1 | /************************************************************************* |
2 | * Copyright (c) 2011 AT&T Intellectual Property |
3 | * All rights reserved. This program and the accompanying materials |
4 | * are made available under the terms of the Eclipse Public License v1.0 |
5 | * which accompanies this distribution, and is available at |
6 | * http://www.eclipse.org/legal/epl-v10.html |
7 | * |
8 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
9 | *************************************************************************/ |
10 | |
11 | #include "config.h" |
12 | |
13 | #include "types.h" |
14 | #include "globals.h" |
15 | #include "general.h" |
16 | #include "SparseMatrix.h" |
17 | #include "edge_bundling.h" |
18 | #include <time.h> |
19 | #include "clustering.h" |
20 | #include "ink.h" |
21 | #include "agglomerative_bundling.h" |
22 | |
23 | #define SMALL 1.e-10 |
24 | |
25 | #ifdef OPENGL |
26 | #include "gl.h" |
27 | extern pedge *edges_global; |
28 | extern int *clusters_global; |
29 | #endif |
30 | |
31 | static real norm(int n, real *x){ |
32 | real res = 0; |
33 | int i; |
34 | |
35 | for (i = 0; i < n; i++) res += x[i]*x[i]; |
36 | return sqrt(res); |
37 | |
38 | } |
39 | static real sqr_dist(int dim, real *x, real *y){ |
40 | int i; |
41 | real res = 0; |
42 | for (i = 0; i < dim; i++) res += (x[i] - y[i])*(x[i] - y[i]); |
43 | return res; |
44 | } |
45 | static real dist(int dim, real *x, real *y){ |
46 | return sqrt(sqr_dist(dim,x,y)); |
47 | } |
48 | |
49 | pedge pedge_new(int np, int dim, real *x){ |
50 | pedge e; |
51 | |
52 | e = MALLOC(sizeof(struct pedge_struct)); |
53 | e->npoints = np; |
54 | e->dim = dim; |
55 | e->len = np; |
56 | e->x = MALLOC(dim*(e->len)*sizeof(real)); |
57 | MEMCPY(e->x, x, dim*(e->len)*sizeof(real)); |
58 | e->edge_length = dist(dim, &(x[0*dim]), &(x[(np-1)*dim])); |
59 | e->wgt = 1.; |
60 | e->wgts = NULL; |
61 | return e; |
62 | |
63 | } |
64 | pedge pedge_wgt_new(int np, int dim, real *x, real wgt){ |
65 | pedge e; |
66 | int i; |
67 | |
68 | e = MALLOC(sizeof(struct pedge_struct)); |
69 | e->npoints = np; |
70 | e->dim = dim; |
71 | e->len = np; |
72 | e->x = MALLOC(dim*(e->len)*sizeof(real)); |
73 | MEMCPY(e->x, x, dim*(e->len)*sizeof(real)); |
74 | e->edge_length = dist(dim, &(x[0*dim]), &(x[(np-1)*dim])); |
75 | e->wgt = wgt; |
76 | e->wgts = MALLOC(sizeof(real)*(np - 1)); |
77 | for (i = 0; i < np - 1; i++) e->wgts[i] = wgt; |
78 | return e; |
79 | |
80 | } |
81 | void pedge_delete(pedge e){ |
82 | FREE(e->x); |
83 | FREE(e); |
84 | } |
85 | |
86 | pedge pedge_flip(pedge e){ |
87 | /* flip the polyline so that last point becomes the first, second last the second, etc*/ |
88 | real *y; |
89 | real *x = e->x; |
90 | int i, dim = e->dim; |
91 | int n = e->npoints; |
92 | |
93 | y = MALLOC(sizeof(real)*e->dim); |
94 | for (i = 0; i < (e->npoints)/2; i++){ |
95 | MEMCPY(y, &(x[i*dim]), sizeof(real)*dim); |
96 | MEMCPY(&(x[(n-1-i)*dim]), &(x[i*dim]), sizeof(real)*dim); |
97 | MEMCPY(&(x[i*dim]), y, sizeof(real)*dim); |
98 | } |
99 | FREE(y); |
100 | return e; |
101 | } |
102 | |
103 | static real edge_compatibility(pedge e1, pedge e2){ |
104 | /* two edges are u1->v1, u2->v2. |
105 | return 1 if two edges are exactly the same, 0 if they are very different. |
106 | */ |
107 | real *u1, *v1, *u2, *v2, *u, dist1, dist2, len1, len2; |
108 | int dim = e1->dim, flipped = FALSE; |
109 | |
110 | u1 = e1->x; |
111 | v1 = (e1->x)+(e1->npoints)*dim-dim; |
112 | u2 = e2->x; |
113 | v2 = (e2->x)+(e2->npoints)*dim-dim; |
114 | dist1 = sqr_dist(dim, u1, u2) + sqr_dist(dim, v1, v2); |
115 | dist2 = sqr_dist(dim, u1, v2) + sqr_dist(dim, v1, u2); |
116 | if (dist1 > dist2){ |
117 | u = u2; |
118 | u2 = v2; |
119 | v2 = u; |
120 | dist1 = dist2; |
121 | flipped = TRUE; |
122 | } |
123 | len1 = dist(dim, u1, v1); |
124 | len2 = dist(dim, u2, v2); |
125 | //dist1 = MAX(0.1, dist1/(len1+len2+dist1)); |
126 | dist1 = MAX(0.1, dist1/(len1+len2+0.0001*dist1)); |
127 | if (flipped){ |
128 | return -1/dist1; |
129 | } else { |
130 | return 1/dist1; |
131 | } |
132 | } |
133 | |
134 | static real edge_compatibility_full(pedge e1, pedge e2){ |
135 | /* two edges are u1->v1, u2->v2. |
136 | return 1 if two edges are exactly the same, 0 if they are very different. |
137 | This is based on Holten and van Wijk's paper |
138 | */ |
139 | real *u1, *v1, *u2, *v2, *u, dist1, dist2, len1, len2, len; |
140 | real tmp, ca, cp, cs; |
141 | int dim = e1->dim, flipped = FALSE, i; |
142 | |
143 | u1 = e1->x; |
144 | v1 = (e1->x)+(e1->npoints)*dim-dim; |
145 | u2 = e2->x; |
146 | v2 = (e2->x)+(e2->npoints)*dim-dim; |
147 | dist1 = sqr_dist(dim, u1, u2) + sqr_dist(dim, v1, v2); |
148 | dist2 = sqr_dist(dim, u1, v2) + sqr_dist(dim, v1, u2); |
149 | if (dist1 > dist2){ |
150 | u = u2; |
151 | u2 = v2; |
152 | v2 = u; |
153 | dist1 = dist2; |
154 | flipped = TRUE; |
155 | } |
156 | len1 = MAX(dist(dim, u1, v1), SMALL); |
157 | len2 = MAX(dist(dim, u2, v2), SMALL); |
158 | len = 0.5*(len1+len2); |
159 | |
160 | /* angle compatibility */ |
161 | ca = 0; |
162 | for (i = 0; i < dim; i++) |
163 | ca += (v1[i]-u1[i])*(v2[i]-u2[i]); |
164 | ca = ABS(ca/(len1*len2)); |
165 | assert(ca > -0.001); |
166 | |
167 | /* scale compatibility */ |
168 | //cs = 2/(len1/len2+len2/len1); |
169 | cs = 2/(MAX(len1,len2)/len + len/MIN(len1, len2)); |
170 | assert(cs > -0.001 && cs < 1.001); |
171 | |
172 | /* position compatibility */ |
173 | cp = 0; |
174 | for (i = 0; i < dim; i++) { |
175 | tmp = .5*(v1[i]+u1[i])-.5*(v2[i]+u2[i]); |
176 | cp += tmp*tmp; |
177 | } |
178 | cp = sqrt(cp); |
179 | cp = len/(len + cp); |
180 | assert(cp > -0.001 && cp < 1.001); |
181 | |
182 | /* visibility compatibility */ |
183 | |
184 | //dist1 = MAX(0.1, dist1/(len1+len2+dist1)); |
185 | dist1 = cp*ca*cs; |
186 | if (flipped){ |
187 | return -dist1; |
188 | } else { |
189 | return dist1; |
190 | } |
191 | } |
192 | |
193 | static void fprint_rgb(FILE* fp, int r, int g, int b, int alpha){ |
194 | fprintf(fp,"#" ); |
195 | if (r >= 16) { |
196 | fprintf(fp,"%2x" ,r); |
197 | } else { |
198 | fprintf(fp,"0%1x" ,r); |
199 | } |
200 | if (g >= 16) { |
201 | fprintf(fp,"%2x" ,g); |
202 | } else { |
203 | fprintf(fp,"0%1x" ,g); |
204 | } |
205 | if (b >= 16) { |
206 | fprintf(fp,"%2x" ,b); |
207 | } else { |
208 | fprintf(fp,"0%1x" ,b); |
209 | } |
210 | if (alpha >= 16) { |
211 | fprintf(fp,"%2x" ,alpha); |
212 | } else { |
213 | fprintf(fp,"0%1x" ,alpha); |
214 | } |
215 | |
216 | } |
217 | |
218 | void pedge_export_gv(FILE *fp, int ne, pedge *edges){ |
219 | pedge edge; |
220 | real *x, t; |
221 | int i, j, k, kk, dim, sta, sto; |
222 | real maxwgt = 0, len, len_total, len_total0; |
223 | int r, g, b; |
224 | // real tt1[3]={0.25,0.5,0.75}; |
225 | // real tt2[4]={0.2,0.4,0.6,0.8}; |
226 | real tt1[3]={0.15,0.5,0.85}; |
227 | real tt2[4]={0.15,0.4,0.6,0.85}; |
228 | real *tt; |
229 | |
230 | fprintf(fp,"strict graph{\n" ); |
231 | /* points */ |
232 | for (i = 0; i < ne; i++){ |
233 | edge = edges[i]; |
234 | x = edge->x; |
235 | dim = edge->dim; |
236 | sta = 0; sto = edge->npoints - 1; |
237 | |
238 | fprintf(fp, "%d [pos=\"" , i); |
239 | for (k = 0; k < dim; k++) { |
240 | if (k != 0) fprintf(fp, "," ); |
241 | fprintf(fp, "%f" , x[sta*dim+k]); |
242 | } |
243 | fprintf(fp, "\"];\n" ); |
244 | |
245 | fprintf(fp, "%d [pos=\"" , i + ne); |
246 | for (k = 0; k < dim; k++) { |
247 | if (k != 0) fprintf(fp, "," ); |
248 | fprintf(fp, "%f" , x[sto*dim+k]); |
249 | } |
250 | fprintf(fp, "\"];\n" ); |
251 | |
252 | } |
253 | |
254 | /* figure out max number of bundled original edges in a pedge */ |
255 | for (i = 0; i < ne; i++){ |
256 | edge = edges[i]; |
257 | if (edge->wgts){ |
258 | for (j = 0; j < edge->npoints - 1; j++){ |
259 | maxwgt = MAX(maxwgt, edge->wgts[j]); |
260 | } |
261 | } |
262 | } |
263 | |
264 | /* spline and colors */ |
265 | for (i = 0; i < ne; i++){ |
266 | fprintf(fp,"%d -- %d [pos=\"" , i, i + ne); |
267 | edge = edges[i]; |
268 | x = edge->x; |
269 | dim = edge->dim; |
270 | /* splines */ |
271 | for (j = 0; j < edge->npoints; j++){ |
272 | if (j != 0) { |
273 | int mm = 3; |
274 | fprintf(fp," " ); |
275 | /* there are ninterval+1 points, add 3*ninterval+2 points, get rid of internal ninternal-1 points, |
276 | make into 3*ninterval+4 points so that gviz spline rendering can work */ |
277 | if (j == 1 || j == edge->npoints - 1) { |
278 | /* every interval gets 3 points inmserted except the first and last one */ |
279 | tt = tt2; |
280 | mm = 4; |
281 | } else { |
282 | tt = tt1; |
283 | } |
284 | for (kk = 1; kk <= mm; kk++){ |
285 | //t = kk/(real) (mm+1); |
286 | t = tt[kk-1]; |
287 | for (k = 0; k < dim; k++) { |
288 | if (k != 0) fprintf(fp,"," ); |
289 | fprintf(fp, "%f" , (x[(j-1)*dim+k]*(1-t)+x[j*dim+k]*(t))); |
290 | } |
291 | fprintf(fp," " ); |
292 | } |
293 | } |
294 | if (j == 0 || j == edge->npoints - 1){ |
295 | for (k = 0; k < dim; k++) { |
296 | if (k != 0) fprintf(fp,"," ); |
297 | fprintf(fp, "%f" , x[j*dim+k]); |
298 | } |
299 | } |
300 | } |
301 | /* colors based on how much bundling */ |
302 | if (edge->wgts){ |
303 | fprintf(fp, "\", wgts=\"" ); |
304 | for (j = 0; j < edge->npoints - 1; j++){ |
305 | if (j != 0) fprintf(fp,"," ); |
306 | fprintf(fp, "%f" , edge->wgts[j]); |
307 | } |
308 | |
309 | len_total = 0; |
310 | len_total0 = 0; |
311 | fprintf(fp, "\", color=\"" ); |
312 | for (j = 0; j < edge->npoints - 1; j++){ |
313 | len = 0; |
314 | for (k = 0; k < dim; k++){ |
315 | len += (edge->x[dim*j+k] - edge->x[dim*(j+1)+k])*(edge->x[dim*j+k] - edge->x[dim*(j+1)+k]); |
316 | } |
317 | len = sqrt(len/k); |
318 | len_total0 += len; |
319 | } |
320 | for (j = 0; j < edge->npoints - 1; j++){ |
321 | len = 0; |
322 | for (k = 0; k < dim; k++){ |
323 | len += (edge->x[dim*j+k] - edge->x[dim*(j+1)+k])*(edge->x[dim*j+k] - edge->x[dim*(j+1)+k]); |
324 | } |
325 | len = sqrt(len/k); |
326 | len_total += len; |
327 | t = edge->wgts[j]/maxwgt; |
328 | /* interpotate between red (t = 1) to blue (t = 0) */ |
329 | r = 255*t; g = 0; b = 255*(1-t); b = 255*(1-t); |
330 | if (j != 0) fprintf(fp,":" ); |
331 | fprint_rgb(fp, r, g, b, 85); |
332 | if (j < edge->npoints - 2) fprintf(fp,";%f" ,len/len_total0); |
333 | } |
334 | |
335 | } |
336 | fprintf(fp, "\"];\n" ); |
337 | |
338 | } |
339 | fprintf(fp,"}\n" ); |
340 | } |
341 | |
342 | void pedge_export_mma(FILE *fp, int ne, pedge *edges){ |
343 | pedge edge; |
344 | real *x; |
345 | int i, j, k, dim; |
346 | |
347 | fprintf(fp,"Graphics[{" ); |
348 | /* points */ |
349 | fprintf(fp,"{Red, " ); |
350 | for (i = 0; i < ne; i++){ |
351 | if (i != 0) fprintf(fp,"," ); |
352 | fprintf(fp,"Point[" ); |
353 | edge = edges[i]; |
354 | x = edge->x; |
355 | dim = edge->dim; |
356 | fprintf(fp, "{" ); |
357 | for (j = 0; j < edge->npoints; j+= edge->npoints - 1){ |
358 | if (j != 0) fprintf(fp,"," ); |
359 | fprintf(fp, "{" ); |
360 | for (k = 0; k < dim; k++) { |
361 | if (k != 0) fprintf(fp,"," ); |
362 | fprintf(fp, "%f" , x[j*dim+k]); |
363 | } |
364 | fprintf(fp, "}" ); |
365 | } |
366 | fprintf(fp, "}" ); |
367 | fprintf(fp, "]" ); |
368 | } |
369 | fprintf(fp,"},\n{GrayLevel[0.5,0.2], " ); |
370 | |
371 | /* spline */ |
372 | for (i = 0; i < ne; i++){ |
373 | if (i != 0) fprintf(fp,"," ); |
374 | fprintf(fp,"Spline[" ); |
375 | edge = edges[i]; |
376 | x = edge->x; |
377 | dim = edge->dim; |
378 | fprintf(fp, "{" ); |
379 | for (j = 0; j < edge->npoints; j++){ |
380 | if (j != 0) fprintf(fp,"," ); |
381 | fprintf(fp, "{" ); |
382 | for (k = 0; k < dim; k++) { |
383 | if (k != 0) fprintf(fp,"," ); |
384 | fprintf(fp, "%f" , x[j*dim+k]); |
385 | } |
386 | fprintf(fp, "}" ); |
387 | } |
388 | fprintf(fp, "}" ); |
389 | fprintf(fp, ", Bezier]" ); |
390 | } |
391 | fprintf(fp,"}" ); |
392 | |
393 | fprintf(fp,"}]\n" ); |
394 | } |
395 | |
396 | #ifdef DEBUG |
397 | static void pedge_print(char *comments, pedge e){ |
398 | int i, j, dim; |
399 | dim = e->dim; |
400 | fprintf(stderr,"%s" , comments); |
401 | for (i = 0; i < e->npoints; i++){ |
402 | if (i > 0) fprintf(stderr,"," ); |
403 | fprintf(stderr,"{" ); |
404 | for (j = 0; j < dim; j++){ |
405 | if (j > 0) fprintf(stderr,"," ); |
406 | fprintf(stderr,"%f" ,e->x[dim*i+j]); |
407 | } |
408 | fprintf(stderr,"}" ); |
409 | } |
410 | fprintf(stderr,"\n" ); |
411 | } |
412 | #endif |
413 | |
414 | pedge pedge_realloc(pedge e, int n){ |
415 | if (n <= e->npoints) return e; |
416 | e->x = REALLOC(e->x, e->dim*n*sizeof(real)); |
417 | if (e->wgts) e->wgts = REALLOC(e->wgts, (n-1)*sizeof(real)); |
418 | e->len = n; |
419 | return e; |
420 | } |
421 | pedge pedge_wgts_realloc(pedge e, int n){ |
422 | /* diff from pedge_alloc: allocate wgts if do not exist and initialize to wgt */ |
423 | int i; |
424 | if (n <= e->npoints) return e; |
425 | e->x = REALLOC(e->x, e->dim*n*sizeof(real)); |
426 | if (!(e->wgts)){ |
427 | e->wgts = REALLOC(e->wgts, (n-1)*sizeof(real)); |
428 | for (i = 0; i < e->npoints; i++) e->wgts[i] = e->wgt; |
429 | } else { |
430 | e->wgts = REALLOC(e->wgts, (n-1)*sizeof(real)); |
431 | } |
432 | e->len = n; |
433 | return e; |
434 | } |
435 | |
436 | |
437 | pedge pedge_double(pedge e){ |
438 | /* double the number of points (more precisely, add a point between two points in the polyline */ |
439 | int npoints = e->npoints, len = e->len, i, dim = e->dim; |
440 | real *x; |
441 | int j, ii, ii2, np; |
442 | |
443 | assert(npoints >= 2); |
444 | // pedge_print("before doubling edge = ", e); |
445 | if (npoints*2-1 > len){ |
446 | len = 3*npoints; |
447 | e->x = REALLOC(e->x, dim*len*sizeof(real)); |
448 | } |
449 | x = e->x; |
450 | |
451 | for (i = npoints - 1; i >= 0; i--){ |
452 | ii = 2*i; |
453 | for (j = 0; j < dim; j++){ |
454 | x[dim*ii + j] = x[dim*i + j]; |
455 | } |
456 | } |
457 | |
458 | for (i = 0; i < npoints - 1; i++){ |
459 | ii = 2*i;/* left and right interpolant of a new point */ |
460 | ii2 = 2*(i+1); |
461 | for (j = 0; j < dim; j++){ |
462 | x[dim*(2*i + 1) + j] = 0.5*(x[dim*ii + j] + x[dim*ii2 + j]); |
463 | } |
464 | } |
465 | e->len = len; |
466 | np = e->npoints = 2*(e->npoints) - 1; |
467 | e->edge_length = dist(dim, &(x[0*dim]), &(x[(np-1)*dim])); |
468 | |
469 | //pedge_print("after doubling edge = ", e); |
470 | |
471 | return e; |
472 | } |
473 | |
474 | static void edge_tension_force(real *force, pedge e){ |
475 | real *x = e->x; |
476 | int dim = e->dim; |
477 | int np = e->npoints; |
478 | int i, left, right, j; |
479 | //real dist_left, dist_right; |
480 | real s; |
481 | |
482 | |
483 | /* tention force = ((np-1)*||2x-xleft-xright||)/||e||, so the force is norminal and unitless |
484 | */ |
485 | //s = (np-1)*(np-1)/MAX(SMALL, e->edge_length); |
486 | s = (np-1)/MAX(SMALL, e->edge_length); |
487 | for (i = 1; i <= np - 2; i++){ |
488 | left = i - 1; |
489 | right = i + 1; |
490 | // dist_left = dist(dim, &(x[i*dim]), &(x[left*dim])); |
491 | // dist_right = dist(dim, &(x[i*dim]), &(x[right*dim])); |
492 | for (j = 0; j < dim; j++) force[i*dim + j] += s*(x[left*dim + j] - x[i*dim + j]); |
493 | for (j = 0; j < dim; j++) force[i*dim + j] += s*(x[right*dim + j] - x[i*dim + j]); |
494 | } |
495 | } |
496 | |
497 | |
498 | #if 0 |
499 | static void edge_tension_force2(real *force, pedge e){ |
500 | /* in this version each node is pulled towards its original position on the line */ |
501 | real *x = e->x; |
502 | int dim = e->dim; |
503 | int np = e->npoints; |
504 | int i, j; |
505 | //int left, right; |
506 | //real dist_left, dist_right; |
507 | real s; |
508 | |
509 | |
510 | /* tention force = ((np-1)*||2x-xleft-xright||)/||e||, so the force is norminal and unitless |
511 | */ |
512 | s = .1/MAX(SMALL, e->edge_length); |
513 | for (i = 1; i <= np - 2; i++){ |
514 | //left = i - 1; |
515 | // right = i + 1; |
516 | // dist_left = dist(dim, &(x[i*dim]), &(x[left*dim])); |
517 | // dist_right = dist(dim, &(x[i*dim]), &(x[right*dim])); |
518 | for (j = 0; j < dim; j++) force[i*dim + j] += s*((i*x[0*dim + j]+(np-1-i)*x[(np-1)*dim + j])/(np-1) - x[i*dim + j]); |
519 | } |
520 | } |
521 | #endif |
522 | |
523 | static void edge_attraction_force(real similarity, pedge e1, pedge e2, real *force){ |
524 | /* attrractive force from x2 applied to x1 */ |
525 | real *x1 = e1->x, *x2 = e2->x; |
526 | int dim = e1->dim; |
527 | int np = e1->npoints; |
528 | int i, j; |
529 | real dist, s, ss; |
530 | real edge_length = e1->edge_length; |
531 | |
532 | |
533 | assert(e1->npoints == e2->npoints); |
534 | |
535 | /* attractive force = 1/d where d = D/||e1|| is the relative distance, D is the distance between e1 and e2. |
536 | so the force is norminal and unitless |
537 | */ |
538 | if (similarity > 0){ |
539 | s = edge_length; |
540 | s = similarity*edge_length; |
541 | for (i = 1; i <= np - 2; i++){ |
542 | dist = sqr_dist(dim, &(x1[i*dim]), &(x2[i*dim])); |
543 | if (dist < SMALL) dist = SMALL; |
544 | ss = s/(dist+0.1*edge_length*sqrt(dist)); |
545 | for (j = 0; j < dim; j++) force[i*dim + j] += ss*(x2[i*dim + j] - x1[i*dim + j]); |
546 | } |
547 | } else {/* clip e2 */ |
548 | s = -edge_length; |
549 | s = -similarity*edge_length; |
550 | for (i = 1; i <= np - 2; i++){ |
551 | dist = sqr_dist(dim, &(x1[i*dim]), &(x2[(np - 1 - i)*dim])); |
552 | if (dist < SMALL) dist = SMALL; |
553 | ss = s/(dist+0.1*edge_length*sqrt(dist)); |
554 | for (j = 0; j < dim; j++) force[i*dim + j] += ss*(x2[(np - 1 - i)*dim + j] - x1[i*dim + j]); |
555 | } |
556 | } |
557 | |
558 | } |
559 | |
560 | static pedge* force_directed_edge_bundling(SparseMatrix A, pedge* edges, int maxit, real step0, real K, int open_gl){ |
561 | int i, j, ne = A->n, k; |
562 | int *ia = A->ia, *ja = A->ja, iter = 0; |
563 | real *a = (real*) A->a; |
564 | pedge e1, e2; |
565 | real *force_t, *force_a; |
566 | int np = edges[0]->npoints, dim = edges[0]->dim; |
567 | real *x; |
568 | real step = step0; |
569 | real fnorm_a, fnorm_t, edge_length, start; |
570 | |
571 | if (Verbose > 1) |
572 | fprintf(stderr, "total interaction pairs = %d out of %d, avg neighbors per edge = %f\n" ,A->nz, A->m*A->m, A->nz/(real) A->m); |
573 | |
574 | force_t = MALLOC(sizeof(real)*dim*(np)); |
575 | force_a = MALLOC(sizeof(real)*dim*(np)); |
576 | while (step > 0.001 && iter < maxit){ |
577 | start = clock(); |
578 | iter++; |
579 | for (i = 0; i < ne; i++){ |
580 | for (j = 0; j < dim*np; j++) { |
581 | force_t[j] = 0.; |
582 | force_a[j] = 0.; |
583 | } |
584 | e1 = edges[i]; |
585 | x = e1->x; |
586 | //edge_tension_force2(force_t, e1); |
587 | edge_tension_force(force_t, e1); |
588 | for (j = ia[i]; j < ia[i+1]; j++){ |
589 | e2 = edges[ja[j]]; |
590 | edge_attraction_force(a[j], e1, e2, force_a); |
591 | } |
592 | fnorm_t = MAX(SMALL, norm(dim*(np - 2), &(force_t[1*dim]))); |
593 | fnorm_a = MAX(SMALL, norm(dim*(np - 2), &(force_a[1*dim]))); |
594 | edge_length = e1->edge_length; |
595 | |
596 | // fprintf(stderr,"tension force norm = %f att force norm = %f step = %f edge_length = %f\n",fnorm_t, fnorm_a, step, edge_length); |
597 | for (j = 1; j <= np - 2; j++){ |
598 | for (k = 0; k < dim; k++) { |
599 | x[j*dim + k] += step*edge_length*(force_t[j*dim+k] + K*force_a[j*dim+k])/(sqrt(fnorm_t*fnorm_t + K*K*fnorm_a*fnorm_a)); |
600 | } |
601 | } |
602 | |
603 | /* |
604 | fprintf(stderr,"edge %d",i); |
605 | for (j = 0; j < np; j++){ |
606 | if (j != 0) fprintf(stderr,","); |
607 | fprintf(stderr,"{"); |
608 | for (k = 0; k < dim; k++) { |
609 | if (k != 0) fprintf(stderr,","); |
610 | fprintf(stderr,"%f", x[j*dim+k]); |
611 | } |
612 | fprintf(stderr,"}"); |
613 | } |
614 | fprintf(stderr,"\n"); |
615 | */ |
616 | |
617 | } |
618 | step = step*0.9; |
619 | if (Verbose > 1) |
620 | fprintf(stderr, "iter ==== %d cpu = %f npoints = %d\n" ,iter, ((real) (clock() - start))/CLOCKS_PER_SEC, np - 2); |
621 | |
622 | #ifdef OPENGL |
623 | if (open_gl){ |
624 | edges_global = edges; |
625 | drawScene(); |
626 | } |
627 | #endif |
628 | |
629 | } |
630 | |
631 | FREE(force_t); |
632 | FREE(force_a); |
633 | return edges; |
634 | } |
635 | |
636 | static real absfun(real x){ |
637 | return ABS(x); |
638 | } |
639 | |
640 | |
641 | |
642 | |
643 | static pedge* modularity_ink_bundling(int dim, int ne, SparseMatrix B, pedge* edges, real angle_param, real angle){ |
644 | int *assignment = NULL, flag, nclusters; |
645 | real modularity; |
646 | int *clusterp, *clusters; |
647 | SparseMatrix D, C; |
648 | point_t meet1, meet2; |
649 | real ink0, ink1; |
650 | pedge e; |
651 | int i, j, jj; |
652 | int use_value_for_clustering = TRUE; |
653 | |
654 | //int use_value_for_clustering = FALSE; |
655 | |
656 | SparseMatrix BB; |
657 | |
658 | /* B may contain negative entries */ |
659 | BB = SparseMatrix_copy(B); |
660 | BB = SparseMatrix_apply_fun(BB, absfun); |
661 | modularity_clustering(BB, TRUE, 0, use_value_for_clustering, &nclusters, &assignment, &modularity, &flag); |
662 | SparseMatrix_delete(BB); |
663 | |
664 | #ifdef OPENGL |
665 | clusters_global = assignment; |
666 | #endif |
667 | |
668 | assert(!flag); |
669 | if (Verbose > 1) fprintf(stderr, "there are %d clusters, modularity = %f\n" ,nclusters, modularity); |
670 | |
671 | C = SparseMatrix_new(1, 1, 1, MATRIX_TYPE_PATTERN, FORMAT_COORD); |
672 | |
673 | for (i = 0; i < ne; i++){ |
674 | jj = assignment[i]; |
675 | SparseMatrix_coordinate_form_add_entries(C, 1, &jj, &i, NULL); |
676 | } |
677 | |
678 | D = SparseMatrix_from_coordinate_format(C); |
679 | SparseMatrix_delete(C); |
680 | clusterp = D->ia; |
681 | clusters = D->ja; |
682 | for (i = 0; i < nclusters; i++){ |
683 | ink1 = ink(edges, clusterp[i+1] - clusterp[i], &(clusters[clusterp[i]]), &ink0, &meet1, &meet2, angle_param, angle); |
684 | if (Verbose > 1) |
685 | fprintf(stderr,"nedges = %d ink0 = %f, ink1 = %f\n" ,clusterp[i+1] - clusterp[i], ink0, ink1); |
686 | if (ink1 < ink0){ |
687 | for (j = clusterp[i]; j < clusterp[i+1]; j++){ |
688 | /* make this edge 5 points, insert two meeting points at 1 and 2, make 3 the last point */ |
689 | edges[clusters[j]] = pedge_double(edges[clusters[j]]); |
690 | e = edges[clusters[j]] = pedge_double(edges[clusters[j]]); |
691 | e->x[1*dim] = meet1.x; |
692 | e->x[1*dim+1] = meet1.y; |
693 | e->x[2*dim] = meet2.x; |
694 | e->x[2*dim+1] = meet2.y; |
695 | e->x[3*dim] = e->x[4*dim]; |
696 | e->x[3*dim+1] = e->x[4*dim+1]; |
697 | e->npoints = 4; |
698 | } |
699 | #ifdef OPENGL |
700 | edges_global = edges; |
701 | drawScene(); |
702 | #endif |
703 | } |
704 | } |
705 | SparseMatrix_delete(D); |
706 | return edges; |
707 | } |
708 | |
709 | static SparseMatrix check_compatibility(SparseMatrix A, int ne, pedge *edges, int compatibility_method, real tol){ |
710 | /* go through the links and make sure edges are compatible */ |
711 | SparseMatrix B, C; |
712 | int *ia, *ja, i, j, jj; |
713 | real start; |
714 | real dist; |
715 | |
716 | B = SparseMatrix_new(1, 1, 1, MATRIX_TYPE_REAL, FORMAT_COORD); |
717 | ia = A->ia; ja = A->ja; |
718 | //SparseMatrix_print("A",A); |
719 | start = clock(); |
720 | for (i = 0; i < ne; i++){ |
721 | for (j = ia[i]; j < ia[i+1]; j++){ |
722 | jj = ja[j]; |
723 | if (i == jj) continue; |
724 | if (compatibility_method == COMPATIBILITY_DIST){ |
725 | dist = edge_compatibility_full(edges[i], edges[jj]); |
726 | } else if (compatibility_method == COMPATIBILITY_FULL){ |
727 | dist = edge_compatibility(edges[i], edges[jj]); |
728 | } |
729 | /* |
730 | fprintf(stderr,"edge %d = {",i); |
731 | pedge_print("", edges[i]); |
732 | fprintf(stderr,"edge %d = {",jj); |
733 | pedge_print("", edges[jj]); |
734 | fprintf(stderr,"compatibility=%f\n",dist); |
735 | */ |
736 | |
737 | if (ABS(dist) > tol){ |
738 | B = SparseMatrix_coordinate_form_add_entries(B, 1, &i, &jj, &dist); |
739 | B = SparseMatrix_coordinate_form_add_entries(B, 1, &jj, &i, &dist); |
740 | } |
741 | } |
742 | } |
743 | C = SparseMatrix_from_coordinate_format(B); |
744 | //SparseMatrix_print("C",C); |
745 | SparseMatrix_delete(B); |
746 | B = C; |
747 | if (Verbose > 1) |
748 | fprintf(stderr, "edge compatibilitu time = %f\n" ,((real) (clock() - start))/CLOCKS_PER_SEC); |
749 | return B; |
750 | } |
751 | |
752 | pedge* edge_bundling(SparseMatrix A0, int dim, real *x, int maxit_outer, real K, int method, int nneighbor, int compatibility_method, |
753 | int max_recursion, real angle_param, real angle, int open_gl){ |
754 | /* bundle edges. |
755 | A: edge graph |
756 | x: edge i is at {p,q}, |
757 | . where p = x[2*dim*i : 2*dim*i+dim-1] |
758 | . and q = x[2*dim*i+dim : 2*dim*i+2*dim-1] |
759 | maxit_outer: max outer iteration for force directed bundling. Every outer iter subdivide each edge segment into 2. |
760 | K: norminal edge length in force directed bundling |
761 | method: which method to use. |
762 | nneighbor: number of neighbors to be used in forming nearest neighbor graph. Used only in agglomerative method |
763 | compatibility_method: which method to use to calculate compatibility. Used only in force directed. |
764 | max_recursion: used only in agglomerative method. Specify how many level of recursion to do to bundle bundled edges again |
765 | open_gl: whether to plot in X. |
766 | |
767 | */ |
768 | int ne = A0->m; |
769 | pedge *edges; |
770 | SparseMatrix A = A0, B = NULL; |
771 | int i; |
772 | real tol = 0.001; |
773 | int k; |
774 | real step0 = 0.1, start = 0.0; |
775 | int maxit = 10; |
776 | int flag; |
777 | |
778 | assert(A->n == ne); |
779 | edges = MALLOC(sizeof(pedge)*ne); |
780 | |
781 | for (i = 0; i < ne; i++){ |
782 | edges[i] = pedge_new(2, dim, &(x[dim*2*i])); |
783 | } |
784 | |
785 | A = SparseMatrix_symmetrize(A0, TRUE); |
786 | |
787 | |
788 | |
789 | if (Verbose) start = clock(); |
790 | if (method == METHOD_INK){ |
791 | |
792 | /* go through the links and make sure edges are compatible */ |
793 | B = check_compatibility(A, ne, edges, compatibility_method, tol); |
794 | |
795 | edges = modularity_ink_bundling(dim, ne, B, edges, angle_param, angle); |
796 | |
797 | } else if (method == METHOD_INK_AGGLOMERATE){ |
798 | #ifdef HAVE_ANN |
799 | /* plan: merge a node with its neighbors if doing so improve. Form coarsening graph, repeat until no more ink saving */ |
800 | edges = agglomerative_ink_bundling(dim, A, edges, nneighbor, max_recursion, angle_param, angle, open_gl, &flag); |
801 | assert(!flag); |
802 | #else |
803 | agerr (AGERR, "Graphviz built without approximate nearest neighbor library ANN; agglomerative inking not available\n" ); |
804 | edges = edges; |
805 | #endif |
806 | } else if (method == METHOD_FD){/* FD method */ |
807 | |
808 | /* go through the links and make sure edges are compatible */ |
809 | B = check_compatibility(A, ne, edges, compatibility_method, tol); |
810 | |
811 | |
812 | for (k = 0; k < maxit_outer; k++){ |
813 | for (i = 0; i < ne; i++){ |
814 | edges[i] = pedge_double(edges[i]); |
815 | } |
816 | step0 = step0/2; |
817 | edges = force_directed_edge_bundling(B, edges, maxit, step0, K, open_gl); |
818 | } |
819 | |
820 | } else if (method == METHOD_NONE){ |
821 | edges = edges; |
822 | } else { |
823 | assert(0); |
824 | } |
825 | if (Verbose) |
826 | fprintf(stderr, "total edge bundling cpu = %f\n" ,((real) (clock() - start))/CLOCKS_PER_SEC); |
827 | if (B != A) SparseMatrix_delete(B); |
828 | if (A != A0) SparseMatrix_delete(A); |
829 | |
830 | return edges; |
831 | } |
832 | |