cluster that contains the rankset */ |
| 759 | node_t *n, *leader; |
| 760 | |
| 761 | if (is_empty(ug)) |
| 762 | return; |
| 763 | if (is_a_cluster(ug)) { |
| 764 | clust = ug; |
| 765 | if (parent_clust) { |
| 766 | GD_level(ug) = GD_level(parent_clust) + 1; |
| 767 | set_parent(ug, parent_clust); |
| 768 | } |
| 769 | else |
| 770 | GD_level(ug) = 0; |
| 771 | } else |
| 772 | clust = parent_clust; |
| 773 | |
| 774 | /* process subgraphs of this subgraph */ |
| 775 | for (s = agfstsubg(ug); s; s = agnxtsubg(s)) |
| 776 | compile_samerank(s, clust); |
| 777 | |
| 778 | /* process this subgraph as a cluster */ |
| 779 | if (is_a_cluster(ug)) { |
| 780 | for (n = agfstnode(ug); n; n = agnxtnode(ug, n)) { |
| 781 | if (ND_clust(n) == 0) |
| 782 | ND_clust(n) = ug; |
| 783 | #ifdef DEBUG |
| 784 | fprintf(stderr, "(%s) %s %p\n" , agnameof(ug), agnameof(n), |
| 785 | ND_clust(n)); |
| 786 | #endif |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | /* process this subgraph as a rankset */ |
| 791 | switch (rankset_kind(ug)) { |
| 792 | case SOURCERANK: |
| 793 | GD_has_sourcerank(clust) = TRUE; /* fall through */ |
| 794 | case MINRANK: |
| 795 | leader = union_all(ug); |
| 796 | GD_minrep(clust) = union_one(leader, GD_minrep(clust)); |
| 797 | break; |
| 798 | case SINKRANK: |
| 799 | GD_has_sinkrank(clust) = TRUE; /* fall through */ |
| 800 | case MAXRANK: |
| 801 | leader = union_all(ug); |
| 802 | GD_maxrep(clust) = union_one(leader, GD_maxrep(clust)); |
| 803 | break; |
| 804 | case SAMERANK: |
| 805 | leader = union_all(ug); |
| 806 | /* do we need to record these ranksets? */ |
| 807 | break; |
| 808 | case NORANK: |
| 809 | break; |
| 810 | default: /* unrecognized - warn and do nothing */ |
| 811 | agerr(AGWARN, "%s has unrecognized rank=%s" , agnameof(ug), |
| 812 | agget(ug, "rank" )); |
| 813 | } |
| 814 | |
| 815 | /* a cluster may become degenerate */ |
| 816 | if (is_a_cluster(ug) && GD_minrep(ug)) { |
| 817 | if (GD_minrep(ug) == GD_maxrep(ug)) { |
| 818 | node_t *up = union_all(ug); |
| 819 | GD_minrep(ug) = up; |
| 820 | GD_maxrep(ug) = up; |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | static graph_t *dot_lca(graph_t * c0, graph_t * c1) |
| 826 | { |
| 827 | while (c0 != c1) { |
| 828 | if (GD_level(c0) >= GD_level(c1)) |
| 829 | c0 = GD_parent(c0); |
| 830 | else |
| 831 | c1 = GD_parent(c1); |
| 832 | } |
| 833 | return c0; |
| 834 | } |
| 835 | |
| 836 | static int is_internal_to_cluster(edge_t * e) |
| 837 | { |
| 838 | graph_t *par, *ct, *ch; |
| 839 | ct = ND_clust(agtail(e)); |
| 840 | ch = ND_clust(aghead(e)); |
| 841 | if (ct == ch) |
| 842 | return TRUE; |
| 843 | par = dot_lca(ct, ch); |
| 844 | /* if (par == agroot(par)) */ |
| 845 | /* return FALSE; */ |
| 846 | if ((par == ct) || (par == ch)) |
| 847 | return TRUE; |
| 848 | return FALSE; |
| 849 | } |
| 850 | |
| 851 | static node_t* Last_node; |
| 852 | static node_t* makeXnode (graph_t* G, char* name) |
| 853 | { |
| 854 | node_t *n = agnode(G, name, 1); |
| 855 | alloc_elist(4, ND_in(n)); |
| 856 | alloc_elist(4, ND_out(n)); |
| 857 | if (Last_node) { |
| 858 | ND_prev(n) = Last_node; |
| 859 | ND_next(Last_node) = n; |
| 860 | } else { |
| 861 | ND_prev(n) = NULL; |
| 862 | GD_nlist(G) = n; |
| 863 | } |
| 864 | Last_node = n; |
| 865 | ND_next(n) = NULL; |
| 866 | |
| 867 | return n; |
| 868 | } |
| 869 | |
| 870 | static void compile_nodes(graph_t * g, graph_t * Xg) |
| 871 | { |
| 872 | /* build variables */ |
| 873 | node_t *n; |
| 874 | |
| 875 | Last_node = NULL; |
| 876 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 877 | if (find(n) == n) |
| 878 | ND_rep(n) = makeXnode (Xg, agnameof(n)); |
| 879 | } |
| 880 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 881 | if (ND_rep(n) == 0) |
| 882 | ND_rep(n) = ND_rep(find(n)); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | static void merge(edge_t * e, int minlen, int weight) |
| 887 | { |
| 888 | ED_minlen(e) = MAX(ED_minlen(e), minlen); |
| 889 | ED_weight(e) += weight; |
| 890 | } |
| 891 | |
| 892 | static void strong(graph_t * g, node_t * t, node_t * h, edge_t * orig) |
| 893 | { |
| 894 | edge_t *e; |
| 895 | if ((e = agfindedge(g, t, h)) || |
| 896 | (e = agfindedge(g, h, t)) || (e = agedge(g, t, h, 0, 1))) |
| 897 | merge(e, ED_minlen(orig), ED_weight(orig)); |
| 898 | else |
| 899 | agerr(AGERR, "ranking: failure to create strong constraint edge between nodes %s and %s\n" , |
| 900 | agnameof(t), agnameof(h)); |
| 901 | } |
| 902 | |
| 903 | static void weak(graph_t * g, node_t * t, node_t * h, edge_t * orig) |
| 904 | { |
| 905 | node_t *v; |
| 906 | edge_t *e, *f; |
| 907 | static int id; |
| 908 | char buf[100]; |
| 909 | |
| 910 | for (e = agfstin(g, t); e; e = agnxtin(g, e)) { |
| 911 | /* merge with existing weak edge (e,f) */ |
| 912 | v = agtail(e); |
| 913 | if ((f = agfstout(g, v)) && (aghead(f) == h)) { |
| 914 | return; |
| 915 | } |
| 916 | } |
| 917 | if (!e) { |
| 918 | sprintf (buf, "_weak_%d" , id++); |
| 919 | v = makeXnode(g, buf); |
| 920 | e = agedge(g, v, t, 0, 1); |
| 921 | f = agedge(g, v, h, 0, 1); |
| 922 | } |
| 923 | ED_minlen(e) = MAX(ED_minlen(e), 0); /* effectively a nop */ |
| 924 | ED_weight(e) += ED_weight(orig) * BACKWARD_PENALTY; |
| 925 | ED_minlen(f) = MAX(ED_minlen(f), ED_minlen(orig)); |
| 926 | ED_weight(f) += ED_weight(orig); |
| 927 | } |
| 928 | |
| 929 | static void compile_edges(graph_t * ug, graph_t * Xg) |
| 930 | { |
| 931 | node_t *n; |
| 932 | edge_t *e; |
| 933 | node_t *Xt, *Xh; |
| 934 | graph_t *tc, *hc; |
| 935 | |
| 936 | /* build edge constraints */ |
| 937 | for (n = agfstnode(ug); n; n = agnxtnode(ug, n)) { |
| 938 | Xt = ND_rep(n); |
| 939 | for (e = agfstout(ug, n); e; e = agnxtout(ug, e)) { |
| 940 | if (is_nonconstraint(e)) |
| 941 | continue; |
| 942 | Xh = ND_rep(find(aghead(e))); |
| 943 | if (Xt == Xh) |
| 944 | continue; |
| 945 | |
| 946 | tc = ND_clust(agtail(e)); |
| 947 | hc = ND_clust(aghead(e)); |
| 948 | |
| 949 | if (is_internal_to_cluster(e)) { |
| 950 | /* determine if graph requires reversed edge */ |
| 951 | if ((find(agtail(e)) == GD_maxrep(ND_clust(agtail(e)))) |
| 952 | || (find(aghead(e)) == GD_minrep(ND_clust(aghead(e))))) { |
| 953 | node_t *temp = Xt; |
| 954 | Xt = Xh; |
| 955 | Xh = temp; |
| 956 | } |
| 957 | strong(Xg, Xt, Xh, e); |
| 958 | } else { |
| 959 | if (is_a_strong_cluster(tc) || is_a_strong_cluster(hc)) |
| 960 | weak(Xg, Xt, Xh, e); |
| 961 | else |
| 962 | strong(Xg, Xt, Xh, e); |
| 963 | } |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | static void compile_clusters(graph_t* g, graph_t* Xg, node_t* top, node_t* bot) |
| 969 | { |
| 970 | node_t *n; |
| 971 | node_t *rep; |
| 972 | edge_t *e; |
| 973 | graph_t *sub; |
| 974 | |
| 975 | if (is_a_cluster(g) && is_a_strong_cluster(g)) { |
| 976 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 977 | if (agfstin(g, n) == 0) { |
| 978 | rep = ND_rep(find(n)); |
| 979 | if (!top) top = makeXnode(Xg,TOPNODE); |
| 980 | agedge(Xg, top, rep, 0, 1); |
| 981 | } |
| 982 | if (agfstout(g, n) == 0) { |
| 983 | rep = ND_rep(find(n)); |
| 984 | if (!bot) bot = makeXnode(Xg,BOTNODE); |
| 985 | agedge(Xg, rep, bot, 0, 1); |
| 986 | } |
| 987 | } |
| 988 | if (top && bot) { |
| 989 | e = agedge(Xg, top, bot, 0, 1); |
| 990 | merge(e, 0, STRONG_CLUSTER_WEIGHT); |
| 991 | } |
| 992 | } |
| 993 | for (sub = agfstsubg(g); sub; sub = agnxtsubg(sub)) |
| 994 | compile_clusters(sub, Xg, top, bot); |
| 995 | } |
| 996 | |
| 997 | static void reverse_edge2(graph_t * g, edge_t * e) |
| 998 | { |
| 999 | edge_t *rev; |
| 1000 | |
| 1001 | rev = agfindedge(g, aghead(e), agtail(e)); |
| 1002 | if (!rev) |
| 1003 | rev = agedge(g, aghead(e), agtail(e), 0, 1); |
| 1004 | merge(rev, ED_minlen(e), ED_weight(e)); |
| 1005 | agdelete(g, e); |
| 1006 | } |
| 1007 | |
| 1008 | static void dfs(graph_t * g, node_t * v) |
| 1009 | { |
| 1010 | edge_t *e, *f; |
| 1011 | node_t *w; |
| 1012 | |
| 1013 | if (ND_mark(v)) |
| 1014 | return; |
| 1015 | ND_mark(v) = TRUE; |
| 1016 | ND_onstack(v) = TRUE; |
| 1017 | for (e = agfstout(g, v); e; e = f) { |
| 1018 | f = agnxtout(g, e); |
| 1019 | w = aghead(e); |
| 1020 | if (ND_onstack(w)) |
| 1021 | reverse_edge2(g, e); |
| 1022 | else { |
| 1023 | if (ND_mark(w) == FALSE) |
| 1024 | dfs(g, w); |
| 1025 | } |
| 1026 | } |
| 1027 | ND_onstack(v) = FALSE; |
| 1028 | } |
| 1029 | |
| 1030 | static void break_cycles(graph_t * g) |
| 1031 | { |
| 1032 | node_t *n; |
| 1033 | |
| 1034 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1035 | ND_mark(n) = ND_onstack(n) = FALSE; |
| 1036 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1037 | dfs(g, n); |
| 1038 | } |
| 1039 | /* setMinMax: |
| 1040 | * This will only be called with the root graph or a cluster |
| 1041 | * which are guaranteed to contain nodes. Thus, leader will be |
| 1042 | * set. |
| 1043 | */ |
| 1044 | static void setMinMax (graph_t* g, int doRoot) |
| 1045 | { |
| 1046 | int c, v; |
| 1047 | node_t *n; |
| 1048 | node_t* leader = NULL; |
| 1049 | |
| 1050 | /* Do child clusters */ |
| 1051 | for (c = 1; c <= GD_n_cluster(g); c++) |
| 1052 | setMinMax(GD_clust(g)[c], 0); |
| 1053 | |
| 1054 | if (!GD_parent(g) && !doRoot) // root graph |
| 1055 | return; |
| 1056 | |
| 1057 | GD_minrank(g) = MAXSHORT; |
| 1058 | GD_maxrank(g) = -1; |
| 1059 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1060 | v = ND_rank(n); |
| 1061 | if (GD_maxrank(g) < v) |
| 1062 | GD_maxrank(g) = v; |
| 1063 | if (GD_minrank(g) > v) { |
| 1064 | GD_minrank(g) = v; |
| 1065 | leader = n; |
| 1066 | } |
| 1067 | } |
| 1068 | GD_leader(g) = leader; |
| 1069 | } |
| 1070 | |
| 1071 | /* readout_levels: |
| 1072 | * Store node rank information in original graph. |
| 1073 | * Set rank bounds in graph and clusters |
| 1074 | * Free added data structures. |
| 1075 | * |
| 1076 | * rank2 is called with balance=1, which ensures that minrank=0 |
| 1077 | */ |
| 1078 | static void readout_levels(graph_t * g, graph_t * Xg, int ncc) |
| 1079 | { |
| 1080 | node_t *n; |
| 1081 | node_t *xn; |
| 1082 | int* minrk = NULL; |
| 1083 | int doRoot = 0; |
| 1084 | |
| 1085 | GD_minrank(g) = MAXSHORT; |
| 1086 | GD_maxrank(g) = -1; |
| 1087 | if (ncc > 1) { |
| 1088 | int i; |
| 1089 | minrk = N_NEW(ncc+1,int); |
| 1090 | for (i = 1; i <= ncc; i++) |
| 1091 | minrk[i] = MAXSHORT; |
| 1092 | } |
| 1093 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1094 | xn = ND_rep(find(n)); |
| 1095 | ND_rank(n) = ND_rank(xn); |
| 1096 | if (GD_maxrank(g) < ND_rank(n)) |
| 1097 | GD_maxrank(g) = ND_rank(n); |
| 1098 | if (GD_minrank(g) > ND_rank(n)) |
| 1099 | GD_minrank(g) = ND_rank(n); |
| 1100 | if (minrk) { |
| 1101 | ND_comp(n) = ND_comp(xn); |
| 1102 | minrk[ND_comp(n)] = MIN(minrk[ND_comp(n)],ND_rank(n)); |
| 1103 | } |
| 1104 | } |
| 1105 | if (minrk) { |
| 1106 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1107 | ND_rank(n) -= minrk[ND_comp(n)]; |
| 1108 | /* Non-uniform shifting, so recompute maxrank/minrank of root graph */ |
| 1109 | doRoot = 1; |
| 1110 | } |
| 1111 | else if (GD_minrank(g) > 0) { /* should never happen */ |
| 1112 | int delta = GD_minrank(g); |
| 1113 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1114 | ND_rank(n) -= delta; |
| 1115 | GD_minrank(g) -= delta; |
| 1116 | GD_maxrank(g) -= delta; |
| 1117 | } |
| 1118 | |
| 1119 | setMinMax(g, doRoot); |
| 1120 | |
| 1121 | /* release fastgraph memory from Xg */ |
| 1122 | for (n = agfstnode(Xg); n; n = agnxtnode(Xg, n)) { |
| 1123 | free_list(ND_in(n)); |
| 1124 | free_list(ND_out(n)); |
| 1125 | } |
| 1126 | |
| 1127 | free(ND_alg(agfstnode(g))); |
| 1128 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1129 | ND_alg(n) = NULL; |
| 1130 | } |
| 1131 | if (minrk) |
| 1132 | free (minrk); |
| 1133 | } |
| 1134 | |
| 1135 | static void dfscc(graph_t * g, node_t * n, int cc) |
| 1136 | { |
| 1137 | edge_t *e; |
| 1138 | if (ND_comp(n) == 0) { |
| 1139 | ND_comp(n) = cc; |
| 1140 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) |
| 1141 | dfscc(g, aghead(e), cc); |
| 1142 | for (e = agfstin(g, n); e; e = agnxtin(g, e)) |
| 1143 | dfscc(g, agtail(e), cc); |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | static int connect_components(graph_t * g) |
| 1148 | { |
| 1149 | int cc = 0; |
| 1150 | node_t *n; |
| 1151 | |
| 1152 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1153 | ND_comp(n) = 0; |
| 1154 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 1155 | if (ND_comp(n) == 0) |
| 1156 | dfscc(g, n, ++cc); |
| 1157 | if (cc > 1) { |
| 1158 | node_t *root = makeXnode(g, ROOT); |
| 1159 | int ncc = 1; |
| 1160 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1161 | if (ND_comp(n) == ncc) { |
| 1162 | (void) agedge(g, root, n, 0, 1); |
| 1163 | ncc++; |
| 1164 | } |
| 1165 | } |
| 1166 | } |
| 1167 | return (cc); |
| 1168 | } |
| 1169 | |
| 1170 | static void add_fast_edges (graph_t * g) |
| 1171 | { |
| 1172 | node_t *n; |
| 1173 | edge_t *e; |
| 1174 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1175 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 1176 | elist_append(e, ND_out(n)); |
| 1177 | elist_append(e, ND_in(aghead(e))); |
| 1178 | } |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | static void my_init_graph(Agraph_t *g, Agobj_t *graph, void *arg) |
| 1183 | { int *sz = arg; agbindrec(graph,"level graph rec" ,sz[0],TRUE); } |
| 1184 | static void my_init_node(Agraph_t *g, Agobj_t *node, void *arg) |
| 1185 | { int *sz = arg; agbindrec(node,"level node rec" ,sz[1],TRUE); } |
| 1186 | static void my_init_edge(Agraph_t *g, Agobj_t *edge, void *arg) |
| 1187 | { int *sz = arg; agbindrec(edge,"level edge rec" ,sz[2],TRUE); } |
| 1188 | static Agcbdisc_t mydisc = { {my_init_graph,0,0}, {my_init_node,0,0}, {my_init_edge,0,0} }; |
| 1189 | |
| 1190 | int infosizes[] = { |
| 1191 | sizeof(Agraphinfo_t), |
| 1192 | sizeof(Agnodeinfo_t), |
| 1193 | sizeof(Agedgeinfo_t) |
| 1194 | }; |
| 1195 | |
| 1196 | void dot2_rank(graph_t * g, aspect_t* asp) |
| 1197 | { |
| 1198 | int ssize; |
| 1199 | int ncc, maxiter = INT_MAX; |
| 1200 | char *s; |
| 1201 | graph_t *Xg; |
| 1202 | |
| 1203 | Last_node = NULL; |
| 1204 | Xg = agopen("level assignment constraints" , Agstrictdirected, 0); |
| 1205 | agbindrec(Xg,"level graph rec" ,sizeof(Agraphinfo_t),TRUE); |
| 1206 | agpushdisc(Xg,&mydisc,infosizes); |
| 1207 | |
| 1208 | edgelabel_ranks(g); |
| 1209 | |
| 1210 | if ((s = agget(g, "nslimit1" ))) |
| 1211 | maxiter = atof(s) * agnnodes(g); |
| 1212 | else |
| 1213 | maxiter = INT_MAX; |
| 1214 | |
| 1215 | compile_samerank(g, 0); |
| 1216 | compile_nodes(g, Xg); |
| 1217 | compile_edges(g, Xg); |
| 1218 | compile_clusters(g, Xg, 0, 0); |
| 1219 | break_cycles(Xg); |
| 1220 | ncc = connect_components(Xg); |
| 1221 | add_fast_edges (Xg); |
| 1222 | |
| 1223 | if (asp) { |
| 1224 | init_UF_size(Xg); |
| 1225 | initEdgeTypes(Xg); |
| 1226 | } |
| 1227 | |
| 1228 | if ((s = agget(g, "searchsize" ))) |
| 1229 | ssize = atoi(s); |
| 1230 | else |
| 1231 | ssize = -1; |
| 1232 | rank2(Xg, 1, maxiter, ssize); |
| 1233 | /* fastgr(Xg); */ |
| 1234 | readout_levels(g, Xg, ncc); |
| 1235 | #ifdef DEBUG |
| 1236 | fprintf (stderr, "Xg %d nodes %d edges\n" , agnnodes(Xg), agnedges(Xg)); |
| 1237 | #endif |
| 1238 | agclose(Xg); |
| 1239 | } |
| 1240 | |