| 1 | /* vim:set shiftwidth=4 ts=8: */ |
| 2 | |
| 3 | /************************************************************************* |
| 4 | * Copyright (c) 2011 AT&T Intellectual Property |
| 5 | * All rights reserved. This program and the accompanying materials |
| 6 | * are made available under the terms of the Eclipse Public License v1.0 |
| 7 | * which accompanies this distribution, and is available at |
| 8 | * http://www.eclipse.org/legal/epl-v10.html |
| 9 | * |
| 10 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 11 | *************************************************************************/ |
| 12 | |
| 13 | #include "config.h" |
| 14 | |
| 15 | #include "index.h" |
| 16 | #include <stdio.h> |
| 17 | #include <assert.h> |
| 18 | #include <limits.h> |
| 19 | #include "logic.h" |
| 20 | #include "arith.h" |
| 21 | #include "rectangle.h" |
| 22 | #include <cgraph.h> |
| 23 | |
| 24 | #define Undefined(x) ((x)->boundary[0] > (x)->boundary[NUMDIMS]) |
| 25 | |
| 26 | extern Rect_t CoverAll; |
| 27 | |
| 28 | /*----------------------------------------------------------------------------- |
| 29 | | Initialize a rectangle to have all 0 coordinates. |
| 30 | -----------------------------------------------------------------------------*/ |
| 31 | void InitRect(Rect_t * r) |
| 32 | { |
| 33 | register int i; |
| 34 | for (i = 0; i < NUMSIDES; i++) |
| 35 | r->boundary[i] = 0; |
| 36 | } |
| 37 | |
| 38 | /*----------------------------------------------------------------------------- |
| 39 | | Return a rect whose first low side is higher than its opposite side - |
| 40 | | interpreted as an undefined rect. |
| 41 | -----------------------------------------------------------------------------*/ |
| 42 | Rect_t NullRect() |
| 43 | { |
| 44 | Rect_t r; |
| 45 | register int i; |
| 46 | |
| 47 | r.boundary[0] = 1; |
| 48 | r.boundary[NUMDIMS] = -1; |
| 49 | for (i = 1; i < NUMDIMS; i++) |
| 50 | r.boundary[i] = r.boundary[i + NUMDIMS] = 0; |
| 51 | return r; |
| 52 | } |
| 53 | |
| 54 | #ifdef UNUSED |
| 55 | /*----------------------------------------------------------------------------- |
| 56 | | Fills in random coordinates in a rectangle. |
| 57 | | The low side is guaranteed to be less than the high side. |
| 58 | -----------------------------------------------------------------------------*/ |
| 59 | RandomRect(Rect_t * r) |
| 60 | { |
| 61 | register int i, width; |
| 62 | for (i = 0; i < NUMDIMS; i++) { |
| 63 | /* width from 1 to 1000 / 4, more small ones */ |
| 64 | width = rand() % (1000 / 4) + 1; |
| 65 | |
| 66 | /* sprinkle a given size evenly but so they stay in [0,100] */ |
| 67 | r->boundary[i] = rand() % (1000 - width); /* low side */ |
| 68 | r->boundary[i + NUMDIMS] = r->boundary[i] + width; /* high side */ |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | /*----------------------------------------------------------------------------- |
| 73 | | Fill in the boundaries for a random search rectangle. |
| 74 | | Pass in a pointer to a rect that contains all the data, |
| 75 | | and a pointer to the rect to be filled in. |
| 76 | | Generated rect is centered randomly anywhere in the data area, |
| 77 | | and has size from 0 to the size of the data area in each dimension, |
| 78 | | i.e. search rect can stick out beyond data area. |
| 79 | -----------------------------------------------------------------------------*/ |
| 80 | SearchRect(Rect_t * search, Rect_t * data) |
| 81 | { |
| 82 | register int i, j, size, center; |
| 83 | |
| 84 | assert(search); |
| 85 | assert(data); |
| 86 | |
| 87 | for (i = 0; i < NUMDIMS; i++) { |
| 88 | j = i + NUMDIMS; /* index for high side boundary */ |
| 89 | if (data->boundary[i] > INT_MIN && data->boundary[j] < INT_MAX) { |
| 90 | size = |
| 91 | (rand() % (data->boundary[j] - data->boundary[i] + 1)) / 2; |
| 92 | center = data->boundary[i] |
| 93 | + rand() % (data->boundary[j] - data->boundary[i] + 1); |
| 94 | search->boundary[i] = center - size / 2; |
| 95 | search->boundary[j] = center + size / 2; |
| 96 | } else { /* some open boundary, search entire dimension */ |
| 97 | search->boundary[i] = INT_MIN; |
| 98 | search->boundary[j] = INT_MAX; |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | #endif |
| 103 | |
| 104 | #ifdef RTDEBUG |
| 105 | /*----------------------------------------------------------------------------- |
| 106 | | Print rectangle lower upper bounds by dimension |
| 107 | -----------------------------------------------------------------------------*/ |
| 108 | void PrintRect(Rect_t * r) |
| 109 | { |
| 110 | register int i; |
| 111 | assert(r); |
| 112 | fprintf(stderr, "rect:" ); |
| 113 | for (i = 0; i < NUMDIMS; i++) |
| 114 | fprintf(stderr, "\t%d\t%d\n" , r->boundary[i], |
| 115 | r->boundary[i + NUMDIMS]); |
| 116 | } |
| 117 | #endif |
| 118 | |
| 119 | /*----------------------------------------------------------------------------- |
| 120 | | Calculate the n-dimensional area of a rectangle |
| 121 | -----------------------------------------------------------------------------*/ |
| 122 | |
| 123 | #if LLONG_MAX > UINT_MAX |
| 124 | unsigned int RectArea(Rect_t * r) |
| 125 | { |
| 126 | register int i; |
| 127 | unsigned int area; |
| 128 | assert(r); |
| 129 | |
| 130 | if (Undefined(r)) |
| 131 | return 0; |
| 132 | |
| 133 | /* |
| 134 | * XXX add overflow checks |
| 135 | */ |
| 136 | area = 1; |
| 137 | for (i = 0; i < NUMDIMS; i++) { |
| 138 | long long a_test = area * r->boundary[i + NUMDIMS] - r->boundary[i]; |
| 139 | if( a_test > UINT_MAX) { |
| 140 | agerr (AGERR, "label: area too large for rtree\n" ); |
| 141 | return UINT_MAX; |
| 142 | } |
| 143 | area = a_test; |
| 144 | } |
| 145 | return area; |
| 146 | } |
| 147 | #else |
| 148 | unsigned int RectArea(Rect_t * r) |
| 149 | { |
| 150 | register int i; |
| 151 | unsigned int area=1, a=1; |
| 152 | assert(r); |
| 153 | |
| 154 | if (Undefined(r)) return 0; |
| 155 | |
| 156 | /* |
| 157 | * XXX add overflow checks |
| 158 | */ |
| 159 | area = 1; |
| 160 | for (i = 0; i < NUMDIMS; i++) { |
| 161 | unsigned int b = r->boundary[i + NUMDIMS] - r->boundary[i]; |
| 162 | a *= b; |
| 163 | if( (a / b ) != area) { |
| 164 | agerr (AGERR, "label: area too large for rtree\n" ); |
| 165 | return UINT_MAX; |
| 166 | } |
| 167 | area = a; |
| 168 | } |
| 169 | return area; |
| 170 | } |
| 171 | #endif /*LLONG_MAX > UINT_MAX*/ |
| 172 | #if 0 /*original code*/ |
| 173 | int RectArea(Rect_t * r) |
| 174 | { |
| 175 | register int i, area=1; |
| 176 | assert(r); |
| 177 | |
| 178 | if (Undefined(r)) |
| 179 | return 0; |
| 180 | area = 1; |
| 181 | for (i = 0; i < NUMDIMS; i++) { |
| 182 | area *= r->boundary[i + NUMDIMS] - r->boundary[i]; |
| 183 | } |
| 184 | return area; |
| 185 | } |
| 186 | #endif |
| 187 | |
| 188 | /*----------------------------------------------------------------------------- |
| 189 | | Combine two rectangles, make one that includes both. |
| 190 | -----------------------------------------------------------------------------*/ |
| 191 | Rect_t CombineRect(Rect_t * r, Rect_t * rr) |
| 192 | { |
| 193 | register int i, j; |
| 194 | Rect_t new; |
| 195 | assert(r && rr); |
| 196 | |
| 197 | if (Undefined(r)) |
| 198 | return *rr; |
| 199 | if (Undefined(rr)) |
| 200 | return *r; |
| 201 | |
| 202 | for (i = 0; i < NUMDIMS; i++) { |
| 203 | new.boundary[i] = MIN(r->boundary[i], rr->boundary[i]); |
| 204 | j = i + NUMDIMS; |
| 205 | new.boundary[j] = MAX(r->boundary[j], rr->boundary[j]); |
| 206 | } |
| 207 | return new; |
| 208 | } |
| 209 | |
| 210 | /*----------------------------------------------------------------------------- |
| 211 | | Decide whether two rectangles overlap. |
| 212 | -----------------------------------------------------------------------------*/ |
| 213 | int Overlap(Rect_t * r, Rect_t * s) |
| 214 | { |
| 215 | register int i, j; |
| 216 | assert(r && s); |
| 217 | |
| 218 | for (i = 0; i < NUMDIMS; i++) { |
| 219 | j = i + NUMDIMS; /* index for high sides */ |
| 220 | if (r->boundary[i] > s->boundary[j] |
| 221 | || s->boundary[i] > r->boundary[j]) |
| 222 | return FALSE; |
| 223 | } |
| 224 | return TRUE; |
| 225 | } |
| 226 | |
| 227 | /*----------------------------------------------------------------------------- |
| 228 | | Decide whether rectangle r is contained in rectangle s. |
| 229 | -----------------------------------------------------------------------------*/ |
| 230 | int Contained(Rect_t * r, Rect_t * s) |
| 231 | { |
| 232 | register int i, j, result; |
| 233 | assert(r && s); |
| 234 | |
| 235 | /* undefined rect is contained in any other */ |
| 236 | if (Undefined(r)) |
| 237 | return TRUE; |
| 238 | /* no rect (except an undefined one) is contained in an undef rect */ |
| 239 | if (Undefined(s)) |
| 240 | return FALSE; |
| 241 | |
| 242 | result = TRUE; |
| 243 | for (i = 0; i < NUMDIMS; i++) { |
| 244 | j = i + NUMDIMS; /* index for high sides */ |
| 245 | result = result && r->boundary[i] >= s->boundary[i] |
| 246 | && r->boundary[j] <= s->boundary[j]; |
| 247 | } |
| 248 | return result; |
| 249 | } |
| 250 | |