1 | /* vim:set shiftwidth=4 ts=8: */ |
2 | |
3 | /************************************************************************* |
4 | * Copyright (c) 2011 AT&T Intellectual Property |
5 | * All rights reserved. This program and the accompanying materials |
6 | * are made available under the terms of the Eclipse Public License v1.0 |
7 | * which accompanies this distribution, and is available at |
8 | * http://www.eclipse.org/legal/epl-v10.html |
9 | * |
10 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
11 | *************************************************************************/ |
12 | |
13 | #include "config.h" |
14 | |
15 | #include "index.h" |
16 | #include <stdio.h> |
17 | #include <assert.h> |
18 | #include <limits.h> |
19 | #include "logic.h" |
20 | #include "arith.h" |
21 | #include "rectangle.h" |
22 | #include <cgraph.h> |
23 | |
24 | #define Undefined(x) ((x)->boundary[0] > (x)->boundary[NUMDIMS]) |
25 | |
26 | extern Rect_t CoverAll; |
27 | |
28 | /*----------------------------------------------------------------------------- |
29 | | Initialize a rectangle to have all 0 coordinates. |
30 | -----------------------------------------------------------------------------*/ |
31 | void InitRect(Rect_t * r) |
32 | { |
33 | register int i; |
34 | for (i = 0; i < NUMSIDES; i++) |
35 | r->boundary[i] = 0; |
36 | } |
37 | |
38 | /*----------------------------------------------------------------------------- |
39 | | Return a rect whose first low side is higher than its opposite side - |
40 | | interpreted as an undefined rect. |
41 | -----------------------------------------------------------------------------*/ |
42 | Rect_t NullRect() |
43 | { |
44 | Rect_t r; |
45 | register int i; |
46 | |
47 | r.boundary[0] = 1; |
48 | r.boundary[NUMDIMS] = -1; |
49 | for (i = 1; i < NUMDIMS; i++) |
50 | r.boundary[i] = r.boundary[i + NUMDIMS] = 0; |
51 | return r; |
52 | } |
53 | |
54 | #ifdef UNUSED |
55 | /*----------------------------------------------------------------------------- |
56 | | Fills in random coordinates in a rectangle. |
57 | | The low side is guaranteed to be less than the high side. |
58 | -----------------------------------------------------------------------------*/ |
59 | RandomRect(Rect_t * r) |
60 | { |
61 | register int i, width; |
62 | for (i = 0; i < NUMDIMS; i++) { |
63 | /* width from 1 to 1000 / 4, more small ones */ |
64 | width = rand() % (1000 / 4) + 1; |
65 | |
66 | /* sprinkle a given size evenly but so they stay in [0,100] */ |
67 | r->boundary[i] = rand() % (1000 - width); /* low side */ |
68 | r->boundary[i + NUMDIMS] = r->boundary[i] + width; /* high side */ |
69 | } |
70 | } |
71 | |
72 | /*----------------------------------------------------------------------------- |
73 | | Fill in the boundaries for a random search rectangle. |
74 | | Pass in a pointer to a rect that contains all the data, |
75 | | and a pointer to the rect to be filled in. |
76 | | Generated rect is centered randomly anywhere in the data area, |
77 | | and has size from 0 to the size of the data area in each dimension, |
78 | | i.e. search rect can stick out beyond data area. |
79 | -----------------------------------------------------------------------------*/ |
80 | SearchRect(Rect_t * search, Rect_t * data) |
81 | { |
82 | register int i, j, size, center; |
83 | |
84 | assert(search); |
85 | assert(data); |
86 | |
87 | for (i = 0; i < NUMDIMS; i++) { |
88 | j = i + NUMDIMS; /* index for high side boundary */ |
89 | if (data->boundary[i] > INT_MIN && data->boundary[j] < INT_MAX) { |
90 | size = |
91 | (rand() % (data->boundary[j] - data->boundary[i] + 1)) / 2; |
92 | center = data->boundary[i] |
93 | + rand() % (data->boundary[j] - data->boundary[i] + 1); |
94 | search->boundary[i] = center - size / 2; |
95 | search->boundary[j] = center + size / 2; |
96 | } else { /* some open boundary, search entire dimension */ |
97 | search->boundary[i] = INT_MIN; |
98 | search->boundary[j] = INT_MAX; |
99 | } |
100 | } |
101 | } |
102 | #endif |
103 | |
104 | #ifdef RTDEBUG |
105 | /*----------------------------------------------------------------------------- |
106 | | Print rectangle lower upper bounds by dimension |
107 | -----------------------------------------------------------------------------*/ |
108 | void PrintRect(Rect_t * r) |
109 | { |
110 | register int i; |
111 | assert(r); |
112 | fprintf(stderr, "rect:" ); |
113 | for (i = 0; i < NUMDIMS; i++) |
114 | fprintf(stderr, "\t%d\t%d\n" , r->boundary[i], |
115 | r->boundary[i + NUMDIMS]); |
116 | } |
117 | #endif |
118 | |
119 | /*----------------------------------------------------------------------------- |
120 | | Calculate the n-dimensional area of a rectangle |
121 | -----------------------------------------------------------------------------*/ |
122 | |
123 | #if LLONG_MAX > UINT_MAX |
124 | unsigned int RectArea(Rect_t * r) |
125 | { |
126 | register int i; |
127 | unsigned int area; |
128 | assert(r); |
129 | |
130 | if (Undefined(r)) |
131 | return 0; |
132 | |
133 | /* |
134 | * XXX add overflow checks |
135 | */ |
136 | area = 1; |
137 | for (i = 0; i < NUMDIMS; i++) { |
138 | long long a_test = area * r->boundary[i + NUMDIMS] - r->boundary[i]; |
139 | if( a_test > UINT_MAX) { |
140 | agerr (AGERR, "label: area too large for rtree\n" ); |
141 | return UINT_MAX; |
142 | } |
143 | area = a_test; |
144 | } |
145 | return area; |
146 | } |
147 | #else |
148 | unsigned int RectArea(Rect_t * r) |
149 | { |
150 | register int i; |
151 | unsigned int area=1, a=1; |
152 | assert(r); |
153 | |
154 | if (Undefined(r)) return 0; |
155 | |
156 | /* |
157 | * XXX add overflow checks |
158 | */ |
159 | area = 1; |
160 | for (i = 0; i < NUMDIMS; i++) { |
161 | unsigned int b = r->boundary[i + NUMDIMS] - r->boundary[i]; |
162 | a *= b; |
163 | if( (a / b ) != area) { |
164 | agerr (AGERR, "label: area too large for rtree\n" ); |
165 | return UINT_MAX; |
166 | } |
167 | area = a; |
168 | } |
169 | return area; |
170 | } |
171 | #endif /*LLONG_MAX > UINT_MAX*/ |
172 | #if 0 /*original code*/ |
173 | int RectArea(Rect_t * r) |
174 | { |
175 | register int i, area=1; |
176 | assert(r); |
177 | |
178 | if (Undefined(r)) |
179 | return 0; |
180 | area = 1; |
181 | for (i = 0; i < NUMDIMS; i++) { |
182 | area *= r->boundary[i + NUMDIMS] - r->boundary[i]; |
183 | } |
184 | return area; |
185 | } |
186 | #endif |
187 | |
188 | /*----------------------------------------------------------------------------- |
189 | | Combine two rectangles, make one that includes both. |
190 | -----------------------------------------------------------------------------*/ |
191 | Rect_t CombineRect(Rect_t * r, Rect_t * rr) |
192 | { |
193 | register int i, j; |
194 | Rect_t new; |
195 | assert(r && rr); |
196 | |
197 | if (Undefined(r)) |
198 | return *rr; |
199 | if (Undefined(rr)) |
200 | return *r; |
201 | |
202 | for (i = 0; i < NUMDIMS; i++) { |
203 | new.boundary[i] = MIN(r->boundary[i], rr->boundary[i]); |
204 | j = i + NUMDIMS; |
205 | new.boundary[j] = MAX(r->boundary[j], rr->boundary[j]); |
206 | } |
207 | return new; |
208 | } |
209 | |
210 | /*----------------------------------------------------------------------------- |
211 | | Decide whether two rectangles overlap. |
212 | -----------------------------------------------------------------------------*/ |
213 | int Overlap(Rect_t * r, Rect_t * s) |
214 | { |
215 | register int i, j; |
216 | assert(r && s); |
217 | |
218 | for (i = 0; i < NUMDIMS; i++) { |
219 | j = i + NUMDIMS; /* index for high sides */ |
220 | if (r->boundary[i] > s->boundary[j] |
221 | || s->boundary[i] > r->boundary[j]) |
222 | return FALSE; |
223 | } |
224 | return TRUE; |
225 | } |
226 | |
227 | /*----------------------------------------------------------------------------- |
228 | | Decide whether rectangle r is contained in rectangle s. |
229 | -----------------------------------------------------------------------------*/ |
230 | int Contained(Rect_t * r, Rect_t * s) |
231 | { |
232 | register int i, j, result; |
233 | assert(r && s); |
234 | |
235 | /* undefined rect is contained in any other */ |
236 | if (Undefined(r)) |
237 | return TRUE; |
238 | /* no rect (except an undefined one) is contained in an undef rect */ |
239 | if (Undefined(s)) |
240 | return FALSE; |
241 | |
242 | result = TRUE; |
243 | for (i = 0; i < NUMDIMS; i++) { |
244 | j = i + NUMDIMS; /* index for high sides */ |
245 | result = result && r->boundary[i] >= s->boundary[i] |
246 | && r->boundary[j] <= s->boundary[j]; |
247 | } |
248 | return result; |
249 | } |
250 | |