| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | /* tlayout.c: |
| 15 | * Written by Emden R. Gansner |
| 16 | * |
| 17 | * Module for initial layout, using point nodes and ports. |
| 18 | * |
| 19 | * Note: If interior nodes are not connected, they tend to fly apart, |
| 20 | * despite being tied to port nodes. This occurs because, as initially |
| 21 | * coded, as the nodes tend to straighten into a line, the radius |
| 22 | * grows causing more expansion. Is the problem really here and not |
| 23 | * with disconnected nodes in xlayout? If here, we can either forbid |
| 24 | * expansion or eliminate repulsion between nodes only connected |
| 25 | * via port nodes. |
| 26 | */ |
| 27 | |
| 28 | #include "config.h" |
| 29 | |
| 30 | /* uses PRIVATE interface */ |
| 31 | #define FDP_PRIVATE 1 |
| 32 | |
| 33 | #ifdef HAVE_SYS_TYPES_H |
| 34 | #include <sys/types.h> |
| 35 | #endif |
| 36 | #include <stdlib.h> |
| 37 | #include <time.h> |
| 38 | #ifndef _WIN32 |
| 39 | #include <unistd.h> |
| 40 | #endif |
| 41 | #include <ctype.h> |
| 42 | #include <dbg.h> |
| 43 | #include <grid.h> |
| 44 | #include <neato.h> |
| 45 | |
| 46 | #ifndef HAVE_SRAND48 |
| 47 | #define srand48 srand |
| 48 | #endif |
| 49 | #ifndef HAVE_DRAND48 |
| 50 | extern double drand48(void); |
| 51 | #endif |
| 52 | |
| 53 | #include "tlayout.h" |
| 54 | #include "globals.h" |
| 55 | |
| 56 | #define D_useGrid (fdp_parms->useGrid) |
| 57 | #define D_useNew (fdp_parms->useNew) |
| 58 | #define D_numIters (fdp_parms->numIters) |
| 59 | #define D_unscaled (fdp_parms->unscaled) |
| 60 | #define D_C (fdp_parms->C) |
| 61 | #define D_Tfact (fdp_parms->Tfact) |
| 62 | #define D_K (fdp_parms->K) |
| 63 | #define D_T0 (fdp_parms->T0) |
| 64 | |
| 65 | /* Actual parameters used; initialized using fdp_parms, then possibly |
| 66 | * updated with graph-specific values. |
| 67 | */ |
| 68 | typedef struct { |
| 69 | int useGrid; /* use grid for speed up */ |
| 70 | int useNew; /* encode x-K into attractive force */ |
| 71 | long seed; /* seed for position RNG */ |
| 72 | int numIters; /* actual iterations in layout */ |
| 73 | int maxIters; /* max iterations in layout */ |
| 74 | int unscaled; /* % of iterations used in pass 1 */ |
| 75 | double C; /* Repulsion factor in xLayout */ |
| 76 | double Tfact; /* scale temp from default expression */ |
| 77 | double K; /* spring constant; ideal distance */ |
| 78 | double T0; /* initial temperature */ |
| 79 | int smode; /* seed mode */ |
| 80 | double Cell; /* grid cell size */ |
| 81 | double Cell2; /* Cell*Cell */ |
| 82 | double K2; /* K*K */ |
| 83 | double Wd; /* half-width of boundary */ |
| 84 | double Ht; /* half-height of boundary */ |
| 85 | double Wd2; /* Wd*Wd */ |
| 86 | double Ht2; /* Ht*Ht */ |
| 87 | int pass1; /* iterations used in pass 1 */ |
| 88 | int loopcnt; /* actual iterations in this pass */ |
| 89 | } parms_t; |
| 90 | |
| 91 | static parms_t parms; |
| 92 | |
| 93 | #define T_useGrid (parms.useGrid) |
| 94 | #define T_useNew (parms.useNew) |
| 95 | #define T_seed (parms.seed) |
| 96 | #define T_numIters (parms.numIters) |
| 97 | #define T_maxIters (parms.maxIters) |
| 98 | #define T_unscaled (parms.unscaled) |
| 99 | #define T_C (parms.C) |
| 100 | #define T_Tfact (parms.Tfact) |
| 101 | #define T_K (parms.K) |
| 102 | #define T_T0 (parms.T0) |
| 103 | #define T_smode (parms.smode) |
| 104 | #define T_Cell (parms.Cell) |
| 105 | #define T_Cell2 (parms.Cell2) |
| 106 | #define T_K2 (parms.K2) |
| 107 | #define T_Wd (parms.Wd) |
| 108 | #define T_Ht (parms.Ht) |
| 109 | #define T_Wd2 (parms.Wd2) |
| 110 | #define T_Ht2 (parms.Ht2) |
| 111 | #define T_pass1 (parms.pass1) |
| 112 | #define T_loopcnt (parms.loopcnt) |
| 113 | |
| 114 | #define EXPFACTOR 1.2 |
| 115 | #define DFLT_maxIters 600 |
| 116 | #define DFLT_K 0.3 |
| 117 | #define DFLT_Cell 0.0 |
| 118 | #define DFLT_seed 1 |
| 119 | #define DFLT_smode INIT_RANDOM |
| 120 | |
| 121 | static double cool(double temp, int t) |
| 122 | { |
| 123 | return (T_T0 * (T_maxIters - t)) / T_maxIters; |
| 124 | } |
| 125 | |
| 126 | /* reset_params: |
| 127 | */ |
| 128 | static void reset_params(void) |
| 129 | { |
| 130 | T_T0 = -1.0; |
| 131 | } |
| 132 | |
| 133 | /* init_params: |
| 134 | * Set parameters for expansion phase based on initial |
| 135 | * layout parameters. If T0 is not set, we set it here |
| 136 | * based on the size of the graph. In this case, we |
| 137 | * return 1, so that fdp_tLayout can unset T0, to be |
| 138 | * reset by a recursive call to fdp_tLayout. |
| 139 | */ |
| 140 | static int init_params(graph_t * g, xparams * xpms) |
| 141 | { |
| 142 | int ret = 0; |
| 143 | |
| 144 | if (T_T0 == -1.0) { |
| 145 | int nnodes = agnnodes(g); |
| 146 | |
| 147 | T_T0 = T_Tfact * T_K * sqrt(nnodes) / 5; |
| 148 | #ifdef DEBUG |
| 149 | if (Verbose) { |
| 150 | prIndent(); |
| 151 | fprintf(stderr, "tlayout %s" , agnameof(g)); |
| 152 | fprintf(stderr, "(%s) : T0 %f\n" , agnameof(GORIG(g->root)), T_T0); |
| 153 | } |
| 154 | #endif |
| 155 | ret = 1; |
| 156 | } |
| 157 | |
| 158 | xpms->T0 = cool(T_T0, T_pass1); |
| 159 | xpms->K = T_K; |
| 160 | xpms->C = T_C; |
| 161 | xpms->numIters = T_maxIters - T_pass1; |
| 162 | |
| 163 | if (T_numIters >= 0) { |
| 164 | if (T_numIters <= T_pass1) { |
| 165 | T_loopcnt = T_numIters; |
| 166 | xpms->loopcnt = 0; |
| 167 | } else if (T_numIters <= T_maxIters) { |
| 168 | T_loopcnt = T_pass1; |
| 169 | xpms->loopcnt = T_numIters - T_pass1; |
| 170 | } |
| 171 | } else { |
| 172 | T_loopcnt = T_pass1; |
| 173 | xpms->loopcnt = xpms->numIters; |
| 174 | } |
| 175 | return ret; |
| 176 | } |
| 177 | |
| 178 | /* fdp_initParams: |
| 179 | * Initialize parameters based on root graph attributes. |
| 180 | */ |
| 181 | void fdp_initParams(graph_t * g) |
| 182 | { |
| 183 | T_useGrid = D_useGrid; |
| 184 | T_useNew = D_useNew; |
| 185 | T_numIters = D_numIters; |
| 186 | T_unscaled = D_unscaled; |
| 187 | T_Cell = DFLT_Cell; |
| 188 | T_C = D_C; |
| 189 | T_Tfact = D_Tfact; |
| 190 | T_maxIters = late_int(g, agattr(g,AGRAPH, "maxiter" , NULL), DFLT_maxIters, 0); |
| 191 | D_K = T_K = late_double(g, agattr(g,AGRAPH, "K" , NULL), DFLT_K, 0.0); |
| 192 | if (D_T0 == -1.0) { |
| 193 | T_T0 = late_double(g, agattr(g,AGRAPH, "T0" , NULL), -1.0, 0.0); |
| 194 | } else |
| 195 | T_T0 = D_T0; |
| 196 | T_seed = DFLT_seed; |
| 197 | T_smode = setSeed (g, DFLT_smode, &T_seed); |
| 198 | if (T_smode == INIT_SELF) { |
| 199 | agerr(AGWARN, "fdp does not support start=self - ignoring\n" ); |
| 200 | T_seed = DFLT_smode; |
| 201 | } |
| 202 | |
| 203 | T_pass1 = (T_unscaled * T_maxIters) / 100; |
| 204 | T_K2 = T_K * T_K; |
| 205 | |
| 206 | if (T_useGrid) { |
| 207 | if (T_Cell <= 0.0) |
| 208 | T_Cell = 3 * T_K; |
| 209 | T_Cell2 = T_Cell * T_Cell; |
| 210 | } |
| 211 | #ifdef DEBUG |
| 212 | if (Verbose) { |
| 213 | prIndent(); |
| 214 | fprintf(stderr, |
| 215 | "Params %s : K %f T0 %f Tfact %f maxIters %d unscaled %d\n" , |
| 216 | agnameof(g), |
| 217 | T_K, T_T0, T_Tfact, T_maxIters, T_unscaled); |
| 218 | } |
| 219 | #endif |
| 220 | } |
| 221 | |
| 222 | static void |
| 223 | doRep(node_t * p, node_t * q, double xdelta, double ydelta, double dist2) |
| 224 | { |
| 225 | double force; |
| 226 | double dist; |
| 227 | |
| 228 | while (dist2 == 0.0) { |
| 229 | xdelta = 5 - rand() % 10; |
| 230 | ydelta = 5 - rand() % 10; |
| 231 | dist2 = xdelta * xdelta + ydelta * ydelta; |
| 232 | } |
| 233 | if (T_useNew) { |
| 234 | dist = sqrt(dist2); |
| 235 | force = T_K2 / (dist * dist2); |
| 236 | } else |
| 237 | force = T_K2 / dist2; |
| 238 | if (IS_PORT(p) && IS_PORT(q)) |
| 239 | force *= 10.0; |
| 240 | DISP(q)[0] += xdelta * force; |
| 241 | DISP(q)[1] += ydelta * force; |
| 242 | DISP(p)[0] -= xdelta * force; |
| 243 | DISP(p)[1] -= ydelta * force; |
| 244 | } |
| 245 | |
| 246 | /* applyRep: |
| 247 | * Repulsive force = (K*K)/d |
| 248 | * or K*K/d*d |
| 249 | */ |
| 250 | static void applyRep(Agnode_t * p, Agnode_t * q) |
| 251 | { |
| 252 | double xdelta, ydelta; |
| 253 | |
| 254 | xdelta = ND_pos(q)[0] - ND_pos(p)[0]; |
| 255 | ydelta = ND_pos(q)[1] - ND_pos(p)[1]; |
| 256 | doRep(p, q, xdelta, ydelta, xdelta * xdelta + ydelta * ydelta); |
| 257 | } |
| 258 | |
| 259 | static void doNeighbor(Grid * grid, int i, int j, node_list * nodes) |
| 260 | { |
| 261 | cell *cellp = findGrid(grid, i, j); |
| 262 | node_list *qs; |
| 263 | Agnode_t *p; |
| 264 | Agnode_t *q; |
| 265 | double xdelta, ydelta; |
| 266 | double dist2; |
| 267 | |
| 268 | if (cellp) { |
| 269 | #ifdef DEBUG |
| 270 | if (Verbose >= 3) { |
| 271 | prIndent(); |
| 272 | fprintf(stderr, " doNeighbor (%d,%d) : %d\n" , i, j, |
| 273 | gLength(cellp)); |
| 274 | } |
| 275 | #endif |
| 276 | for (; nodes != 0; nodes = nodes->next) { |
| 277 | p = nodes->node; |
| 278 | for (qs = cellp->nodes; qs != 0; qs = qs->next) { |
| 279 | q = qs->node; |
| 280 | xdelta = (ND_pos(q))[0] - (ND_pos(p))[0]; |
| 281 | ydelta = (ND_pos(q))[1] - (ND_pos(p))[1]; |
| 282 | dist2 = xdelta * xdelta + ydelta * ydelta; |
| 283 | if (dist2 < T_Cell2) |
| 284 | doRep(p, q, xdelta, ydelta, dist2); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | static int gridRepulse(Dt_t * dt, cell * cellp, Grid * grid) |
| 291 | { |
| 292 | node_list *nodes = cellp->nodes; |
| 293 | int i = cellp->p.i; |
| 294 | int j = cellp->p.j; |
| 295 | node_list *p; |
| 296 | node_list *q; |
| 297 | |
| 298 | NOTUSED(dt); |
| 299 | #ifdef DEBUG |
| 300 | if (Verbose >= 3) { |
| 301 | prIndent(); |
| 302 | fprintf(stderr, "gridRepulse (%d,%d) : %d\n" , i, j, |
| 303 | gLength(cellp)); |
| 304 | } |
| 305 | #endif |
| 306 | for (p = nodes; p != 0; p = p->next) { |
| 307 | for (q = nodes; q != 0; q = q->next) |
| 308 | if (p != q) |
| 309 | applyRep(p->node, q->node); |
| 310 | } |
| 311 | |
| 312 | doNeighbor(grid, i - 1, j - 1, nodes); |
| 313 | doNeighbor(grid, i - 1, j, nodes); |
| 314 | doNeighbor(grid, i - 1, j + 1, nodes); |
| 315 | doNeighbor(grid, i, j - 1, nodes); |
| 316 | doNeighbor(grid, i, j + 1, nodes); |
| 317 | doNeighbor(grid, i + 1, j - 1, nodes); |
| 318 | doNeighbor(grid, i + 1, j, nodes); |
| 319 | doNeighbor(grid, i + 1, j + 1, nodes); |
| 320 | |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | /* applyAttr: |
| 325 | * Attractive force = weight*(d*d)/K |
| 326 | * or force = (d - L(e))*weight(e) |
| 327 | */ |
| 328 | static void applyAttr(Agnode_t * p, Agnode_t * q, Agedge_t * e) |
| 329 | { |
| 330 | double xdelta, ydelta; |
| 331 | double force; |
| 332 | double dist; |
| 333 | double dist2; |
| 334 | |
| 335 | xdelta = ND_pos(q)[0] - ND_pos(p)[0]; |
| 336 | ydelta = ND_pos(q)[1] - ND_pos(p)[1]; |
| 337 | dist2 = xdelta * xdelta + ydelta * ydelta; |
| 338 | while (dist2 == 0.0) { |
| 339 | xdelta = 5 - rand() % 10; |
| 340 | ydelta = 5 - rand() % 10; |
| 341 | dist2 = xdelta * xdelta + ydelta * ydelta; |
| 342 | } |
| 343 | dist = sqrt(dist2); |
| 344 | if (T_useNew) |
| 345 | force = (ED_factor(e) * (dist - ED_dist(e))) / dist; |
| 346 | else |
| 347 | force = (ED_factor(e) * dist) / ED_dist(e); |
| 348 | DISP(q)[0] -= xdelta * force; |
| 349 | DISP(q)[1] -= ydelta * force; |
| 350 | DISP(p)[0] += xdelta * force; |
| 351 | DISP(p)[1] += ydelta * force; |
| 352 | } |
| 353 | |
| 354 | static void updatePos(Agraph_t * g, double temp, bport_t * pp) |
| 355 | { |
| 356 | Agnode_t *n; |
| 357 | double temp2; |
| 358 | double len2; |
| 359 | double x, y, d; |
| 360 | double dx, dy; |
| 361 | |
| 362 | temp2 = temp * temp; |
| 363 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 364 | if (ND_pinned(n) & P_FIX) |
| 365 | continue; |
| 366 | dx = DISP(n)[0]; |
| 367 | dy = DISP(n)[1]; |
| 368 | len2 = dx * dx + dy * dy; |
| 369 | |
| 370 | /* limit by temperature */ |
| 371 | if (len2 < temp2) { |
| 372 | x = ND_pos(n)[0] + dx; |
| 373 | y = ND_pos(n)[1] + dy; |
| 374 | } else { |
| 375 | double fact = temp / (sqrt(len2)); |
| 376 | x = ND_pos(n)[0] + dx * fact; |
| 377 | y = ND_pos(n)[1] + dy * fact; |
| 378 | } |
| 379 | |
| 380 | /* if ports, limit by boundary */ |
| 381 | if (pp) { |
| 382 | d = sqrt((x * x) / T_Wd2 + (y * y) / T_Ht2); |
| 383 | if (IS_PORT(n)) { |
| 384 | ND_pos(n)[0] = x / d; |
| 385 | ND_pos(n)[1] = y / d; |
| 386 | } else if (d >= 1.0) { |
| 387 | ND_pos(n)[0] = 0.95 * x / d; |
| 388 | ND_pos(n)[1] = 0.95 * y / d; |
| 389 | } else { |
| 390 | ND_pos(n)[0] = x; |
| 391 | ND_pos(n)[1] = y; |
| 392 | } |
| 393 | } else { |
| 394 | ND_pos(n)[0] = x; |
| 395 | ND_pos(n)[1] = y; |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | #define FLOOR(d) ((int)floor(d)) |
| 401 | |
| 402 | /* gAdjust: |
| 403 | */ |
| 404 | static void gAdjust(Agraph_t * g, double temp, bport_t * pp, Grid * grid) |
| 405 | { |
| 406 | Agnode_t *n; |
| 407 | Agedge_t *e; |
| 408 | |
| 409 | if (temp <= 0.0) |
| 410 | return; |
| 411 | |
| 412 | clearGrid(grid); |
| 413 | |
| 414 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 415 | DISP(n)[0] = DISP(n)[1] = 0; |
| 416 | addGrid(grid, FLOOR((ND_pos(n))[0] / T_Cell), FLOOR((ND_pos(n))[1] / T_Cell), |
| 417 | n); |
| 418 | } |
| 419 | |
| 420 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 421 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) |
| 422 | if (n != aghead(e)) |
| 423 | applyAttr(n, aghead(e), e); |
| 424 | } |
| 425 | walkGrid(grid, gridRepulse); |
| 426 | |
| 427 | |
| 428 | updatePos(g, temp, pp); |
| 429 | } |
| 430 | |
| 431 | /* adjust: |
| 432 | */ |
| 433 | static void adjust(Agraph_t * g, double temp, bport_t * pp) |
| 434 | { |
| 435 | Agnode_t *n; |
| 436 | Agnode_t *n1; |
| 437 | Agedge_t *e; |
| 438 | |
| 439 | if (temp <= 0.0) |
| 440 | return; |
| 441 | |
| 442 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 443 | DISP(n)[0] = DISP(n)[1] = 0; |
| 444 | } |
| 445 | |
| 446 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 447 | for (n1 = agnxtnode(g, n); n1; n1 = agnxtnode(g, n1)) { |
| 448 | applyRep(n, n1); |
| 449 | } |
| 450 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 451 | if (n != aghead(e)) |
| 452 | applyAttr(n, aghead(e), e); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | updatePos(g, temp, pp); |
| 457 | } |
| 458 | |
| 459 | /* initPositions: |
| 460 | * Create initial layout of nodes |
| 461 | * TODO : |
| 462 | * Position nodes near neighbors with positions. |
| 463 | * Use bbox to reset K. |
| 464 | */ |
| 465 | static pointf initPositions(graph_t * g, bport_t * pp) |
| 466 | { |
| 467 | int nG = agnnodes(g) - NPORTS(g); |
| 468 | double size; |
| 469 | Agnode_t *np; |
| 470 | int n_pos = 0; /* no. of nodes with position info */ |
| 471 | boxf bb = { {0, 0}, {0, 0} }; |
| 472 | pointf ctr; /* center of boundary ellipse */ |
| 473 | long local_seed; |
| 474 | double PItimes2 = M_PI * 2.0; |
| 475 | |
| 476 | for (np = agfstnode(g); np; np = agnxtnode(g, np)) { |
| 477 | if (ND_pinned(np)) { |
| 478 | if (n_pos) { |
| 479 | bb.LL.x = MIN(ND_pos(np)[0], bb.LL.x); |
| 480 | bb.LL.y = MIN(ND_pos(np)[1], bb.LL.y); |
| 481 | bb.UR.x = MAX(ND_pos(np)[0], bb.UR.x); |
| 482 | bb.UR.y = MAX(ND_pos(np)[1], bb.UR.y); |
| 483 | } else { |
| 484 | bb.UR.x = bb.LL.x = ND_pos(np)[0]; |
| 485 | bb.UR.y = bb.LL.y = ND_pos(np)[1]; |
| 486 | } |
| 487 | n_pos++; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | size = T_K * (sqrt((double) nG) + 1.0); |
| 492 | T_Wd = T_Ht = EXPFACTOR * (size / 2.0); |
| 493 | if (n_pos == 1) { |
| 494 | ctr.x = bb.LL.x; |
| 495 | ctr.y = bb.LL.y; |
| 496 | } else if (n_pos > 1) { |
| 497 | double alpha, area, width, height, quot; |
| 498 | ctr.x = (bb.LL.x + bb.UR.x) / 2.0; |
| 499 | ctr.y = (bb.LL.y + bb.UR.y) / 2.0; |
| 500 | width = EXPFACTOR * (bb.UR.x - bb.LL.x); |
| 501 | height = EXPFACTOR * (bb.UR.y - bb.LL.y); |
| 502 | area = 4.0 * T_Wd * T_Ht; |
| 503 | quot = (width * height) / area; |
| 504 | if (quot >= 1.0) { /* If bbox has large enough area, use it */ |
| 505 | T_Wd = width / 2.0; |
| 506 | T_Ht = height / 2.0; |
| 507 | } else if (quot > 0.0) { /* else scale up to have enough area */ |
| 508 | quot = 2.0 * sqrt(quot); |
| 509 | T_Wd = width / quot; |
| 510 | T_Ht = height / quot; |
| 511 | } else { /* either width or height is 0 */ |
| 512 | if (width > 0) { |
| 513 | height = area / width; |
| 514 | T_Wd = width / 2.0; |
| 515 | T_Ht = height / 2.0; |
| 516 | } else if (height > 0) { |
| 517 | width = area / height; |
| 518 | T_Wd = width / 2.0; |
| 519 | T_Ht = height / 2.0; |
| 520 | } |
| 521 | /* If width = height = 0, use Wd and Ht as defined above for |
| 522 | * the case the n_pos == 0. |
| 523 | */ |
| 524 | } |
| 525 | |
| 526 | /* Construct enclosing ellipse */ |
| 527 | alpha = atan2(T_Ht, T_Wd); |
| 528 | T_Wd = T_Wd / cos(alpha); |
| 529 | T_Ht = T_Ht / sin(alpha); |
| 530 | } else { |
| 531 | ctr.x = ctr.y = 0; |
| 532 | } |
| 533 | T_Wd2 = T_Wd * T_Wd; |
| 534 | T_Ht2 = T_Ht * T_Ht; |
| 535 | |
| 536 | /* Set seed value */ |
| 537 | if (T_smode == INIT_RANDOM) |
| 538 | local_seed = T_seed; |
| 539 | else { |
| 540 | #if defined(_WIN32) |
| 541 | local_seed = time(NULL); |
| 542 | #else |
| 543 | local_seed = getpid() ^ time(NULL); |
| 544 | #endif |
| 545 | } |
| 546 | srand48(local_seed); |
| 547 | |
| 548 | /* If ports, place ports on and nodes within an ellipse centered at origin |
| 549 | * with halfwidth Wd and halfheight Ht. |
| 550 | * If no ports, place nodes within a rectangle centered at origin |
| 551 | * with halfwidth Wd and halfheight Ht. Nodes with a given position |
| 552 | * are translated. Wd and Ht are set to contain all positioned points. |
| 553 | * The reverse translation will be applied to all |
| 554 | * nodes at the end of the layout. |
| 555 | * TODO: place unfixed points using adjacent ports or fixed pts. |
| 556 | */ |
| 557 | if (pp) { |
| 558 | /* fprintf (stderr, "initPos %s ctr (%g,%g) Wd %g Ht %g\n", agnameof(g), ctr.x, ctr.y, T_Wd, T_Ht); */ |
| 559 | while (pp->e) { /* position ports on ellipse */ |
| 560 | np = pp->n; |
| 561 | ND_pos(np)[0] = T_Wd * cos(pp->alpha) + ctr.x; |
| 562 | ND_pos(np)[1] = T_Ht * sin(pp->alpha) + ctr.y; |
| 563 | ND_pinned(np) = P_SET; |
| 564 | /* fprintf (stderr, "%s pt (%g,%g) %g\n", agnameof(np), ND_pos(np)[0], ND_pos(np)[1], pp->alpha); */ |
| 565 | pp++; |
| 566 | } |
| 567 | for (np = agfstnode(g); np; np = agnxtnode(g, np)) { |
| 568 | if (IS_PORT(np)) |
| 569 | continue; |
| 570 | if (ND_pinned(np)) { |
| 571 | ND_pos(np)[0] -= ctr.x; |
| 572 | ND_pos(np)[1] -= ctr.y; |
| 573 | } else { |
| 574 | pointf p = { 0.0, 0.0 }; |
| 575 | int cnt = 0; |
| 576 | node_t *op; |
| 577 | edge_t *ep; |
| 578 | for (ep = agfstedge(g, np); ep; ep = agnxtedge(g, ep, np)) { |
| 579 | if (aghead(ep) == agtail(ep)) |
| 580 | continue; |
| 581 | op = (aghead(ep) == np ? agtail(ep) : aghead(ep)); |
| 582 | if (!hasPos(op)) |
| 583 | continue; |
| 584 | if (cnt) { |
| 585 | p.x = (p.x * cnt + ND_pos(op)[0]) / (cnt + 1); |
| 586 | p.y = (p.y * cnt + ND_pos(op)[1]) / (cnt + 1); |
| 587 | } else { |
| 588 | p.x = ND_pos(op)[0]; |
| 589 | p.y = ND_pos(op)[1]; |
| 590 | } |
| 591 | cnt++; |
| 592 | } |
| 593 | if (cnt > 1) { |
| 594 | ND_pos(np)[0] = p.x; |
| 595 | ND_pos(np)[1] = p.y; |
| 596 | /* fprintf (stderr, "%s 1 (%g,%g)\n", agnameof(np), p.x, p.y); */ |
| 597 | } else if (cnt == 1) { |
| 598 | ND_pos(np)[0] = 0.98 * p.x + 0.1 * ctr.x; |
| 599 | ND_pos(np)[1] = 0.9 * p.y + 0.1 * ctr.y; |
| 600 | /* fprintf (stderr, "%s %d (%g,%g)\n", agnameof(np), cnt, ND_pos(np)[0], ND_pos(np)[1]); */ |
| 601 | } else { |
| 602 | double angle = PItimes2 * drand48(); |
| 603 | double radius = 0.9 * drand48(); |
| 604 | ND_pos(np)[0] = radius * T_Wd * cos(angle); |
| 605 | ND_pos(np)[1] = radius * T_Ht * sin(angle); |
| 606 | /* fprintf (stderr, "%s 0 (%g,%g)\n", agnameof(np), ND_pos(np)[0], ND_pos(np)[1]); */ |
| 607 | } |
| 608 | ND_pinned(np) = P_SET; |
| 609 | } |
| 610 | } |
| 611 | } else { |
| 612 | if (n_pos) { /* If positioned nodes */ |
| 613 | for (np = agfstnode(g); np; np = agnxtnode(g, np)) { |
| 614 | if (ND_pinned(np)) { |
| 615 | ND_pos(np)[0] -= ctr.x; |
| 616 | ND_pos(np)[1] -= ctr.y; |
| 617 | } else { |
| 618 | ND_pos(np)[0] = T_Wd * (2.0 * drand48() - 1.0); |
| 619 | ND_pos(np)[1] = T_Ht * (2.0 * drand48() - 1.0); |
| 620 | } |
| 621 | } |
| 622 | } else { /* No ports or positions; place randomly */ |
| 623 | for (np = agfstnode(g); np; np = agnxtnode(g, np)) { |
| 624 | ND_pos(np)[0] = T_Wd * (2.0 * drand48() - 1.0); |
| 625 | ND_pos(np)[1] = T_Ht * (2.0 * drand48() - 1.0); |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | return ctr; |
| 631 | } |
| 632 | |
| 633 | void dumpstat(graph_t * g) |
| 634 | { |
| 635 | double dx, dy; |
| 636 | double l, max2 = 0.0; |
| 637 | node_t *np; |
| 638 | edge_t *ep; |
| 639 | for (np = agfstnode(g); np; np = agnxtnode(g, np)) { |
| 640 | dx = DISP(np)[0]; |
| 641 | dy = DISP(np)[1]; |
| 642 | l = dx * dx + dy * dy; |
| 643 | if (l > max2) |
| 644 | max2 = l; |
| 645 | fprintf(stderr, "%s: (%f,%f) (%f,%f)\n" , agnameof(np), |
| 646 | ND_pos(np)[0], ND_pos(np)[1], DISP(np)[0], DISP(np)[1]); |
| 647 | } |
| 648 | fprintf(stderr, "max delta = %f\n" , sqrt(max2)); |
| 649 | for (np = agfstnode(g); np; np = agnxtnode(g, np)) { |
| 650 | for (ep = agfstout(g, np); ep; ep = agnxtout(g, ep)) { |
| 651 | dx = ND_pos(np)[0] - ND_pos(aghead(ep))[0]; |
| 652 | dy = ND_pos(np)[1] - ND_pos(aghead(ep))[1]; |
| 653 | fprintf(stderr, " %s -- %s (%f)\n" , agnameof(np), |
| 654 | agnameof(aghead(ep)), sqrt(dx * dx + dy * dy)); |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | /* fdp_tLayout: |
| 660 | * Given graph g with ports nodes, layout g respecting ports. |
| 661 | * If some node have position information, it may be useful to |
| 662 | * reset temperature and other parameters to reflect this. |
| 663 | */ |
| 664 | void fdp_tLayout(graph_t * g, xparams * xpms) |
| 665 | { |
| 666 | int i; |
| 667 | int reset; |
| 668 | bport_t *pp = PORTS(g); |
| 669 | double temp; |
| 670 | Grid *grid; |
| 671 | pointf ctr; |
| 672 | Agnode_t *n; |
| 673 | |
| 674 | reset = init_params(g, xpms); |
| 675 | temp = T_T0; |
| 676 | |
| 677 | ctr = initPositions(g, pp); |
| 678 | |
| 679 | if (T_useGrid) { |
| 680 | grid = mkGrid(agnnodes(g)); |
| 681 | adjustGrid(grid, agnnodes(g)); |
| 682 | for (i = 0; i < T_loopcnt; i++) { |
| 683 | temp = cool(temp, i); |
| 684 | gAdjust(g, temp, pp, grid); |
| 685 | } |
| 686 | delGrid(grid); |
| 687 | } else { |
| 688 | for (i = 0; i < T_loopcnt; i++) { |
| 689 | temp = cool(temp, i); |
| 690 | adjust(g, temp, pp); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | if ((ctr.x != 0.0) || (ctr.y != 0.0)) { |
| 695 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 696 | ND_pos(n)[0] += ctr.x; |
| 697 | ND_pos(n)[1] += ctr.y; |
| 698 | } |
| 699 | } |
| 700 | /* dumpstat (g); */ |
| 701 | if (reset) |
| 702 | reset_params(); |
| 703 | } |
| 704 | |