| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /* layout.c: |
| 16 | * Written by Emden R. Gansner |
| 17 | * |
| 18 | * This module provides the main bookkeeping for the fdp layout. |
| 19 | * In particular, it handles the recursion and the creation of |
| 20 | * ports and auxiliary graphs. |
| 21 | * |
| 22 | * TODO : can we use ports to aid in layout of edges? Note that |
| 23 | * at present, they are deleted. |
| 24 | * |
| 25 | * Can we delay all repositioning of nodes until evalPositions, so |
| 26 | * finalCC only sets the bounding boxes? |
| 27 | * |
| 28 | * Make sure multiple edges have an effect. |
| 29 | */ |
| 30 | |
| 31 | /* uses PRIVATE interface */ |
| 32 | #define FDP_PRIVATE 1 |
| 33 | |
| 34 | #include "config.h" |
| 35 | #include <limits.h> |
| 36 | #include <inttypes.h> |
| 37 | #include <assert.h> |
| 38 | #include "tlayout.h" |
| 39 | #include "neatoprocs.h" |
| 40 | #include "adjust.h" |
| 41 | #include "comp.h" |
| 42 | #include "pack.h" |
| 43 | #include "clusteredges.h" |
| 44 | #include "dbg.h" |
| 45 | #include <setjmp.h> |
| 46 | |
| 47 | static jmp_buf jbuf; |
| 48 | |
| 49 | typedef struct { |
| 50 | graph_t* rootg; /* logical root; graph passed in to fdp_layout */ |
| 51 | attrsym_t *G_coord; |
| 52 | attrsym_t *G_width; |
| 53 | attrsym_t *G_height; |
| 54 | int gid; |
| 55 | pack_info pack; |
| 56 | } layout_info; |
| 57 | |
| 58 | typedef struct { |
| 59 | edge_t *e; |
| 60 | double alpha; |
| 61 | double dist2; |
| 62 | } erec; |
| 63 | |
| 64 | #define NEW_EDGE(e) (ED_to_virt(e) == 0) |
| 65 | |
| 66 | /* finalCC: |
| 67 | * Set graph bounding box given list of connected |
| 68 | * components, each with its bounding box set. |
| 69 | * If c_cnt > 1, then pts != NULL and gives translations for components. |
| 70 | * Add margin about whole graph unless isRoot is true. |
| 71 | * Reposition nodes based on final position of |
| 72 | * node's connected component. |
| 73 | * Also, entire layout is translated to origin. |
| 74 | */ |
| 75 | static void |
| 76 | finalCC(graph_t * g, int c_cnt, graph_t ** cc, point * pts, graph_t * rg, |
| 77 | layout_info* infop) |
| 78 | { |
| 79 | attrsym_t * G_width = infop->G_width; |
| 80 | attrsym_t * G_height = infop->G_height; |
| 81 | graph_t *cg; |
| 82 | box b, bb; |
| 83 | boxf bbf; |
| 84 | point pt; |
| 85 | int margin; |
| 86 | graph_t **cp = cc; |
| 87 | point *pp = pts; |
| 88 | int isRoot = (rg == infop->rootg); |
| 89 | int isEmpty = 0; |
| 90 | |
| 91 | /* compute graph bounding box in points */ |
| 92 | if (c_cnt) { |
| 93 | cg = *cp++; |
| 94 | BF2B(GD_bb(cg), bb); |
| 95 | if (c_cnt > 1) { |
| 96 | pt = *pp++; |
| 97 | bb.LL.x += pt.x; |
| 98 | bb.LL.y += pt.y; |
| 99 | bb.UR.x += pt.x; |
| 100 | bb.UR.y += pt.y; |
| 101 | while ((cg = *cp++)) { |
| 102 | BF2B(GD_bb(cg), b); |
| 103 | pt = *pp++; |
| 104 | b.LL.x += pt.x; |
| 105 | b.LL.y += pt.y; |
| 106 | b.UR.x += pt.x; |
| 107 | b.UR.y += pt.y; |
| 108 | bb.LL.x = MIN(bb.LL.x, b.LL.x); |
| 109 | bb.LL.y = MIN(bb.LL.y, b.LL.y); |
| 110 | bb.UR.x = MAX(bb.UR.x, b.UR.x); |
| 111 | bb.UR.y = MAX(bb.UR.y, b.UR.y); |
| 112 | } |
| 113 | } |
| 114 | } else { /* empty graph */ |
| 115 | bb.LL.x = 0; |
| 116 | bb.LL.y = 0; |
| 117 | bb.UR.x = late_int(rg, G_width, POINTS(DEFAULT_NODEWIDTH), 3); |
| 118 | bb.UR.y = late_int(rg, G_height, POINTS(DEFAULT_NODEHEIGHT), 3); |
| 119 | isEmpty = 1; |
| 120 | } |
| 121 | |
| 122 | if (GD_label(rg)) { |
| 123 | point p; |
| 124 | int d; |
| 125 | |
| 126 | isEmpty = 0; |
| 127 | PF2P(GD_label(rg)->dimen, p); |
| 128 | d = p.x - (bb.UR.x - bb.LL.x); |
| 129 | if (d > 0) { /* height of label added below */ |
| 130 | d /= 2; |
| 131 | bb.LL.x -= d; |
| 132 | bb.UR.x += d; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | if (isRoot || isEmpty) |
| 137 | margin = 0; |
| 138 | else |
| 139 | margin = late_int (rg, G_margin, CL_OFFSET, 0); |
| 140 | pt.x = -bb.LL.x + margin; |
| 141 | pt.y = -bb.LL.y + margin + GD_border(rg)[BOTTOM_IX].y; |
| 142 | bb.LL.x = 0; |
| 143 | bb.LL.y = 0; |
| 144 | bb.UR.x += pt.x + margin; |
| 145 | bb.UR.y += pt.y + margin + GD_border(rg)[TOP_IX].y; |
| 146 | |
| 147 | /* translate nodes */ |
| 148 | if (c_cnt) { |
| 149 | cp = cc; |
| 150 | pp = pts; |
| 151 | while ((cg = *cp++)) { |
| 152 | point p; |
| 153 | node_t *n; |
| 154 | pointf del; |
| 155 | |
| 156 | if (pp) { |
| 157 | p = *pp++; |
| 158 | p.x += pt.x; |
| 159 | p.y += pt.y; |
| 160 | } else { |
| 161 | p = pt; |
| 162 | } |
| 163 | del.x = PS2INCH(p.x); |
| 164 | del.y = PS2INCH(p.y); |
| 165 | for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) { |
| 166 | ND_pos(n)[0] += del.x; |
| 167 | ND_pos(n)[1] += del.y; |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | bbf.LL.x = PS2INCH(bb.LL.x); |
| 173 | bbf.LL.y = PS2INCH(bb.LL.y); |
| 174 | bbf.UR.x = PS2INCH(bb.UR.x); |
| 175 | bbf.UR.y = PS2INCH(bb.UR.y); |
| 176 | BB(g) = bbf; |
| 177 | |
| 178 | } |
| 179 | |
| 180 | /* mkDeriveNode: |
| 181 | * Constructor for a node in a derived graph. |
| 182 | * Allocates dndata. |
| 183 | */ |
| 184 | static node_t *mkDeriveNode(graph_t * dg, char *name) |
| 185 | { |
| 186 | node_t *dn; |
| 187 | |
| 188 | dn = agnode(dg, name,1); |
| 189 | agbindrec(dn, "Agnodeinfo_t" , sizeof(Agnodeinfo_t), TRUE); //node custom data |
| 190 | ND_alg(dn) = (void *) NEW(dndata); /* free in freeDeriveNode */ |
| 191 | ND_pos(dn) = N_GNEW(GD_ndim(dg), double); |
| 192 | /* fprintf (stderr, "Creating %s\n", dn->name); */ |
| 193 | return dn; |
| 194 | } |
| 195 | |
| 196 | static void freeDeriveNode(node_t * n) |
| 197 | { |
| 198 | free(ND_alg(n)); |
| 199 | free(ND_pos(n)); |
| 200 | agdelrec(n, "Agnodeinfo_t" ); |
| 201 | } |
| 202 | |
| 203 | static void freeGData(graph_t * g) |
| 204 | { |
| 205 | free(GD_alg(g)); |
| 206 | } |
| 207 | |
| 208 | static void freeDerivedGraph(graph_t * g, graph_t ** cc) |
| 209 | { |
| 210 | graph_t *cg; |
| 211 | node_t *dn; |
| 212 | node_t *dnxt; |
| 213 | edge_t *e; |
| 214 | |
| 215 | while ((cg = *cc++)) { |
| 216 | freeGData(cg); |
| 217 | agdelrec(cg, "Agraphinfo_t" ); |
| 218 | } |
| 219 | if (PORTS(g)) |
| 220 | free(PORTS(g)); |
| 221 | freeGData(g); |
| 222 | agdelrec(g, "Agraphinfo_t" ); |
| 223 | for (dn = agfstnode(g); dn; dn = dnxt) { |
| 224 | dnxt = agnxtnode(g, dn); |
| 225 | for (e = agfstout(g, dn); e; e = agnxtout(g, e)) { |
| 226 | free (ED_to_virt(e)); |
| 227 | agdelrec(e, "Agedgeinfo_t" ); |
| 228 | } |
| 229 | freeDeriveNode(dn); |
| 230 | } |
| 231 | agclose(g); |
| 232 | } |
| 233 | |
| 234 | /* evalPositions: |
| 235 | * The input is laid out, but node coordinates |
| 236 | * are relative to smallest containing cluster. |
| 237 | * Walk through all nodes and clusters, translating |
| 238 | * the positions to absolute coordinates. |
| 239 | * Assume that when called, g's bounding box is |
| 240 | * in absolute coordinates and that box of root graph |
| 241 | * has LL at origin. |
| 242 | */ |
| 243 | static void evalPositions(graph_t * g, graph_t* rootg) |
| 244 | { |
| 245 | int i; |
| 246 | graph_t *subg; |
| 247 | node_t *n; |
| 248 | boxf bb; |
| 249 | boxf sbb; |
| 250 | |
| 251 | bb = BB(g); |
| 252 | |
| 253 | /* translate nodes in g */ |
| 254 | if (g != rootg) { |
| 255 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 256 | if (PARENT(n) != g) |
| 257 | continue; |
| 258 | ND_pos(n)[0] += bb.LL.x; |
| 259 | ND_pos(n)[1] += bb.LL.y; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | /* translate top-level clusters and recurse */ |
| 264 | for (i = 1; i <= GD_n_cluster(g); i++) { |
| 265 | subg = GD_clust(g)[i]; |
| 266 | if (g != rootg) { |
| 267 | sbb = BB(subg); |
| 268 | sbb.LL.x += bb.LL.x; |
| 269 | sbb.LL.y += bb.LL.y; |
| 270 | sbb.UR.x += bb.LL.x; |
| 271 | sbb.UR.y += bb.LL.y; |
| 272 | BB(subg) = sbb; |
| 273 | } |
| 274 | evalPositions(subg, rootg); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | #define CL_CHUNK 10 |
| 279 | |
| 280 | typedef struct { |
| 281 | graph_t **cl; |
| 282 | int sz; |
| 283 | int cnt; |
| 284 | } clist_t; |
| 285 | |
| 286 | static void initCList(clist_t * clist) |
| 287 | { |
| 288 | clist->cl = 0; |
| 289 | clist->sz = 0; |
| 290 | clist->cnt = 0; |
| 291 | } |
| 292 | |
| 293 | /* addCluster: |
| 294 | * Append a new cluster to the list. |
| 295 | * NOTE: cl[0] is empty. The clusters are in cl[1..cnt]. |
| 296 | * Normally, we increase the array when cnt == sz. |
| 297 | * The test for cnt > sz is necessary for the first time. |
| 298 | */ |
| 299 | static void addCluster(clist_t * clist, graph_t * subg) |
| 300 | { |
| 301 | clist->cnt++; |
| 302 | if (clist->cnt >= clist->sz) { |
| 303 | clist->sz += CL_CHUNK; |
| 304 | clist->cl = RALLOC(clist->sz, clist->cl, graph_t *); |
| 305 | } |
| 306 | clist->cl[clist->cnt] = subg; |
| 307 | } |
| 308 | |
| 309 | #define BSZ 1000 |
| 310 | |
| 311 | /* portName: |
| 312 | * Generate a name for a port. |
| 313 | * We use the name of the subgraph and names of the nodes on the edge, |
| 314 | * if possible. Otherwise, we use the ids of the nodes. |
| 315 | * This is for debugging. For production, just use edge id and some |
| 316 | * id for the graph. Note that all the graphs are subgraphs of the |
| 317 | * root graph. |
| 318 | */ |
| 319 | static char *portName(graph_t * g, bport_t * p) |
| 320 | { |
| 321 | edge_t *e = p->e; |
| 322 | node_t *h = aghead(e); |
| 323 | node_t *t = agtail(e); |
| 324 | static char buf[BSZ + 1]; |
| 325 | int len = 8; |
| 326 | |
| 327 | len += strlen(agnameof(g)) + strlen(agnameof(h)) + strlen(agnameof(t)); |
| 328 | if (len >= BSZ) |
| 329 | sprintf(buf, "_port_%s_%s_%s_%ld" , agnameof(g), agnameof(t), agnameof(h), |
| 330 | (uint64_t)AGSEQ(e)); |
| 331 | else |
| 332 | sprintf(buf, "_port_%s_(%d)_(%d)_%ld" ,agnameof(g), ND_id(t), ND_id(h), |
| 333 | (uint64_t)AGSEQ(e)); |
| 334 | return buf; |
| 335 | } |
| 336 | |
| 337 | /* chkPos: |
| 338 | * If cluster has coords attribute, use to supply initial position |
| 339 | * of derived node. |
| 340 | * Only called if G_coord is defined. |
| 341 | * We also look at the parent graph's G_coord attribute. If this |
| 342 | * is identical to the child graph, we have to assume the child |
| 343 | * inherited it. |
| 344 | */ |
| 345 | static void chkPos(graph_t* g, node_t* n, layout_info* infop, boxf* bbp) |
| 346 | { |
| 347 | char *p; |
| 348 | char *pp; |
| 349 | boxf bb; |
| 350 | char c; |
| 351 | graph_t *parent; |
| 352 | attrsym_t *G_coord = infop->G_coord; |
| 353 | |
| 354 | p = agxget(g, G_coord); |
| 355 | if (p[0]) { |
| 356 | if (g != infop->rootg) { |
| 357 | parent =agparent(g); |
| 358 | pp = agxget(parent, G_coord); |
| 359 | if ((pp == p) || !strcmp(p, pp)) |
| 360 | return; |
| 361 | } |
| 362 | c = '\0'; |
| 363 | if (sscanf(p, "%lf,%lf,%lf,%lf%c" , |
| 364 | &bb.LL.x, &bb.LL.y, &bb.UR.x, &bb.UR.y, &c) >= 4) { |
| 365 | if (PSinputscale > 0.0) { |
| 366 | bb.LL.x /= PSinputscale; |
| 367 | bb.LL.y /= PSinputscale; |
| 368 | bb.UR.x /= PSinputscale; |
| 369 | bb.UR.y /= PSinputscale; |
| 370 | } |
| 371 | if (c == '!') |
| 372 | ND_pinned(n) = P_PIN; |
| 373 | else if (c == '?') |
| 374 | ND_pinned(n) = P_FIX; |
| 375 | else |
| 376 | ND_pinned(n) = P_SET; |
| 377 | *bbp = bb; |
| 378 | } else |
| 379 | agerr(AGWARN, "graph %s, coord %s, expected four doubles\n" , |
| 380 | agnameof(g), p); |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /* addEdge: |
| 385 | * Add real edge e to its image de in the derived graph. |
| 386 | * We use the to_virt and count fields to store the list. |
| 387 | */ |
| 388 | static void addEdge(edge_t * de, edge_t * e) |
| 389 | { |
| 390 | short cnt = ED_count(de); |
| 391 | edge_t **el; |
| 392 | |
| 393 | el = (edge_t **) (ED_to_virt(de)); |
| 394 | el = ALLOC(cnt + 1, el, edge_t *); |
| 395 | el[cnt] = e; |
| 396 | ED_to_virt(de) = (edge_t *) el; |
| 397 | ED_count(de)++; |
| 398 | } |
| 399 | |
| 400 | /* copyAttr: |
| 401 | * Copy given attribute from g to dg. |
| 402 | */ |
| 403 | static void |
| 404 | copyAttr (graph_t* g, graph_t* dg, char* attr) |
| 405 | { |
| 406 | char* ov_val; |
| 407 | Agsym_t* ov; |
| 408 | |
| 409 | if ((ov = agattr(g,AGRAPH, attr, NULL))) { |
| 410 | ov_val = agxget(g,ov); |
| 411 | ov = agattr(dg,AGRAPH, attr, NULL); |
| 412 | if (ov) |
| 413 | agxset (dg, ov, ov_val); |
| 414 | else |
| 415 | agattr(dg, AGRAPH, attr, ov_val); |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | /* deriveGraph: |
| 420 | * Create derived graph of g by collapsing clusters into |
| 421 | * nodes. An edge is created between nodes if there is |
| 422 | * an edge between two nodes in the clusters of the base graph. |
| 423 | * Such edges record all corresponding real edges. |
| 424 | * In addition, we add a node and edge for each port. |
| 425 | */ |
| 426 | static graph_t *deriveGraph(graph_t * g, layout_info * infop) |
| 427 | { |
| 428 | graph_t *dg; |
| 429 | node_t *dn; |
| 430 | graph_t *subg; |
| 431 | char name[100]; |
| 432 | bport_t *pp; |
| 433 | node_t *n; |
| 434 | edge_t *de; |
| 435 | int i, id = 0; |
| 436 | |
| 437 | sprintf(name, "_dg_%d" , infop->gid++); |
| 438 | if (Verbose >= 2) |
| 439 | fprintf(stderr, "derive graph %s of %s\n" , name, agnameof(g)); |
| 440 | |
| 441 | dg = agopen("derived" , Agstrictdirected,NIL(Agdisc_t *)); |
| 442 | agbindrec(dg, "Agraphinfo_t" , sizeof(Agraphinfo_t), TRUE); |
| 443 | GD_alg(dg) = (void *) NEW(gdata); /* freed in freeDeriveGraph */ |
| 444 | #ifdef DEBUG |
| 445 | GORIG(dg) = g; |
| 446 | #endif |
| 447 | GD_ndim(dg) = GD_ndim(g); |
| 448 | |
| 449 | /* Copy attributes from g. |
| 450 | */ |
| 451 | copyAttr(g,dg,"overlap" ); |
| 452 | copyAttr(g,dg,"sep" ); |
| 453 | copyAttr(g,dg,"K" ); |
| 454 | |
| 455 | /* create derived nodes from clusters */ |
| 456 | for (i = 1; i <= GD_n_cluster(g); i++) { |
| 457 | boxf fix_bb = {{ MAXDOUBLE, MAXDOUBLE },{ -MAXDOUBLE, -MAXDOUBLE }}; |
| 458 | subg = GD_clust(g)[i]; |
| 459 | |
| 460 | do_graph_label(subg); |
| 461 | dn = mkDeriveNode(dg, agnameof(subg)); |
| 462 | ND_clust(dn) = subg; |
| 463 | ND_id(dn) = id++; |
| 464 | if (infop->G_coord) |
| 465 | chkPos(subg, dn, infop, &fix_bb); |
| 466 | for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) { |
| 467 | DNODE(n) = dn; |
| 468 | #ifdef UNIMPLEMENTED |
| 469 | /* This code starts the implementation of supporting pinned nodes |
| 470 | * within clusters. This needs more work. In particular, we may need |
| 471 | * a separate notion of pinning related to contained nodes, which will |
| 472 | * allow the cluster itself to wiggle. |
| 473 | */ |
| 474 | if (ND_pinned(n)) { |
| 475 | fix_bb.LL.x = MIN(fix_bb.LL.x, ND_pos(n)[0]); |
| 476 | fix_bb.LL.y = MIN(fix_bb.LL.y, ND_pos(n)[1]); |
| 477 | fix_bb.UR.x = MAX(fix_bb.UR.x, ND_pos(n)[0]); |
| 478 | fix_bb.UR.y = MAX(fix_bb.UR.y, ND_pos(n)[1]); |
| 479 | ND_pinned(dn) = MAX(ND_pinned(dn), ND_pinned(n)); |
| 480 | } |
| 481 | #endif |
| 482 | } |
| 483 | if (ND_pinned(dn)) { |
| 484 | ND_pos(dn)[0] = (fix_bb.LL.x + fix_bb.UR.x) / 2; |
| 485 | ND_pos(dn)[1] = (fix_bb.LL.y + fix_bb.UR.y) / 2; |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | /* create derived nodes from remaining nodes */ |
| 490 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 491 | if (!DNODE(n)) { |
| 492 | if (PARENT(n) && (PARENT(n) != GPARENT(g))) { |
| 493 | agerr (AGERR, "node \"%s\" is contained in two non-comparable clusters \"%s\" and \"%s\"\n" , agnameof(n), agnameof(g), agnameof(PARENT(n))); |
| 494 | longjmp (jbuf, 1); |
| 495 | } |
| 496 | PARENT(n) = g; |
| 497 | if (IS_CLUST_NODE(n)) |
| 498 | continue; |
| 499 | dn = mkDeriveNode(dg, agnameof(n)); |
| 500 | DNODE(n) = dn; |
| 501 | ND_id(dn) = id++; |
| 502 | ND_width(dn) = ND_width(n); |
| 503 | ND_height(dn) = ND_height(n); |
| 504 | ND_lw(dn) = ND_lw(n); |
| 505 | ND_rw(dn) = ND_rw(n); |
| 506 | ND_ht(dn) = ND_ht(n); |
| 507 | ND_shape(dn) = ND_shape(n); |
| 508 | ND_shape_info(dn) = ND_shape_info(n); |
| 509 | if (ND_pinned(n)) { |
| 510 | ND_pos(dn)[0] = ND_pos(n)[0]; |
| 511 | ND_pos(dn)[1] = ND_pos(n)[1]; |
| 512 | ND_pinned(dn) = ND_pinned(n); |
| 513 | } |
| 514 | ANODE(dn) = n; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | /* add edges */ |
| 519 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 520 | edge_t *e; |
| 521 | node_t *hd; |
| 522 | node_t *tl = DNODE(n); |
| 523 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 524 | hd = DNODE(aghead(e)); |
| 525 | if (hd == tl) |
| 526 | continue; |
| 527 | if (hd > tl) |
| 528 | de = agedge(dg, tl, hd, NULL,1); |
| 529 | else |
| 530 | de = agedge(dg, hd, tl, NULL,1); |
| 531 | agbindrec(de, "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); |
| 532 | ED_dist(de) = ED_dist(e); |
| 533 | ED_factor(de) = ED_factor(e); |
| 534 | /* fprintf (stderr, "edge %s -- %s\n", tl->name, hd->name); */ |
| 535 | WDEG(hd)++; |
| 536 | WDEG(tl)++; |
| 537 | if (NEW_EDGE(de)) { |
| 538 | DEG(hd)++; |
| 539 | DEG(tl)++; |
| 540 | } |
| 541 | addEdge(de, e); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | /* transform ports */ |
| 546 | if ((pp = PORTS(g))) { |
| 547 | bport_t *pq; |
| 548 | node_t *m; |
| 549 | int sz = NPORTS(g); |
| 550 | |
| 551 | /* freed in freeDeriveGraph */ |
| 552 | PORTS(dg) = pq = N_NEW(sz + 1, bport_t); |
| 553 | sz = 0; |
| 554 | while (pp->e) { |
| 555 | m = DNODE(pp->n); |
| 556 | /* Create port in derived graph only if hooks to internal node */ |
| 557 | if (m) { |
| 558 | dn = mkDeriveNode(dg, portName(g, pp)); |
| 559 | sz++; |
| 560 | ND_id(dn) = id++; |
| 561 | if (dn > m) |
| 562 | de = agedge(dg, m, dn, NULL,1); |
| 563 | else |
| 564 | de = agedge(dg, dn, m, NULL,1); |
| 565 | agbindrec(de, "Agedgeinfo_t" , sizeof(Agedgeinfo_t), TRUE); |
| 566 | ED_dist(de) = ED_dist(pp->e); |
| 567 | ED_factor(de) = ED_factor(pp->e); |
| 568 | addEdge(de, pp->e); |
| 569 | WDEG(dn)++; |
| 570 | WDEG(m)++; |
| 571 | DEG(dn)++; /* ports are unique, so this will be the first and */ |
| 572 | DEG(m)++; /* only time the edge is touched. */ |
| 573 | pq->n = dn; |
| 574 | pq->alpha = pp->alpha; |
| 575 | pq->e = de; |
| 576 | pq++; |
| 577 | } |
| 578 | pp++; |
| 579 | } |
| 580 | NPORTS(dg) = sz; |
| 581 | } |
| 582 | |
| 583 | return dg; |
| 584 | } |
| 585 | |
| 586 | /* ecmp: |
| 587 | * Sort edges by angle, then distance. |
| 588 | */ |
| 589 | static int ecmp(const void *v1, const void *v2) |
| 590 | { |
| 591 | erec *e1 = (erec *) v1; |
| 592 | erec *e2 = (erec *) v2; |
| 593 | if (e1->alpha > e2->alpha) |
| 594 | return 1; |
| 595 | else if (e1->alpha < e2->alpha) |
| 596 | return -1; |
| 597 | else if (e1->dist2 > e2->dist2) |
| 598 | return 1; |
| 599 | else if (e1->dist2 < e2->dist2) |
| 600 | return -1; |
| 601 | else |
| 602 | return 0; |
| 603 | } |
| 604 | |
| 605 | #define ANG (M_PI/90) /* Maximum angular change: 2 degrees */ |
| 606 | |
| 607 | /* getEdgeList: |
| 608 | * Generate list of edges in derived graph g using |
| 609 | * node n. The list is in counterclockwise order. |
| 610 | * This, of course, assumes we have an initial layout for g. |
| 611 | */ |
| 612 | static erec *getEdgeList(node_t * n, graph_t * g) |
| 613 | { |
| 614 | erec *erecs; |
| 615 | int deg = DEG(n); |
| 616 | int i; |
| 617 | double dx, dy; |
| 618 | edge_t *e; |
| 619 | node_t *m; |
| 620 | |
| 621 | /* freed in expandCluster */ |
| 622 | erecs = N_NEW(deg + 1, erec); |
| 623 | i = 0; |
| 624 | for (e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) { |
| 625 | if (aghead(e) == n) |
| 626 | m = agtail(e); |
| 627 | else |
| 628 | m = aghead(e); |
| 629 | dx = ND_pos(m)[0] - ND_pos(n)[0]; |
| 630 | dy = ND_pos(m)[1] - ND_pos(n)[1]; |
| 631 | erecs[i].e = e; |
| 632 | erecs[i].alpha = atan2(dy, dx); |
| 633 | erecs[i].dist2 = dx * dx + dy * dy; |
| 634 | i++; |
| 635 | } |
| 636 | assert(i == deg); |
| 637 | qsort(erecs, deg, sizeof(erec), ecmp); |
| 638 | |
| 639 | /* ensure no two angles are equal */ |
| 640 | if (deg >= 2) { |
| 641 | int j; |
| 642 | double a, inc, delta, bnd; |
| 643 | |
| 644 | i = 0; |
| 645 | while (i < deg - 1) { |
| 646 | a = erecs[i].alpha; |
| 647 | j = i + 1; |
| 648 | while ((j < deg) && (erecs[j].alpha == a)) |
| 649 | j++; |
| 650 | if (j == i + 1) |
| 651 | i = j; |
| 652 | else { |
| 653 | if (j == deg) |
| 654 | bnd = M_PI; /* all values equal up to end */ |
| 655 | else |
| 656 | bnd = erecs[j].alpha; |
| 657 | delta = (bnd - a) / (j - i); |
| 658 | if (delta > ANG) |
| 659 | delta = ANG; |
| 660 | inc = 0; |
| 661 | for (; i < j; i++) { |
| 662 | erecs[i].alpha += inc; |
| 663 | inc += delta; |
| 664 | } |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | return erecs; |
| 670 | } |
| 671 | |
| 672 | /* genPorts: |
| 673 | * Given list of edges with node n in derived graph, add corresponding |
| 674 | * ports to port list pp, starting at index idx. Return next index. |
| 675 | * If an edge in the derived graph corresponds to multiple real edges, |
| 676 | * add them in order if address of n is smaller than other node address. |
| 677 | * Otherwise, reverse order. |
| 678 | * Attach angles. The value bnd gives next angle after er->alpha. |
| 679 | */ |
| 680 | static int |
| 681 | genPorts(node_t * n, erec * er, bport_t * pp, int idx, double bnd) |
| 682 | { |
| 683 | node_t *other; |
| 684 | int cnt; |
| 685 | edge_t *e = er->e; |
| 686 | edge_t *el; |
| 687 | edge_t **ep; |
| 688 | double angle, delta; |
| 689 | int i, j, inc; |
| 690 | |
| 691 | cnt = ED_count(e); |
| 692 | |
| 693 | if (aghead(e) == n) |
| 694 | other = agtail(e); |
| 695 | else |
| 696 | other = aghead(e); |
| 697 | |
| 698 | delta = (bnd - er->alpha) / cnt; |
| 699 | angle = er->alpha; |
| 700 | if (delta > ANG) |
| 701 | delta = ANG; |
| 702 | |
| 703 | if (n < other) { |
| 704 | i = idx; |
| 705 | inc = 1; |
| 706 | } else { |
| 707 | i = idx + cnt - 1; |
| 708 | inc = -1; |
| 709 | angle += delta * (cnt - 1); |
| 710 | delta = -delta; |
| 711 | } |
| 712 | |
| 713 | ep = (edge_t **) (el = ED_to_virt(e)); |
| 714 | for (j = 0; j < ED_count(e); j++, ep++) { |
| 715 | el = *ep; |
| 716 | pp[i].e = el; |
| 717 | pp[i].n = (DNODE(agtail(el)) == n ? agtail(el) : aghead(el)); |
| 718 | pp[i].alpha = angle; |
| 719 | i += inc; |
| 720 | angle += delta; |
| 721 | } |
| 722 | return (idx + cnt); |
| 723 | } |
| 724 | |
| 725 | /* expandCluster; |
| 726 | * Given positioned derived graph cg with node n which corresponds |
| 727 | * to a cluster, generate a graph containing the interior of the |
| 728 | * cluster, plus port information induced by the layout of cg. |
| 729 | * Basically, we use the cluster subgraph to which n corresponds, |
| 730 | * attached with port information. |
| 731 | */ |
| 732 | static graph_t *expandCluster(node_t * n, graph_t * cg) |
| 733 | { |
| 734 | erec *es; |
| 735 | erec *ep; |
| 736 | erec *next; |
| 737 | graph_t *sg = ND_clust(n); |
| 738 | bport_t *pp; |
| 739 | int sz = WDEG(n); |
| 740 | int idx = 0; |
| 741 | double bnd; |
| 742 | |
| 743 | if (sz != 0) { |
| 744 | /* freed in cleanup_subgs */ |
| 745 | pp = N_NEW(sz + 1, bport_t); |
| 746 | |
| 747 | /* create sorted list of edges of n */ |
| 748 | es = ep = getEdgeList(n, cg); |
| 749 | |
| 750 | /* generate ports from edges */ |
| 751 | while (ep->e) { |
| 752 | next = ep + 1; |
| 753 | if (next->e) |
| 754 | bnd = next->alpha; |
| 755 | else |
| 756 | bnd = 2 * M_PI + es->alpha; |
| 757 | idx = genPorts(n, ep, pp, idx, bnd); |
| 758 | ep = next; |
| 759 | } |
| 760 | assert(idx == sz); |
| 761 | |
| 762 | PORTS(sg) = pp; |
| 763 | NPORTS(sg) = sz; |
| 764 | free(es); |
| 765 | } |
| 766 | return sg; |
| 767 | } |
| 768 | |
| 769 | /* setClustNodes: |
| 770 | * At present, cluster nodes are not assigned a position during layout, |
| 771 | * but positioned in the center of its associated cluster. Because the |
| 772 | * dummy edge associated with a cluster node may not occur at a sufficient |
| 773 | * level of cluster, the edge may not be used during layout and we cannot |
| 774 | * therefore rely find these nodes via ports. |
| 775 | * |
| 776 | * In this implementation, we just do a linear pass over all nodes in the |
| 777 | * root graph. At some point, we may use a better method, like having each |
| 778 | * cluster contain its list of cluster nodes, or have the graph keep a list. |
| 779 | * |
| 780 | * As nodes, we need to assign cluster nodes the coordinates in the |
| 781 | * coordinates of its cluster p. Note that p's bbox is in its parent's |
| 782 | * coordinates. |
| 783 | * |
| 784 | * If routing, we may decide to place on cluster boundary, |
| 785 | * and use polyline. |
| 786 | */ |
| 787 | static void |
| 788 | setClustNodes(graph_t* root) |
| 789 | { |
| 790 | boxf bb; |
| 791 | graph_t* p; |
| 792 | pointf ctr; |
| 793 | node_t *n; |
| 794 | double w, h, h_pts; |
| 795 | double h2, w2; |
| 796 | pointf *vertices; |
| 797 | |
| 798 | for (n = agfstnode(root); n; n = agnxtnode(root, n)) { |
| 799 | if (!IS_CLUST_NODE(n)) continue; |
| 800 | |
| 801 | p = PARENT(n); |
| 802 | bb = BB(p); /* bbox in parent cluster's coordinates */ |
| 803 | w = bb.UR.x - bb.LL.x; |
| 804 | h = bb.UR.y - bb.LL.y; |
| 805 | ctr.x = w / 2.0; |
| 806 | ctr.y = h / 2.0; |
| 807 | w2 = INCH2PS(w / 2.0); |
| 808 | h2 = INCH2PS(h / 2.0); |
| 809 | h_pts = INCH2PS(h); |
| 810 | ND_pos(n)[0] = ctr.x; |
| 811 | ND_pos(n)[1] = ctr.y; |
| 812 | ND_width(n) = w; |
| 813 | ND_height(n) = h; |
| 814 | /* ND_xsize(n) = POINTS(w); */ |
| 815 | ND_lw(n) = ND_rw(n) = w2; |
| 816 | ND_ht(n) = h_pts; |
| 817 | |
| 818 | vertices = ((polygon_t *) ND_shape_info(n))->vertices; |
| 819 | vertices[0].x = ND_rw(n); |
| 820 | vertices[0].y = h2; |
| 821 | vertices[1].x = -ND_lw(n); |
| 822 | vertices[1].y = h2; |
| 823 | vertices[2].x = -ND_lw(n); |
| 824 | vertices[2].y = -h2; |
| 825 | vertices[3].x = ND_rw(n); |
| 826 | vertices[3].y = -h2; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | /* layout: |
| 831 | * Given g with ports: |
| 832 | * Derive g' from g by reducing clusters to points (deriveGraph) |
| 833 | * Compute connected components of g' (findCComp) |
| 834 | * For each cc of g': |
| 835 | * Layout cc (tLayout) |
| 836 | * For each node n in cc of g' <-> cluster c in g: |
| 837 | * Add ports based on layout of cc to get c' (expandCluster) |
| 838 | * Layout c' (recursion) |
| 839 | * Remove ports from cc |
| 840 | * Expand nodes of cc to reflect size of c' (xLayout) |
| 841 | * Pack connected components to get layout of g (putGraphs) |
| 842 | * Translate layout so that bounding box of layout + margin |
| 843 | * has the origin as LL corner. |
| 844 | * Set position of top level clusters and real nodes. |
| 845 | * Set bounding box of graph |
| 846 | * |
| 847 | * TODO: |
| 848 | * |
| 849 | * Possibly should modify so that only do connected components |
| 850 | * on top-level derived graph. Unconnected parts of a cluster |
| 851 | * could just rattle within cluster boundaries. This may mix |
| 852 | * up components but give a tighter packing. |
| 853 | * |
| 854 | * Add edges per components to get better packing, rather than |
| 855 | * wait until the end. |
| 856 | */ |
| 857 | static |
| 858 | void layout(graph_t * g, layout_info * infop) |
| 859 | { |
| 860 | point *pts = NULL; |
| 861 | graph_t *dg; |
| 862 | node_t *dn; |
| 863 | node_t *n; |
| 864 | graph_t *cg; |
| 865 | graph_t *sg; |
| 866 | graph_t **cc; |
| 867 | graph_t **pg; |
| 868 | int c_cnt; |
| 869 | int pinned; |
| 870 | xparams xpms; |
| 871 | |
| 872 | #ifdef DEBUG |
| 873 | incInd(); |
| 874 | #endif |
| 875 | if (Verbose) { |
| 876 | #ifdef DEBUG |
| 877 | prIndent(); |
| 878 | #endif |
| 879 | fprintf (stderr, "layout %s\n" , agnameof(g)); |
| 880 | } |
| 881 | /* initialize derived node pointers */ |
| 882 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) |
| 883 | DNODE(n) = 0; |
| 884 | |
| 885 | dg = deriveGraph(g, infop); |
| 886 | cc = pg = findCComp(dg, &c_cnt, &pinned); |
| 887 | |
| 888 | while ((cg = *pg++)) { |
| 889 | node_t* nxtnode; |
| 890 | fdp_tLayout(cg, &xpms); |
| 891 | for (n = agfstnode(cg); n; n = nxtnode) { |
| 892 | nxtnode = agnxtnode(cg, n); |
| 893 | if (ND_clust(n)) { |
| 894 | pointf pt; |
| 895 | sg = expandCluster(n, cg); /* attach ports to sg */ |
| 896 | layout(sg, infop); |
| 897 | /* bb.LL == origin */ |
| 898 | ND_width(n) = BB(sg).UR.x; |
| 899 | ND_height(n) = BB(sg).UR.y; |
| 900 | pt.x = POINTS_PER_INCH * BB(sg).UR.x; |
| 901 | pt.y = POINTS_PER_INCH * BB(sg).UR.y; |
| 902 | ND_rw(n) = ND_lw(n) = pt.x/2; |
| 903 | ND_ht(n) = pt.y; |
| 904 | } else if (IS_PORT(n)) |
| 905 | agdelete(cg, n); /* remove ports from component */ |
| 906 | } |
| 907 | |
| 908 | /* Remove overlaps */ |
| 909 | if (agnnodes(cg) >= 2) { |
| 910 | if (g == infop->rootg) |
| 911 | normalize (cg); |
| 912 | fdp_xLayout(cg, &xpms); |
| 913 | } |
| 914 | /* set bounding box but don't use ports */ |
| 915 | /* setBB (cg); */ |
| 916 | } |
| 917 | |
| 918 | /* At this point, each connected component has its nodes correctly |
| 919 | * positioned. If we have multiple components, we pack them together. |
| 920 | * All nodes will be moved to their new positions. |
| 921 | * NOTE: packGraphs uses nodes in components, so if port nodes are |
| 922 | * not removed, it won't work. |
| 923 | */ |
| 924 | /* Handle special cases well: no ports to real internal nodes |
| 925 | * Place cluster edges separately, after layout. |
| 926 | * How to combine parts, especially with disparate components? |
| 927 | */ |
| 928 | if (c_cnt > 1) { |
| 929 | boolean *bp; |
| 930 | if (pinned) { |
| 931 | bp = N_NEW(c_cnt, boolean); |
| 932 | bp[0] = TRUE; |
| 933 | } else |
| 934 | bp = 0; |
| 935 | infop->pack.fixed = bp; |
| 936 | pts = putGraphs(c_cnt, cc, NULL, &infop->pack); |
| 937 | if (bp) |
| 938 | free(bp); |
| 939 | } else { |
| 940 | pts = NULL; |
| 941 | if (c_cnt == 1) |
| 942 | compute_bb(cc[0]); |
| 943 | } |
| 944 | |
| 945 | /* set bounding box of dg and reposition nodes */ |
| 946 | finalCC(dg, c_cnt, cc, pts, g, infop); |
| 947 | free (pts); |
| 948 | |
| 949 | /* record positions from derived graph to input graph */ |
| 950 | /* At present, this does not record port node info */ |
| 951 | /* In fact, as noted above, we have removed port nodes */ |
| 952 | for (dn = agfstnode(dg); dn; dn = agnxtnode(dg, dn)) { |
| 953 | if ((sg = ND_clust(dn))) { |
| 954 | BB(sg).LL.x = ND_pos(dn)[0] - ND_width(dn) / 2; |
| 955 | BB(sg).LL.y = ND_pos(dn)[1] - ND_height(dn) / 2; |
| 956 | BB(sg).UR.x = BB(sg).LL.x + ND_width(dn); |
| 957 | BB(sg).UR.y = BB(sg).LL.y + ND_height(dn); |
| 958 | } else if ((n = ANODE(dn))) { |
| 959 | ND_pos(n)[0] = ND_pos(dn)[0]; |
| 960 | ND_pos(n)[1] = ND_pos(dn)[1]; |
| 961 | } |
| 962 | } |
| 963 | BB(g) = BB(dg); |
| 964 | #ifdef DEBUG |
| 965 | if (g == infop->rootg) |
| 966 | dump(g, 1, 0); |
| 967 | #endif |
| 968 | |
| 969 | /* clean up temp graphs */ |
| 970 | freeDerivedGraph(dg, cc); |
| 971 | free(cc); |
| 972 | if (Verbose) { |
| 973 | #ifdef DEBUG |
| 974 | prIndent (); |
| 975 | #endif |
| 976 | fprintf (stderr, "end %s\n" , agnameof(g)); |
| 977 | } |
| 978 | #ifdef DEBUG |
| 979 | decInd(); |
| 980 | #endif |
| 981 | } |
| 982 | |
| 983 | /* setBB; |
| 984 | * Set point box g->bb from inch box BB(g). |
| 985 | */ |
| 986 | static void setBB(graph_t * g) |
| 987 | { |
| 988 | int i; |
| 989 | boxf bb; |
| 990 | |
| 991 | bb.LL.x = POINTS_PER_INCH * BB(g).LL.x; |
| 992 | bb.LL.y = POINTS_PER_INCH * BB(g).LL.y; |
| 993 | bb.UR.x = POINTS_PER_INCH * BB(g).UR.x; |
| 994 | bb.UR.y = POINTS_PER_INCH * BB(g).UR.y; |
| 995 | GD_bb(g) = bb; |
| 996 | for (i = 1; i <= GD_n_cluster(g); i++) { |
| 997 | setBB(GD_clust(g)[i]); |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /* init_info: |
| 1002 | * Initialize graph-dependent information and |
| 1003 | * state variable.s |
| 1004 | */ |
| 1005 | static void init_info(graph_t * g, layout_info * infop) |
| 1006 | { |
| 1007 | infop->G_coord = agattr(g, AGRAPH, "coords" , NULL); |
| 1008 | infop->G_width = agattr(g, AGRAPH, "width" , NULL); |
| 1009 | infop->G_height = agattr(g, AGRAPH, "height" , NULL); |
| 1010 | infop->rootg = g; |
| 1011 | infop->gid = 0; |
| 1012 | infop->pack.mode = getPackInfo(g, l_node, CL_OFFSET / 2, &(infop->pack)); |
| 1013 | } |
| 1014 | |
| 1015 | /* mkClusters: |
| 1016 | * Attach list of immediate child clusters. |
| 1017 | * NB: By convention, the indexing starts at 1. |
| 1018 | * If pclist is NULL, the graph is the root graph or a cluster |
| 1019 | * If pclist is non-NULL, we are recursively scanning a non-cluster |
| 1020 | * subgraph for cluster children. |
| 1021 | */ |
| 1022 | static void |
| 1023 | mkClusters (graph_t * g, clist_t* pclist, graph_t* parent) |
| 1024 | { |
| 1025 | graph_t* subg; |
| 1026 | clist_t list; |
| 1027 | clist_t* clist; |
| 1028 | |
| 1029 | if (pclist == NULL) { |
| 1030 | clist = &list; |
| 1031 | initCList(clist); |
| 1032 | } |
| 1033 | else |
| 1034 | clist = pclist; |
| 1035 | |
| 1036 | for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) |
| 1037 | { |
| 1038 | if (!strncmp(agnameof(subg), "cluster" , 7)) { |
| 1039 | agbindrec(subg, "Agraphinfo_t" , sizeof(Agraphinfo_t), TRUE); |
| 1040 | GD_alg(subg) = (void *) NEW(gdata); /* freed in cleanup_subgs */ |
| 1041 | GD_ndim(subg) = GD_ndim(parent); |
| 1042 | LEVEL(subg) = LEVEL(parent) + 1; |
| 1043 | GPARENT(subg) = parent; |
| 1044 | addCluster(clist, subg); |
| 1045 | mkClusters(subg, NULL, subg); |
| 1046 | } |
| 1047 | else { |
| 1048 | mkClusters(subg, clist, parent); |
| 1049 | } |
| 1050 | } |
| 1051 | if (pclist == NULL) { |
| 1052 | GD_n_cluster(g) = list.cnt; |
| 1053 | if (list.cnt) |
| 1054 | GD_clust(g) = RALLOC(list.cnt + 1, list.cl, graph_t*); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | static void fdp_init_graph(Agraph_t * g) |
| 1059 | { |
| 1060 | setEdgeType (g, ET_LINE); |
| 1061 | GD_alg(g) = (void *) NEW(gdata); /* freed in cleanup_graph */ |
| 1062 | GD_ndim(g) = late_int(g, agattr(g,AGRAPH, "dim" , NULL), 2, 2); |
| 1063 | Ndim = GD_ndim(g) = MIN(GD_ndim(g), MAXDIM); |
| 1064 | |
| 1065 | mkClusters (g, NULL, g); |
| 1066 | fdp_initParams(g); |
| 1067 | fdp_init_node_edge(g); |
| 1068 | } |
| 1069 | |
| 1070 | static void fdpLayout(graph_t * g) |
| 1071 | { |
| 1072 | layout_info info; |
| 1073 | |
| 1074 | init_info(g, &info); |
| 1075 | layout(g, &info); |
| 1076 | setClustNodes(g); |
| 1077 | evalPositions(g,g); |
| 1078 | |
| 1079 | /* Set bbox info for g and all clusters. This is needed for |
| 1080 | * spline drawing. We already know the graph bbox is at the origin. |
| 1081 | * On return from spline drawing, all bounding boxes should be correct. |
| 1082 | */ |
| 1083 | setBB(g); |
| 1084 | } |
| 1085 | |
| 1086 | static void |
| 1087 | fdpSplines (graph_t * g) |
| 1088 | { |
| 1089 | int trySplines = 0; |
| 1090 | int et = EDGE_TYPE(g); |
| 1091 | |
| 1092 | if (et > ET_ORTHO) { |
| 1093 | if (et == ET_COMPOUND) { |
| 1094 | trySplines = splineEdges(g, compoundEdges, ET_SPLINE); |
| 1095 | /* When doing the edges again, accept edges done by compoundEdges */ |
| 1096 | if (trySplines) |
| 1097 | Nop = 2; |
| 1098 | } |
| 1099 | if (trySplines || (et != ET_COMPOUND)) { |
| 1100 | if (HAS_CLUST_EDGE(g)) { |
| 1101 | agerr(AGWARN, |
| 1102 | "splines and cluster edges not supported - using line segments\n" ); |
| 1103 | et = ET_LINE; |
| 1104 | } else { |
| 1105 | spline_edges1(g, et); |
| 1106 | } |
| 1107 | } |
| 1108 | Nop = 0; |
| 1109 | } |
| 1110 | if (State < GVSPLINES) |
| 1111 | spline_edges1(g, et); |
| 1112 | } |
| 1113 | |
| 1114 | void fdp_layout(graph_t * g) |
| 1115 | { |
| 1116 | /* Agnode_t* n; */ |
| 1117 | |
| 1118 | double save_scale = PSinputscale; |
| 1119 | |
| 1120 | PSinputscale = get_inputscale (g); |
| 1121 | fdp_init_graph(g); |
| 1122 | if (setjmp(jbuf)) { |
| 1123 | return; |
| 1124 | } |
| 1125 | fdpLayout(g); |
| 1126 | #if 0 |
| 1127 | /* free ND_alg field so it can be used in spline routing */ |
| 1128 | if ((n = agfstnode(g))) |
| 1129 | free(ND_alg(n)); |
| 1130 | #endif |
| 1131 | neato_set_aspect(g); |
| 1132 | |
| 1133 | if (EDGE_TYPE(g) != ET_NONE) fdpSplines (g); |
| 1134 | |
| 1135 | gv_postprocess(g, 0); |
| 1136 | PSinputscale = save_scale; |
| 1137 | } |
| 1138 | |