| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | /* |
| 15 | * this implements the resistor circuit current model for |
| 16 | * computing node distance, as an alternative to shortest-path. |
| 17 | * likely it could be improved by using edge weights, somehow. |
| 18 | * Return 1 if successful; 0 otherwise (e.g., graph is disconnected). |
| 19 | */ |
| 20 | #include "neato.h" |
| 21 | |
| 22 | int solveCircuit(int nG, double **Gm, double **Gm_inv) |
| 23 | { |
| 24 | double sum; |
| 25 | int i, j; |
| 26 | |
| 27 | if (Verbose) |
| 28 | fprintf(stderr, "Calculating circuit model" ); |
| 29 | |
| 30 | /* set diagonal entries to sum of conductances but ignore nth node */ |
| 31 | for (i = 0; i < nG; i++) { |
| 32 | sum = 0.0; |
| 33 | for (j = 0; j < nG; j++) |
| 34 | if (i != j) |
| 35 | sum += Gm[i][j]; |
| 36 | Gm[i][i] = -sum; |
| 37 | } |
| 38 | return matinv(Gm, Gm_inv, nG - 1); |
| 39 | } |
| 40 | |
| 41 | int circuit_model(graph_t * g, int nG) |
| 42 | { |
| 43 | double **Gm; |
| 44 | double **Gm_inv; |
| 45 | int rv; |
| 46 | long i, j; |
| 47 | node_t *v; |
| 48 | edge_t *e; |
| 49 | |
| 50 | Gm = new_array(nG, nG, 0.0); |
| 51 | Gm_inv = new_array(nG, nG, 0.0); |
| 52 | |
| 53 | /* set non-diagonal entries */ |
| 54 | for (v = agfstnode(g); v; v = agnxtnode(g, v)) { |
| 55 | for (e = agfstedge(g, v); e; e = agnxtedge(g, e, v)) { |
| 56 | i = AGSEQ(agtail(e)); |
| 57 | j = AGSEQ(aghead(e)); |
| 58 | if (i == j) |
| 59 | continue; |
| 60 | /* conductance is 1/resistance */ |
| 61 | Gm[i][j] = Gm[j][i] = -1.0 / ED_dist(e); /* negate */ |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | rv = solveCircuit(nG, Gm, Gm_inv); |
| 66 | |
| 67 | if (rv) |
| 68 | for (i = 0; i < nG; i++) { |
| 69 | for (j = 0; j < nG; j++) { |
| 70 | GD_dist(g)[i][j] = |
| 71 | Gm_inv[i][i] + Gm_inv[j][j] - 2.0 * Gm_inv[i][j]; |
| 72 | } |
| 73 | } |
| 74 | free_array(Gm); |
| 75 | free_array(Gm_inv); |
| 76 | return rv; |
| 77 | } |
| 78 | |