| 1 | /* vim:set shiftwidth=4 ts=8: */ |
| 2 | |
| 3 | /************************************************************************* |
| 4 | * Copyright (c) 2011 AT&T Intellectual Property |
| 5 | * All rights reserved. This program and the accompanying materials |
| 6 | * are made available under the terms of the Eclipse Public License v1.0 |
| 7 | * which accompanies this distribution, and is available at |
| 8 | * http://www.eclipse.org/legal/epl-v10.html |
| 9 | * |
| 10 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 11 | *************************************************************************/ |
| 12 | |
| 13 | #include <assert.h> |
| 14 | #include <errno.h> |
| 15 | #include <limits.h> |
| 16 | #include <math.h> |
| 17 | #include <stdlib.h> |
| 18 | #include <stdio.h> |
| 19 | #include <string.h> |
| 20 | #define XLABEL_INT |
| 21 | #include <xlabels.h> |
| 22 | #include <memory.h> |
| 23 | |
| 24 | extern int Verbose; |
| 25 | |
| 26 | static int icompare(Dt_t *, void *, void *, Dtdisc_t *); |
| 27 | |
| 28 | Dtdisc_t Hdisc = { offsetof(HDict_t, key), sizeof(int), -1, 0, 0, |
| 29 | icompare, 0, 0, 0 |
| 30 | }; |
| 31 | |
| 32 | static int icompare(Dt_t * dt, void * v1, void * v2, Dtdisc_t * disc) |
| 33 | { |
| 34 | int k1 = *((int *) v1), k2 = *((int *) v2); |
| 35 | return k1 - k2; |
| 36 | } |
| 37 | |
| 38 | static XLabels_t *xlnew(object_t * objs, int n_objs, |
| 39 | xlabel_t * lbls, int n_lbls, |
| 40 | label_params_t * params) |
| 41 | { |
| 42 | XLabels_t *xlp; |
| 43 | |
| 44 | xlp = NEW(XLabels_t); |
| 45 | |
| 46 | /* used to load the rtree in hilbert space filling curve order */ |
| 47 | if (!(xlp->hdx = dtopen(&Hdisc, Dtobag))) { |
| 48 | fprintf(stderr, "out of memory\n" ); |
| 49 | goto bad; |
| 50 | } |
| 51 | |
| 52 | /* for querying intersection candidates */ |
| 53 | if (!(xlp->spdx = RTreeOpen())) { |
| 54 | fprintf(stderr, "out of memory\n" ); |
| 55 | goto bad; |
| 56 | } |
| 57 | /* save arg pointers in the handle */ |
| 58 | xlp->objs = objs; |
| 59 | xlp->n_objs = n_objs; |
| 60 | xlp->lbls = lbls; |
| 61 | xlp->n_lbls = n_lbls; |
| 62 | xlp->params = params; |
| 63 | |
| 64 | return xlp; |
| 65 | |
| 66 | bad: |
| 67 | if (xlp->hdx) |
| 68 | dtclose(xlp->hdx); |
| 69 | if (xlp->spdx) |
| 70 | RTreeClose(xlp->spdx); |
| 71 | free(xlp); |
| 72 | return 0; |
| 73 | } |
| 74 | |
| 75 | static void xlfree(XLabels_t * xlp) |
| 76 | { |
| 77 | RTreeClose(xlp->spdx); |
| 78 | free(xlp); |
| 79 | return; |
| 80 | } |
| 81 | |
| 82 | /***************************************************************************/ |
| 83 | |
| 84 | /* |
| 85 | * floorlog2 - largest base 2 integer logarithm less than n |
| 86 | * http://en.wikipedia.org/wiki/Binary_logarithm |
| 87 | * ultimately from http://www.hackersdelight.org/ |
| 88 | */ |
| 89 | static int floorLog2(unsigned int n) |
| 90 | { |
| 91 | int pos = 0; |
| 92 | |
| 93 | if (n == 0) |
| 94 | return -1; |
| 95 | |
| 96 | if (n >= 1 << 16) { |
| 97 | n >>= 16; |
| 98 | pos += 16; |
| 99 | } |
| 100 | if (n >= 1 << 8) { |
| 101 | n >>= 8; |
| 102 | pos += 8; |
| 103 | } |
| 104 | if (n >= 1 << 4) { |
| 105 | n >>= 4; |
| 106 | pos += 4; |
| 107 | } |
| 108 | if (n >= 1 << 2) { |
| 109 | n >>= 2; |
| 110 | pos += 2; |
| 111 | } |
| 112 | if (n >= 1 << 1) { |
| 113 | pos += 1; |
| 114 | } |
| 115 | return pos; |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * determine the order(depth) of the hilbert sfc so that we satisfy the |
| 120 | * precondition of hd_hil_s_from_xy() |
| 121 | */ |
| 122 | unsigned int xlhorder(XLabels_t * xlp) |
| 123 | { |
| 124 | double maxx = xlp->params->bb.UR.x, maxy = xlp->params->bb.UR.y; |
| 125 | return floorLog2(maxx > maxy ? maxx : maxy) + 1; |
| 126 | } |
| 127 | |
| 128 | /* from http://www.hackersdelight.org/ site for the book by Henry S Warren */ |
| 129 | /* |
| 130 | * precondition |
| 131 | * pow(2, n) >= max(p.x, p.y) |
| 132 | */ |
| 133 | /* adapted from lams1.c |
| 134 | Given the "order" n of a Hilbert curve and coordinates x and y, this |
| 135 | program computes the length s of the curve from the origin to (x, y). |
| 136 | The square that the Hilbert curve traverses is of size 2**n by 2**n. |
| 137 | The method is that given in [Lam&Shap], described by the following |
| 138 | table. Here i = n-1 for the most significant bit of x and y, and i = 0 |
| 139 | for the least significant bits. |
| 140 | |
| 141 | x[i] y[i] | s[2i+1:2i] x y |
| 142 | -----------|------------------- |
| 143 | 0 0 | 00 y x |
| 144 | 0 1 | 01 x y |
| 145 | 1 0 | 11 ~y ~x |
| 146 | 1 1 | 10 x y |
| 147 | |
| 148 | To use this table, start at the most significant bits of x and y |
| 149 | (i = n - 1). If they are both 0 (first row), set the most significant |
| 150 | two bits of s to 00 and interchange x and y. (Actually, it is only |
| 151 | necessary to interchange the remaining bits of x and y.) If the most |
| 152 | significant bits of x and y are 10 (third row), output 11, interchange x |
| 153 | and y, and complement x and y. |
| 154 | Then, consider the next most significant bits of x and y (which may |
| 155 | have been changed by this process), and select the appropriate row of |
| 156 | the table to determine the next two bits of s, and how to change x and |
| 157 | y. Continue until the least significant bits of x and y have been |
| 158 | processed. */ |
| 159 | |
| 160 | static unsigned int hd_hil_s_from_xy(point p, int n) |
| 161 | { |
| 162 | int i, x = p.x, y = p.y, xi, yi; |
| 163 | unsigned s; |
| 164 | |
| 165 | s = 0; /* Initialize. */ |
| 166 | for (i = n - 1; i >= 0; i--) { |
| 167 | xi = (x >> i) & 1; /* Get bit i of x. */ |
| 168 | yi = (y >> i) & 1; /* Get bit i of y. */ |
| 169 | s = 4 * s + 2 * xi + (xi ^ yi); /* Append two bits to s. */ |
| 170 | |
| 171 | x = x ^ y; /* These 3 lines swap */ |
| 172 | y = y ^ (x & (yi - 1)); /* x and y if yi = 0. */ |
| 173 | x = x ^ y; |
| 174 | x = x ^ (-xi & (yi - 1)); /* Complement x and y if */ |
| 175 | y = y ^ (-xi & (yi - 1)); /* xi = 1 and yi = 0. */ |
| 176 | } |
| 177 | return s; |
| 178 | } |
| 179 | |
| 180 | /* intersection test from |
| 181 | * from Real-Time Collision Detection 4.2.1 by Christer Ericson |
| 182 | * intersection area from |
| 183 | * http://stackoverflow.com/questions/4549544/total-area-of-intersecting-rectangles |
| 184 | */ |
| 185 | static double aabbaabb(Rect_t * r, Rect_t * s) |
| 186 | { |
| 187 | /* per dimension if( max < omin || min > omax) */ |
| 188 | double iminx, iminy, imaxx, imaxy; |
| 189 | if (r->boundary[2] < s->boundary[0] || r->boundary[0] > s->boundary[2]) |
| 190 | return 0; |
| 191 | if (r->boundary[3] < s->boundary[1] || r->boundary[1] > s->boundary[3]) |
| 192 | return 0; |
| 193 | |
| 194 | /* if we get here we have an intersection */ |
| 195 | |
| 196 | /* rightmost left edge of the 2 rectangles */ |
| 197 | iminx = |
| 198 | r->boundary[0] > s->boundary[0] ? r->boundary[0] : s->boundary[0]; |
| 199 | /* upmost bottom edge */ |
| 200 | iminy = |
| 201 | r->boundary[1] > s->boundary[1] ? r->boundary[1] : s->boundary[1]; |
| 202 | /* leftmost right edge */ |
| 203 | imaxx = |
| 204 | r->boundary[2] < s->boundary[2] ? r->boundary[2] : s->boundary[2]; |
| 205 | /* downmost top edge */ |
| 206 | imaxy = |
| 207 | r->boundary[3] < s->boundary[3] ? r->boundary[3] : s->boundary[3]; |
| 208 | return (imaxx - iminx) * (imaxy - iminy); |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * test if objp1, a size 0 object is enclosed in the xlabel |
| 213 | * associated with objp |
| 214 | */ |
| 215 | static int lblenclosing(object_t * objp, object_t * objp1) |
| 216 | { |
| 217 | xlabel_t * xlp = objp->lbl;; |
| 218 | |
| 219 | assert(objp1->sz.x == 0 && objp1->sz.y == 0); |
| 220 | |
| 221 | if(! xlp) return 0; |
| 222 | |
| 223 | return objp1->pos.x > xlp->pos.x && |
| 224 | objp1->pos.x < (xlp->pos.x + xlp->sz.x) && |
| 225 | objp1->pos.y > xlp->pos.y && |
| 226 | objp1->pos.y < (xlp->pos.y + xlp->sz.y); |
| 227 | } |
| 228 | |
| 229 | /*fill in rectangle from the object */ |
| 230 | static void objp2rect(object_t * op, Rect_t * r) |
| 231 | { |
| 232 | r->boundary[0] = op->pos.x; |
| 233 | r->boundary[1] = op->pos.y; |
| 234 | r->boundary[2] = op->pos.x + op->sz.x; |
| 235 | r->boundary[3] = op->pos.y + op->sz.y; |
| 236 | return; |
| 237 | } |
| 238 | |
| 239 | /*fill in rectangle from the objects xlabel */ |
| 240 | static void objplp2rect(object_t * objp, Rect_t * r) |
| 241 | { |
| 242 | xlabel_t *lp = objp->lbl; |
| 243 | r->boundary[0] = lp->pos.x; |
| 244 | r->boundary[1] = lp->pos.y; |
| 245 | r->boundary[2] = lp->pos.x + lp->sz.x; |
| 246 | r->boundary[3] = lp->pos.y + lp->sz.y; |
| 247 | return; |
| 248 | } |
| 249 | |
| 250 | /* compute boundary that encloses all possible label boundaries */ |
| 251 | static Rect_t objplpmks(XLabels_t * xlp, object_t * objp) |
| 252 | { |
| 253 | Rect_t rect; |
| 254 | pointf p; |
| 255 | |
| 256 | p.x = p.y = 0.0; |
| 257 | if (objp->lbl) |
| 258 | p = objp->lbl->sz; |
| 259 | |
| 260 | rect.boundary[0] = (int) floor(objp->pos.x - p.x); |
| 261 | rect.boundary[1] = (int) floor(objp->pos.y - p.y); |
| 262 | |
| 263 | rect.boundary[2] = (int) ceil(objp->pos.x + objp->sz.x + p.x); |
| 264 | assert(rect.boundary[2] < INT_MAX); |
| 265 | rect.boundary[3] = (int) ceil(objp->pos.y + objp->sz.y + p.y); |
| 266 | assert(rect.boundary[3] < INT_MAX); |
| 267 | |
| 268 | return rect; |
| 269 | } |
| 270 | |
| 271 | /* determine the position clp will occupy in intrsx[] */ |
| 272 | static int getintrsxi(XLabels_t * xlp, object_t * op, object_t * cp) |
| 273 | { |
| 274 | int i = -1; |
| 275 | xlabel_t *lp = op->lbl, *clp = cp->lbl; |
| 276 | assert(lp != clp); |
| 277 | |
| 278 | if (lp->set == 0 || clp->set == 0) |
| 279 | return i; |
| 280 | if ((op->pos.x == 0.0 && op->pos.y == 0.0) || |
| 281 | (cp->pos.x == 0.0 && cp->pos.y == 0.0)) |
| 282 | return i; |
| 283 | |
| 284 | if (cp->pos.y < op->pos.y) |
| 285 | if (cp->pos.x < op->pos.x) |
| 286 | i = XLPXPY; |
| 287 | else if (cp->pos.x > op->pos.x) |
| 288 | i = XLNXPY; |
| 289 | else |
| 290 | i = XLCXPY; |
| 291 | else if (cp->pos.y > op->pos.y) |
| 292 | if (cp->pos.x < op->pos.x) |
| 293 | i = XLPXNY; |
| 294 | else if (cp->pos.x > op->pos.x) |
| 295 | i = XLNXNY; |
| 296 | else |
| 297 | i = XLCXNY; |
| 298 | else if (cp->pos.x < op->pos.x) |
| 299 | i = XLPXCY; |
| 300 | else if (cp->pos.x > op->pos.x) |
| 301 | i = XLNXCY; |
| 302 | |
| 303 | return i; |
| 304 | |
| 305 | } |
| 306 | |
| 307 | /* record the intersecting objects label */ |
| 308 | static double |
| 309 | recordointrsx(XLabels_t * xlp, object_t * op, object_t * cp, Rect_t * rp, |
| 310 | double a, object_t * intrsx[XLNBR]) |
| 311 | { |
| 312 | int i = getintrsxi(xlp, op, cp); |
| 313 | if (i < 0) |
| 314 | i = 5; |
| 315 | if (intrsx[i] != NULL) { |
| 316 | double sa, maxa = 0.0; |
| 317 | Rect_t srect; |
| 318 | /* keep maximally overlapping object */ |
| 319 | objp2rect(intrsx[i], &srect); |
| 320 | sa = aabbaabb(rp, &srect); |
| 321 | if (sa > a) |
| 322 | maxa = sa; |
| 323 | /*keep maximally overlapping label */ |
| 324 | if (intrsx[i]->lbl) { |
| 325 | objplp2rect(intrsx[i], &srect); |
| 326 | sa = aabbaabb(rp, &srect); |
| 327 | if (sa > a) |
| 328 | maxa = sa > maxa ? sa : maxa; |
| 329 | } |
| 330 | if (maxa > 0.0) |
| 331 | return maxa; |
| 332 | /*replace overlapping label/object pair */ |
| 333 | intrsx[i] = cp; |
| 334 | return a; |
| 335 | } |
| 336 | intrsx[i] = cp; |
| 337 | return a; |
| 338 | } |
| 339 | |
| 340 | /* record the intersecting label */ |
| 341 | static double |
| 342 | recordlintrsx(XLabels_t * xlp, object_t * op, object_t * cp, Rect_t * rp, |
| 343 | double a, object_t * intrsx[XLNBR]) |
| 344 | { |
| 345 | int i = getintrsxi(xlp, op, cp); |
| 346 | if (i < 0) |
| 347 | i = 5; |
| 348 | if (intrsx[i] != NULL) { |
| 349 | double sa, maxa = 0.0; |
| 350 | Rect_t srect; |
| 351 | /* keep maximally overlapping object */ |
| 352 | objp2rect(intrsx[i], &srect); |
| 353 | sa = aabbaabb(rp, &srect); |
| 354 | if (sa > a) |
| 355 | maxa = sa; |
| 356 | /*keep maximally overlapping label */ |
| 357 | if (intrsx[i]->lbl) { |
| 358 | objplp2rect(intrsx[i], &srect); |
| 359 | sa = aabbaabb(rp, &srect); |
| 360 | if (sa > a) |
| 361 | maxa = sa > maxa ? sa : maxa; |
| 362 | } |
| 363 | if (maxa > 0.0) |
| 364 | return maxa; |
| 365 | /*replace overlapping label/object pair */ |
| 366 | intrsx[i] = cp; |
| 367 | return a; |
| 368 | } |
| 369 | intrsx[i] = cp; |
| 370 | return a; |
| 371 | } |
| 372 | |
| 373 | /* find the objects and labels intersecting lp */ |
| 374 | static BestPos_t |
| 375 | xlintersections(XLabels_t * xlp, object_t * objp, object_t * intrsx[XLNBR]) |
| 376 | { |
| 377 | int i; |
| 378 | LeafList_t *ilp, *llp; |
| 379 | Rect_t rect, srect; |
| 380 | BestPos_t bp; |
| 381 | |
| 382 | assert(objp->lbl); |
| 383 | |
| 384 | bp.n = 0; |
| 385 | bp.area = 0.0; |
| 386 | bp.pos = objp->lbl->pos; |
| 387 | |
| 388 | for(i=0; i<xlp->n_objs; i++) { |
| 389 | if(objp == &xlp->objs[i]) continue; |
| 390 | if(xlp->objs[i].sz.x > 0 && xlp->objs[i].sz.y > 0) continue; |
| 391 | if(lblenclosing(objp, &xlp->objs[i]) ) { |
| 392 | bp.n++; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | objplp2rect(objp, &rect); |
| 397 | |
| 398 | llp = RTreeSearch(xlp->spdx, xlp->spdx->root, &rect); |
| 399 | if (!llp) |
| 400 | return bp; |
| 401 | |
| 402 | for (ilp = llp; ilp; ilp = ilp->next) { |
| 403 | double a, ra; |
| 404 | object_t *cp = ilp->leaf->data; |
| 405 | |
| 406 | if (cp == objp) |
| 407 | continue; |
| 408 | |
| 409 | /*label-object intersect */ |
| 410 | objp2rect(cp, &srect); |
| 411 | a = aabbaabb(&rect, &srect); |
| 412 | if (a > 0.0) { |
| 413 | ra = recordointrsx(xlp, objp, cp, &rect, a, intrsx); |
| 414 | bp.n++; |
| 415 | bp.area += ra; |
| 416 | } |
| 417 | /*label-label intersect */ |
| 418 | if (!cp->lbl || !cp->lbl->set) |
| 419 | continue; |
| 420 | objplp2rect(cp, &srect); |
| 421 | a = aabbaabb(&rect, &srect); |
| 422 | if (a > 0.0) { |
| 423 | ra = recordlintrsx(xlp, objp, cp, &rect, a, intrsx); |
| 424 | bp.n++; |
| 425 | bp.area += ra; |
| 426 | } |
| 427 | } |
| 428 | RTreeLeafListFree(llp); |
| 429 | return bp; |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * xladjust - find a label position |
| 434 | * the individual tests at the top are intended to place a preference order |
| 435 | * on the position |
| 436 | */ |
| 437 | static BestPos_t xladjust(XLabels_t * xlp, object_t * objp) |
| 438 | { |
| 439 | xlabel_t *lp = objp->lbl; |
| 440 | double xincr = ((2 * lp->sz.x) + objp->sz.x) / XLXDENOM; |
| 441 | double yincr = ((2 * lp->sz.y) + objp->sz.y) / XLYDENOM; |
| 442 | object_t *intrsx[XLNBR]; |
| 443 | BestPos_t bp, nbp; |
| 444 | |
| 445 | assert(objp->lbl); |
| 446 | |
| 447 | memset(intrsx, 0, sizeof(intrsx)); |
| 448 | |
| 449 | /*x left */ |
| 450 | lp->pos.x = objp->pos.x - lp->sz.x; |
| 451 | /*top */ |
| 452 | lp->pos.y = objp->pos.y + objp->sz.y; |
| 453 | bp = xlintersections(xlp, objp, intrsx); |
| 454 | if (bp.n == 0) |
| 455 | return bp; |
| 456 | /*mid */ |
| 457 | lp->pos.y = objp->pos.y; |
| 458 | nbp = xlintersections(xlp, objp, intrsx); |
| 459 | if (nbp.n == 0) |
| 460 | return nbp; |
| 461 | if (nbp.area < bp.area) |
| 462 | bp = nbp; |
| 463 | /*bottom */ |
| 464 | lp->pos.y = objp->pos.y - lp->sz.y; |
| 465 | nbp = xlintersections(xlp, objp, intrsx); |
| 466 | if (nbp.n == 0) |
| 467 | return nbp; |
| 468 | if (nbp.area < bp.area) |
| 469 | bp = nbp; |
| 470 | |
| 471 | /*x mid */ |
| 472 | lp->pos.x = objp->pos.x; |
| 473 | /*top */ |
| 474 | lp->pos.y = objp->pos.y + objp->sz.y; |
| 475 | nbp = xlintersections(xlp, objp, intrsx); |
| 476 | if (nbp.n == 0) |
| 477 | return nbp; |
| 478 | if (nbp.area < bp.area) |
| 479 | bp = nbp; |
| 480 | /*bottom */ |
| 481 | lp->pos.y = objp->pos.y - lp->sz.y; |
| 482 | nbp = xlintersections(xlp, objp, intrsx); |
| 483 | if (nbp.n == 0) |
| 484 | return nbp; |
| 485 | if (nbp.area < bp.area) |
| 486 | bp = nbp; |
| 487 | |
| 488 | /*x right */ |
| 489 | lp->pos.x = objp->pos.x + objp->sz.x; |
| 490 | /*top */ |
| 491 | lp->pos.y = objp->pos.y + objp->sz.y; |
| 492 | nbp = xlintersections(xlp, objp, intrsx); |
| 493 | if (nbp.n == 0) |
| 494 | return nbp; |
| 495 | if (nbp.area < bp.area) |
| 496 | bp = nbp; |
| 497 | /*mid */ |
| 498 | lp->pos.y = objp->pos.y; |
| 499 | nbp = xlintersections(xlp, objp, intrsx); |
| 500 | if (nbp.n == 0) |
| 501 | return nbp; |
| 502 | if (nbp.area < bp.area) |
| 503 | bp = nbp; |
| 504 | /*bottom */ |
| 505 | lp->pos.y = objp->pos.y - lp->sz.y; |
| 506 | nbp = xlintersections(xlp, objp, intrsx); |
| 507 | if (nbp.n == 0) |
| 508 | return nbp; |
| 509 | if (nbp.area < bp.area) |
| 510 | bp = nbp; |
| 511 | |
| 512 | /*sliding from top left */ |
| 513 | if (intrsx[XLPXNY] || intrsx[XLCXNY] || intrsx[XLNXNY] || intrsx[XLPXCY] || intrsx[XLPXPY]) { /* have to move */ |
| 514 | if (!intrsx[XLCXNY] && !intrsx[XLNXNY]) { /* some room right? */ |
| 515 | /* slide along upper edge */ |
| 516 | for (lp->pos.x = objp->pos.x - lp->sz.x, |
| 517 | lp->pos.y = objp->pos.y + objp->sz.y; |
| 518 | lp->pos.x <= (objp->pos.x + objp->sz.x); |
| 519 | lp->pos.x += xincr) { |
| 520 | nbp = xlintersections(xlp, objp, intrsx); |
| 521 | if (nbp.n == 0) |
| 522 | return nbp; |
| 523 | if (nbp.area < bp.area) |
| 524 | bp = nbp; |
| 525 | } |
| 526 | } |
| 527 | if (!intrsx[XLPXCY] && !intrsx[XLPXPY]) { /* some room down? */ |
| 528 | /* slide down left edge */ |
| 529 | for (lp->pos.x = objp->pos.x - lp->sz.x, |
| 530 | lp->pos.y = objp->pos.y + objp->sz.y; |
| 531 | lp->pos.y >= (objp->pos.y - lp->sz.y); |
| 532 | lp->pos.y -= yincr) { |
| 533 | nbp = xlintersections(xlp, objp, intrsx); |
| 534 | if (nbp.n == 0) |
| 535 | return nbp; |
| 536 | if (nbp.area < bp.area) |
| 537 | bp = nbp; |
| 538 | |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | /*sliding from bottom right */ |
| 544 | lp->pos.x = objp->pos.x + objp->sz.x; |
| 545 | lp->pos.y = objp->pos.y - lp->sz.y; |
| 546 | if (intrsx[XLNXPY] || intrsx[XLCXPY] || intrsx[XLPXPY] || intrsx[XLNXCY] || intrsx[XLNXNY]) { /* have to move */ |
| 547 | if (!intrsx[XLCXPY] && !intrsx[XLPXPY]) { /* some room left? */ |
| 548 | /* slide along lower edge */ |
| 549 | for (lp->pos.x = objp->pos.x + objp->sz.x, |
| 550 | lp->pos.y = objp->pos.y - lp->sz.y; |
| 551 | lp->pos.x >= (objp->pos.x - lp->sz.x); |
| 552 | lp->pos.x -= xincr) { |
| 553 | nbp = xlintersections(xlp, objp, intrsx); |
| 554 | if (nbp.n == 0) |
| 555 | return nbp; |
| 556 | if (nbp.area < bp.area) |
| 557 | bp = nbp; |
| 558 | } |
| 559 | } |
| 560 | if (!intrsx[XLNXCY] && !intrsx[XLNXNY]) { /* some room up? */ |
| 561 | /* slide up right edge */ |
| 562 | for (lp->pos.x = objp->pos.x + objp->sz.x, |
| 563 | lp->pos.y = objp->pos.y - lp->sz.y; |
| 564 | lp->pos.y <= (objp->pos.y + objp->sz.y); |
| 565 | lp->pos.y += yincr) { |
| 566 | nbp = xlintersections(xlp, objp, intrsx); |
| 567 | if (nbp.n == 0) |
| 568 | return nbp; |
| 569 | if (nbp.area < bp.area) |
| 570 | bp = nbp; |
| 571 | } |
| 572 | } |
| 573 | } |
| 574 | return bp; |
| 575 | } |
| 576 | |
| 577 | /* load the hilbert sfc keyed tree */ |
| 578 | static int xlhdxload(XLabels_t * xlp) |
| 579 | { |
| 580 | int i; |
| 581 | int order = xlhorder(xlp); |
| 582 | |
| 583 | for (i = 0; i < xlp->n_objs; i++) { |
| 584 | HDict_t *hp; |
| 585 | point pi; |
| 586 | |
| 587 | hp = NEW(HDict_t); |
| 588 | |
| 589 | hp->d.data = &xlp->objs[i]; |
| 590 | hp->d.rect = objplpmks(xlp, &xlp->objs[i]); |
| 591 | /* center of the labeling area */ |
| 592 | pi.x = hp->d.rect.boundary[0] + |
| 593 | (hp->d.rect.boundary[2] - hp->d.rect.boundary[0]) / 2; |
| 594 | pi.y = hp->d.rect.boundary[1] + |
| 595 | (hp->d.rect.boundary[3] - hp->d.rect.boundary[1]) / 2; |
| 596 | |
| 597 | hp->key = hd_hil_s_from_xy(pi, order); |
| 598 | |
| 599 | #if 0 |
| 600 | if (dtsearch(xlp->hdx, hp) != 0) { |
| 601 | free(hp); |
| 602 | continue; |
| 603 | } |
| 604 | #endif |
| 605 | if (!(dtinsert(xlp->hdx, hp))) |
| 606 | return -1; |
| 607 | } |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | static void xlhdxunload(XLabels_t * xlp) |
| 612 | { |
| 613 | int size=dtsize(xlp->hdx), freed=0; |
| 614 | while(dtsize(xlp->hdx) ) { |
| 615 | void*vp=dtfinger(xlp->hdx); |
| 616 | assert(vp); |
| 617 | if(vp) { |
| 618 | dtdetach(xlp->hdx, vp); |
| 619 | free(vp); |
| 620 | freed++; |
| 621 | } |
| 622 | } |
| 623 | assert(size==freed); |
| 624 | } |
| 625 | |
| 626 | static int xlspdxload(XLabels_t * xlp) |
| 627 | { |
| 628 | HDict_t *op=0; |
| 629 | |
| 630 | for (op = dtfirst(xlp->hdx); op; op = dtnext(xlp->hdx, op)) { |
| 631 | /* tree rectangle data node lvl */ |
| 632 | RTreeInsert(xlp->spdx, &op->d.rect, op->d.data, &xlp->spdx->root, 0); |
| 633 | } |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | static int xlinitialize(XLabels_t * xlp) |
| 638 | { |
| 639 | int r=0; |
| 640 | if ((r = xlhdxload(xlp)) < 0) |
| 641 | return r; |
| 642 | if ((r = xlspdxload(xlp)) < 0) |
| 643 | return r; |
| 644 | xlhdxunload(xlp); |
| 645 | return dtclose(xlp->hdx); |
| 646 | } |
| 647 | |
| 648 | int |
| 649 | placeLabels(object_t * objs, int n_objs, |
| 650 | xlabel_t * lbls, int n_lbls, label_params_t * params) |
| 651 | { |
| 652 | int r, i; |
| 653 | BestPos_t bp; |
| 654 | XLabels_t *xlp = xlnew(objs, n_objs, lbls, n_lbls, params); |
| 655 | if ((r = xlinitialize(xlp)) < 0) |
| 656 | return r; |
| 657 | |
| 658 | /* Place xlabel_t* lp near lp->obj so that the rectangle whose lower-left |
| 659 | * corner is lp->pos, and size is lp->sz does not intersect any object |
| 660 | * in objs (by convention, an object consisting of a single point |
| 661 | * intersects nothing) nor any other label, if possible. On input, |
| 662 | * lp->set is 0. |
| 663 | * |
| 664 | * On output, any label with a position should have this stored in |
| 665 | * lp->pos and have lp->set non-zero. |
| 666 | * |
| 667 | * If params->force is true, all labels must be positioned, even if |
| 668 | * overlaps are necessary. |
| 669 | * |
| 670 | * Return 0 if all labels could be placed without overlap; |
| 671 | * non-zero otherwise. |
| 672 | */ |
| 673 | r = 0; |
| 674 | for (i = 0; i < n_objs; i++) { |
| 675 | if (objs[i].lbl == 0) |
| 676 | continue; |
| 677 | bp = xladjust(xlp, &objs[i]); |
| 678 | if (bp.n == 0) { |
| 679 | objs[i].lbl->set = 1; |
| 680 | } else if(bp.area == 0) { |
| 681 | objs[i].lbl->pos.x = bp.pos.x; |
| 682 | objs[i].lbl->pos.y = bp.pos.y; |
| 683 | objs[i].lbl->set = 1; |
| 684 | } else if (params->force == 1) { |
| 685 | objs[i].lbl->pos.x = bp.pos.x; |
| 686 | objs[i].lbl->pos.y = bp.pos.y; |
| 687 | objs[i].lbl->set = 1; |
| 688 | } else { |
| 689 | r = 1; |
| 690 | } |
| 691 | } |
| 692 | xlfree(xlp); |
| 693 | return r; |
| 694 | } |
| 695 | |