| 1 | /* vim:set shiftwidth=4 ts=8: */ |
| 2 | |
| 3 | /************************************************************************* |
| 4 | * Copyright (c) 2011 AT&T Intellectual Property |
| 5 | * All rights reserved. This program and the accompanying materials |
| 6 | * are made available under the terms of the Eclipse Public License v1.0 |
| 7 | * which accompanies this distribution, and is available at |
| 8 | * http://www.eclipse.org/legal/epl-v10.html |
| 9 | * |
| 10 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 11 | *************************************************************************/ |
| 12 | |
| 13 | #include "index.h" |
| 14 | #include <stdio.h> |
| 15 | #include <assert.h> |
| 16 | #include "split.q.h" |
| 17 | #include "logic.h" |
| 18 | |
| 19 | /* Forward declarations */ |
| 20 | static void MethodZero(RTree_t * rtp); |
| 21 | static void InitPVars(RTree_t * rtp); |
| 22 | static void LoadNodes(RTree_t * rtp, Node_t * n, Node_t * q, |
| 23 | struct PartitionVars *p); |
| 24 | static void Classify(RTree_t * rtp, int i, int group); |
| 25 | static void PickSeeds(RTree_t * rtp); |
| 26 | static void GetBranches(RTree_t * rtp, Node_t * n, Branch_t * b); |
| 27 | |
| 28 | /*----------------------------------------------------------------------------- |
| 29 | | Split a node. |
| 30 | | Divides the nodes branches and the extra one between two nodes. |
| 31 | | Old node is one of the new ones, and one really new one is created. |
| 32 | | Tries more than one method for choosing a partition, uses best result. |
| 33 | -----------------------------------------------------------------------------*/ |
| 34 | void SplitNode(RTree_t * rtp, Node_t * n, Branch_t * b, Node_t ** nn) |
| 35 | { |
| 36 | register struct PartitionVars *p; |
| 37 | register int level; |
| 38 | int area; |
| 39 | |
| 40 | assert(n); |
| 41 | assert(b); |
| 42 | |
| 43 | #ifdef RTDEBUG |
| 44 | fprintf(stderr, "Splitting:\n" ); |
| 45 | PrintNode(n); |
| 46 | fprintf(stderr, "new branch:\n" ); |
| 47 | PrintBranch(-1, b); |
| 48 | #endif |
| 49 | |
| 50 | if (rtp->StatFlag) { |
| 51 | if (rtp->Deleting) |
| 52 | rtp->DeSplitCount++; |
| 53 | else |
| 54 | rtp->InSplitCount++; |
| 55 | } |
| 56 | |
| 57 | /* load all the branches into a buffer, initialize old node */ |
| 58 | level = n->level; |
| 59 | GetBranches(rtp, n, b); |
| 60 | |
| 61 | #ifdef RTDEBUG |
| 62 | { |
| 63 | int i; |
| 64 | /* Indicate that a split is about to take place */ |
| 65 | for (i = 0; i < NODECARD + 1; i++) { |
| 66 | PrintRect(&rtp->split.BranchBuf[i].rect); |
| 67 | } |
| 68 | PrintRect(&rtp->split.CoverSplit); |
| 69 | } |
| 70 | #endif |
| 71 | |
| 72 | /* find partition */ |
| 73 | p = &rtp->split.Partitions[0]; |
| 74 | MethodZero(rtp); |
| 75 | |
| 76 | area = RectArea(&p->cover[0]) + RectArea(&p->cover[1]); |
| 77 | |
| 78 | /* record how good the split was for statistics */ |
| 79 | if (rtp->StatFlag && !rtp->Deleting && area) |
| 80 | rtp->SplitMeritSum += (float) rtp->split.CoverSplitArea / area; |
| 81 | |
| 82 | /* put branches from buffer into 2 nodes according to chosen partition */ |
| 83 | *nn = RTreeNewNode(rtp); |
| 84 | (*nn)->level = n->level = level; |
| 85 | LoadNodes(rtp, n, *nn, p); |
| 86 | assert(n->count + (*nn)->count == NODECARD + 1); |
| 87 | |
| 88 | #ifdef RTDEBUG |
| 89 | PrintPVars(p); |
| 90 | fprintf(stderr, "group 0:\n" ); |
| 91 | PrintNode(n); |
| 92 | fprintf(stderr, "group 1:\n" ); |
| 93 | PrintNode(*nn); |
| 94 | fprintf(stderr, "\n" ); |
| 95 | #endif |
| 96 | |
| 97 | } |
| 98 | |
| 99 | /*----------------------------------------------------------------------------- |
| 100 | | Load branch buffer with branches from full node plus the extra branch. |
| 101 | -----------------------------------------------------------------------------*/ |
| 102 | static void GetBranches(RTree_t * rtp, Node_t * n, Branch_t * b) |
| 103 | { |
| 104 | register int i; |
| 105 | |
| 106 | assert(n); |
| 107 | assert(b); |
| 108 | |
| 109 | /* load the branch buffer */ |
| 110 | for (i = 0; i < NODECARD; i++) { |
| 111 | assert(n->branch[i].child); /* node should have every entry full */ |
| 112 | rtp->split.BranchBuf[i] = n->branch[i]; |
| 113 | } |
| 114 | rtp->split.BranchBuf[NODECARD] = *b; |
| 115 | |
| 116 | /* calculate rect containing all in the set */ |
| 117 | rtp->split.CoverSplit = rtp->split.BranchBuf[0].rect; |
| 118 | for (i = 1; i < NODECARD + 1; i++) { |
| 119 | rtp->split.CoverSplit = CombineRect(&rtp->split.CoverSplit, |
| 120 | &rtp->split.BranchBuf[i].rect); |
| 121 | } |
| 122 | rtp->split.CoverSplitArea = RectArea(&rtp->split.CoverSplit); |
| 123 | |
| 124 | InitNode(n); |
| 125 | } |
| 126 | |
| 127 | /*----------------------------------------------------------------------------- |
| 128 | | Method #0 for choosing a partition: |
| 129 | | As the seeds for the two groups, pick the two rects that would waste the |
| 130 | | most area if covered by a single rectangle, i.e. evidently the worst pair |
| 131 | | to have in the same group. |
| 132 | | Of the remaining, one at a time is chosen to be put in one of the two groups. |
| 133 | | The one chosen is the one with the greatest difference in area expansion |
| 134 | | depending on which group - the rect most strongly attracted to one group |
| 135 | | and repelled from the other. |
| 136 | | If one group gets too full (more would force other group to violate min |
| 137 | | fill requirement) then other group gets the rest. |
| 138 | | These last are the ones that can go in either group most easily. |
| 139 | -----------------------------------------------------------------------------*/ |
| 140 | static void MethodZero(RTree_t * rtp) |
| 141 | { |
| 142 | register Rect_t *r; |
| 143 | register int i, growth0, growth1, diff, biggestDiff; |
| 144 | register int group, chosen = 0, betterGroup = 0; |
| 145 | |
| 146 | InitPVars(rtp); |
| 147 | PickSeeds(rtp); |
| 148 | |
| 149 | while (rtp->split.Partitions[0].count[0] + |
| 150 | rtp->split.Partitions[0].count[1] < NODECARD + 1 && |
| 151 | rtp->split.Partitions[0].count[0] < NODECARD + 1 - rtp->MinFill |
| 152 | && rtp->split.Partitions[0].count[1] < |
| 153 | NODECARD + 1 - rtp->MinFill) { |
| 154 | biggestDiff = -1; |
| 155 | for (i = 0; i < NODECARD + 1; i++) { |
| 156 | if (!rtp->split.Partitions[0].taken[i]) { |
| 157 | Rect_t rect; |
| 158 | r = &rtp->split.BranchBuf[i].rect; |
| 159 | /* growth0 = RectArea(&CombineRect(r, |
| 160 | &rtp->split.Partitions[0].cover[0])) - |
| 161 | rtp->split.Partitions[0].area[0]; |
| 162 | */ |
| 163 | /* growth1 = RectArea(&CombineRect(r, |
| 164 | &rtp->split.Partitions[0].cover[1])) - |
| 165 | rtp->split.Partitions[0].area[1]; |
| 166 | */ |
| 167 | rect = CombineRect(r, &rtp->split.Partitions[0].cover[0]); |
| 168 | growth0 = |
| 169 | RectArea(&rect) - rtp->split.Partitions[0].area[0]; |
| 170 | rect = CombineRect(r, &rtp->split.Partitions[0].cover[1]); |
| 171 | growth1 = |
| 172 | RectArea(&rect) - rtp->split.Partitions[0].area[1]; |
| 173 | diff = growth1 - growth0; |
| 174 | if (diff >= 0) |
| 175 | group = 0; |
| 176 | else { |
| 177 | group = 1; |
| 178 | diff = -diff; |
| 179 | } |
| 180 | |
| 181 | if (diff > biggestDiff) { |
| 182 | biggestDiff = diff; |
| 183 | chosen = i; |
| 184 | betterGroup = group; |
| 185 | } else if (diff == biggestDiff && |
| 186 | rtp->split.Partitions[0].count[group] < |
| 187 | rtp->split.Partitions[0].count[betterGroup]) { |
| 188 | chosen = i; |
| 189 | betterGroup = group; |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | Classify(rtp, chosen, betterGroup); |
| 194 | } |
| 195 | |
| 196 | /* if one group too full, put remaining rects in the other */ |
| 197 | if (rtp->split.Partitions[0].count[0] + |
| 198 | rtp->split.Partitions[0].count[1] < NODECARD + 1) { |
| 199 | group = 0; |
| 200 | if (rtp->split.Partitions[0].count[0] >= |
| 201 | NODECARD + 1 - rtp->MinFill) |
| 202 | group = 1; |
| 203 | for (i = 0; i < NODECARD + 1; i++) { |
| 204 | if (!rtp->split.Partitions[0].taken[i]) |
| 205 | Classify(rtp, i, group); |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | assert(rtp->split.Partitions[0].count[0] + |
| 210 | rtp->split.Partitions[0].count[1] == NODECARD + 1); |
| 211 | assert(rtp->split.Partitions[0].count[0] >= rtp->MinFill |
| 212 | && rtp->split.Partitions[0].count[1] >= rtp->MinFill); |
| 213 | } |
| 214 | |
| 215 | /*----------------------------------------------------------------------------- |
| 216 | | Pick two rects from set to be the first elements of the two groups. |
| 217 | | Pick the two that waste the most area if covered by a single rectangle. |
| 218 | -----------------------------------------------------------------------------*/ |
| 219 | static void PickSeeds(RTree_t * rtp) |
| 220 | { |
| 221 | register int i, j; |
| 222 | unsigned int waste, worst; |
| 223 | int seed0 = 0, seed1 = 0; |
| 224 | unsigned int area[NODECARD + 1]; |
| 225 | |
| 226 | for (i = 0; i < NODECARD + 1; i++) |
| 227 | area[i] = RectArea(&rtp->split.BranchBuf[i].rect); |
| 228 | |
| 229 | //worst = -rtp->split.CoverSplitArea - 1; |
| 230 | worst=0; |
| 231 | for (i = 0; i < NODECARD; i++) { |
| 232 | for (j = i + 1; j < NODECARD + 1; j++) { |
| 233 | Rect_t rect; |
| 234 | /* waste = RectArea(&CombineRect(&rtp->split.BranchBuf[i].rect, |
| 235 | // &rtp->split.BranchBuf[j].rect)) - area[i] - area[j]; |
| 236 | */ |
| 237 | rect = CombineRect(&rtp->split.BranchBuf[i].rect, |
| 238 | &rtp->split.BranchBuf[j].rect); |
| 239 | waste = RectArea(&rect) - area[i] - area[j]; |
| 240 | if (waste > worst) { |
| 241 | worst = waste; |
| 242 | seed0 = i; |
| 243 | seed1 = j; |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | Classify(rtp, seed0, 0); |
| 248 | Classify(rtp, seed1, 1); |
| 249 | } |
| 250 | |
| 251 | /*----------------------------------------------------------------------------- |
| 252 | | Put a branch in one of the groups. |
| 253 | -----------------------------------------------------------------------------*/ |
| 254 | static void Classify(RTree_t * rtp, int i, int group) |
| 255 | { |
| 256 | |
| 257 | assert(!rtp->split.Partitions[0].taken[i]); |
| 258 | |
| 259 | rtp->split.Partitions[0].partition[i] = group; |
| 260 | rtp->split.Partitions[0].taken[i] = TRUE; |
| 261 | |
| 262 | if (rtp->split.Partitions[0].count[group] == 0) |
| 263 | rtp->split.Partitions[0].cover[group] = |
| 264 | rtp->split.BranchBuf[i].rect; |
| 265 | else |
| 266 | rtp->split.Partitions[0].cover[group] = |
| 267 | CombineRect(&rtp->split.BranchBuf[i].rect, |
| 268 | &rtp->split.Partitions[0].cover[group]); |
| 269 | rtp->split.Partitions[0].area[group] = |
| 270 | RectArea(&rtp->split.Partitions[0].cover[group]); |
| 271 | rtp->split.Partitions[0].count[group]++; |
| 272 | |
| 273 | # ifdef RTDEBUG |
| 274 | { |
| 275 | /* redraw entire group and its cover */ |
| 276 | int j; |
| 277 | MFBSetColor(WHITE); /* cover is white */ |
| 278 | PrintRect(&rtp->split.Partitions[0].cover[group]); |
| 279 | MFBSetColor(group + 3); /* group 0 green, group 1 blue */ |
| 280 | for (j = 0; j < NODECARD + 1; j++) { |
| 281 | if (rtp->split.Partitions[0].taken[j] && |
| 282 | rtp->split.Partitions[0].partition[j] == group) |
| 283 | PrintRect(&rtrtp->split.Partitions[0].BranchBuf[j].rect); |
| 284 | } |
| 285 | GraphChar(); |
| 286 | } |
| 287 | # endif |
| 288 | } |
| 289 | |
| 290 | /*----------------------------------------------------------------------------- |
| 291 | | Copy branches from the buffer into two nodes according to the partition. |
| 292 | -----------------------------------------------------------------------------*/ |
| 293 | static void LoadNodes(RTree_t * rtp, Node_t * n, Node_t * q, |
| 294 | struct PartitionVars *p) |
| 295 | { |
| 296 | register int i; |
| 297 | assert(n); |
| 298 | assert(q); |
| 299 | assert(p); |
| 300 | |
| 301 | for (i = 0; i < NODECARD + 1; i++) { |
| 302 | assert(rtp->split.Partitions[0].partition[i] == 0 || |
| 303 | rtp->split.Partitions[0].partition[i] == 1); |
| 304 | if (rtp->split.Partitions[0].partition[i] == 0) |
| 305 | AddBranch(rtp, &rtp->split.BranchBuf[i], n, NULL); |
| 306 | else if (rtp->split.Partitions[0].partition[i] == 1) |
| 307 | AddBranch(rtp, &rtp->split.BranchBuf[i], q, NULL); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | /*----------------------------------------------------------------------------- |
| 312 | | Initialize a PartitionVars structure. |
| 313 | -----------------------------------------------------------------------------*/ |
| 314 | static void InitPVars(RTree_t * rtp) |
| 315 | { |
| 316 | register int i; |
| 317 | |
| 318 | rtp->split.Partitions[0].count[0] = rtp->split.Partitions[0].count[1] = |
| 319 | 0; |
| 320 | rtp->split.Partitions[0].cover[0] = rtp->split.Partitions[0].cover[1] = |
| 321 | NullRect(); |
| 322 | rtp->split.Partitions[0].area[0] = rtp->split.Partitions[0].area[1] = |
| 323 | 0; |
| 324 | for (i = 0; i < NODECARD + 1; i++) { |
| 325 | rtp->split.Partitions[0].taken[i] = FALSE; |
| 326 | rtp->split.Partitions[0].partition[i] = -1; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | #ifdef RTDEBUG |
| 331 | |
| 332 | /*----------------------------------------------------------------------------- |
| 333 | | Print out data for a partition from PartitionVars struct. |
| 334 | -----------------------------------------------------------------------------*/ |
| 335 | PrintPVars(RTree_t * rtp) |
| 336 | { |
| 337 | register int i; |
| 338 | |
| 339 | fprintf(stderr, "\npartition:\n" ); |
| 340 | for (i = 0; i < NODECARD + 1; i++) { |
| 341 | fprintf(stderr, "%3d\t" , i); |
| 342 | } |
| 343 | fprintf(stderr, "\n" ); |
| 344 | for (i = 0; i < NODECARD + 1; i++) { |
| 345 | if (rtp->split.Partitions[0].taken[i]) |
| 346 | fprintf(stderr, " t\t" ); |
| 347 | else |
| 348 | fprintf(stderr, "\t" ); |
| 349 | } |
| 350 | fprintf(stderr, "\n" ); |
| 351 | for (i = 0; i < NODECARD + 1; i++) { |
| 352 | fprintf(stderr, "%3d\t" , rtp->split.Partitions[0].partition[i]); |
| 353 | } |
| 354 | fprintf(stderr, "\n" ); |
| 355 | |
| 356 | fprintf(stderr, "count[0] = %d area = %d\n" , |
| 357 | rtp->split.Partitions[0].count[0], |
| 358 | rtp->split.Partitions[0].area[0]); |
| 359 | fprintf(stderr, "count[1] = %d area = %d\n" , |
| 360 | rtp->split.Partitions[0].count[1], |
| 361 | rtp->split.Partitions[0].area[1]); |
| 362 | if (rtp->split.Partitions[0].area[0] + |
| 363 | rtp->split.Partitions[0].area[1] > 0) { |
| 364 | fprintf(stderr, "total area = %d effectiveness = %3.2f\n" , |
| 365 | rtp->split.Partitions[0].area[0] + |
| 366 | rtp->split.Partitions[0].area[1], |
| 367 | (float) rtp->split.CoverSplitArea / |
| 368 | (rtp->split.Partitions[0].area[0] + |
| 369 | rtp->split.Partitions[0].area[1])); |
| 370 | } |
| 371 | fprintf(stderr, "cover[0]:\n" ); |
| 372 | PrintRect(&rtp->split.Partitions[0].cover[0]); |
| 373 | |
| 374 | fprintf(stderr, "cover[1]:\n" ); |
| 375 | PrintRect(&rtp->split.Partitions[0].cover[1]); |
| 376 | } |
| 377 | #endif |
| 378 | |