| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "kkutils.h" |
| 16 | #include "closest.h" |
| 17 | #include <stdlib.h> |
| 18 | |
| 19 | /***************************************** |
| 20 | ** This module contains functions that ** |
| 21 | ** given a 1-D layout construct a graph ** |
| 22 | ** where close nodes in this layout are ** |
| 23 | ** adjacent ** |
| 24 | *****************************************/ |
| 25 | |
| 26 | typedef struct { |
| 27 | /* this structure represents two nodes in the 1-D layout */ |
| 28 | int left; /* the left node in the pair */ |
| 29 | int right; /* the right node in the pair */ |
| 30 | double dist; /* distance between the nodes in the layout */ |
| 31 | } Pair; |
| 32 | |
| 33 | #define LT(p,q) ((p).dist < (q).dist) |
| 34 | #define EQ(p,q) ((p).dist == (q).dist) |
| 35 | |
| 36 | /* |
| 37 | Pair(int v, int u) {left=v; right=u;} |
| 38 | bool operator>(Pair other) {return dist>other.dist;} |
| 39 | bool operator>=(Pair other) {return dist>=other.dist;} |
| 40 | bool operator<(Pair other) {return dist<other.dist;} |
| 41 | bool operator<=(Pair other) {return dist<=other.dist;} |
| 42 | bool operator==(Pair other) {return dist==other.dist;} |
| 43 | */ |
| 44 | |
| 45 | typedef struct { |
| 46 | Pair *data; |
| 47 | int max_size; |
| 48 | int top; |
| 49 | } PairStack; |
| 50 | |
| 51 | static void initStack(PairStack * s, int n) |
| 52 | { |
| 53 | s->data = N_GNEW(n, Pair); |
| 54 | s->max_size = n; |
| 55 | s->top = 0; |
| 56 | } |
| 57 | |
| 58 | static void freeStack(PairStack * s) |
| 59 | { |
| 60 | free(s->data); |
| 61 | } |
| 62 | |
| 63 | #define push(s,x) { \ |
| 64 | if (s->top>=s->max_size) { \ |
| 65 | s->max_size *= 2; \ |
| 66 | s->data = (Pair*) realloc(s->data, s->max_size*sizeof(Pair)); \ |
| 67 | } \ |
| 68 | s->data[s->top++] = x; \ |
| 69 | } |
| 70 | |
| 71 | #define pop(s,x) ((s->top==0) ? FALSE : (s->top--, x = s->data[s->top], TRUE)) |
| 72 | |
| 73 | #define read_top(h,x) ((s->top==0) ? FALSE : (x = s->data[s->top-1], TRUE)) |
| 74 | |
| 75 | #define sub(h,i) (h->data[i]) |
| 76 | |
| 77 | /* An auxulliary data structure (a heap) for |
| 78 | * finding the closest pair in the layout |
| 79 | */ |
| 80 | typedef struct { |
| 81 | Pair *data; |
| 82 | int heapSize; |
| 83 | int maxSize; |
| 84 | } PairHeap; |
| 85 | |
| 86 | #define left(i) (2*(i)) |
| 87 | #define right(i) (2*(i)+1) |
| 88 | #define parent(i) ((i)/2) |
| 89 | #define insideHeap(h,i) ((i)<h->heapSize) |
| 90 | #define greaterPriority(h,i,j) \ |
| 91 | (LT(h->data[i],h->data[j]) || ((EQ(h->data[i],h->data[j])) && (rand()%2))) |
| 92 | |
| 93 | #define exchange(h,i,j) {Pair temp; \ |
| 94 | temp=h->data[i]; \ |
| 95 | h->data[i]=h->data[j]; \ |
| 96 | h->data[j]=temp; \ |
| 97 | } |
| 98 | #define assign(h,i,j) {h->data[i]=h->data[j]} |
| 99 | |
| 100 | static void heapify(PairHeap * h, int i) |
| 101 | { |
| 102 | int l, r, largest; |
| 103 | while (1) { |
| 104 | l = left(i); |
| 105 | r = right(i); |
| 106 | if (insideHeap(h, l) && greaterPriority(h, l, i)) |
| 107 | largest = l; |
| 108 | else |
| 109 | largest = i; |
| 110 | if (insideHeap(h, r) && greaterPriority(h, r, largest)) |
| 111 | largest = r; |
| 112 | if (largest == i) |
| 113 | break; |
| 114 | |
| 115 | exchange(h, largest, i); |
| 116 | i = largest; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | #ifdef UNUSED |
| 121 | static void mkHeap(PairHeap * h, int size) |
| 122 | { |
| 123 | h->data = N_GNEW(size, Pair); |
| 124 | h->maxSize = size; |
| 125 | h->heapSize = 0; |
| 126 | } |
| 127 | #endif |
| 128 | |
| 129 | static void freeHeap(PairHeap * h) |
| 130 | { |
| 131 | free(h->data); |
| 132 | } |
| 133 | |
| 134 | static void initHeap(PairHeap * h, double *place, int *ordering, int n) |
| 135 | { |
| 136 | int i; |
| 137 | Pair edge; |
| 138 | int j; |
| 139 | |
| 140 | h->heapSize = n - 1; |
| 141 | #ifdef REDO |
| 142 | if (h->heapSize > h->maxSize) { |
| 143 | h->maxSize = h->heapSize; |
| 144 | h->data = (Pair *) realloc(h->data, h->maxSize * sizeof(Pair)); |
| 145 | } |
| 146 | #else |
| 147 | h->maxSize = h->heapSize; |
| 148 | h->data = N_GNEW(h->maxSize, Pair); |
| 149 | #endif |
| 150 | |
| 151 | for (i = 0; i < n - 1; i++) { |
| 152 | edge.left = ordering[i]; |
| 153 | edge.right = ordering[i + 1]; |
| 154 | edge.dist = place[ordering[i + 1]] - place[ordering[i]]; |
| 155 | h->data[i] = edge; |
| 156 | } |
| 157 | for (j = (n - 1) / 2; j >= 0; j--) { |
| 158 | heapify(h, j); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | static boolean (PairHeap * h, Pair * max) |
| 163 | { |
| 164 | if (h->heapSize == 0) |
| 165 | return FALSE; |
| 166 | |
| 167 | *max = h->data[0]; |
| 168 | h->data[0] = h->data[h->heapSize - 1]; |
| 169 | h->heapSize--; |
| 170 | heapify(h, 0); |
| 171 | return TRUE; |
| 172 | } |
| 173 | |
| 174 | static void insert(PairHeap * h, Pair edge) |
| 175 | { |
| 176 | int i = h->heapSize; |
| 177 | if (h->heapSize == h->maxSize) { |
| 178 | h->maxSize *= 2; |
| 179 | h->data = (Pair *) realloc(h->data, h->maxSize * sizeof(Pair)); |
| 180 | } |
| 181 | h->heapSize++; |
| 182 | h->data[i] = edge; |
| 183 | while (i > 0 && greaterPriority(h, i, parent(i))) { |
| 184 | exchange(h, i, parent(i)); |
| 185 | i = parent(i); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | static bool |
| 191 | isheap(PairHeap* h) |
| 192 | { |
| 193 | int i,l,r; |
| 194 | for (i=0; i<h->heapSize; i++) { |
| 195 | l=left(i); r=right(i); |
| 196 | if (insideHeap(h,l) && greaterPriority(h,l,i)) |
| 197 | return FALSE; |
| 198 | if (insideHeap(h,r) && greaterPriority(h,r,i)) |
| 199 | return FALSE; |
| 200 | } |
| 201 | return TRUE; |
| 202 | } |
| 203 | */ |
| 204 | |
| 205 | static void |
| 206 | find_closest_pairs(double *place, int n, int num_pairs, |
| 207 | PairStack * pairs_stack) |
| 208 | { |
| 209 | /* Fill the stack 'pairs_stack' with 'num_pairs' closest pairs int the 1-D layout 'place' */ |
| 210 | int i; |
| 211 | PairHeap heap; |
| 212 | int *left = N_GNEW(n, int); |
| 213 | int *right = N_GNEW(n, int); |
| 214 | Pair pair = { 0, 0 }, new_pair; |
| 215 | |
| 216 | /* Order the nodes according to their place */ |
| 217 | int *ordering = N_GNEW(n, int); |
| 218 | int *inv_ordering = N_GNEW(n, int); |
| 219 | |
| 220 | for (i = 0; i < n; i++) { |
| 221 | ordering[i] = i; |
| 222 | } |
| 223 | quicksort_place(place, ordering, 0, n - 1); |
| 224 | for (i = 0; i < n; i++) { |
| 225 | inv_ordering[ordering[i]] = i; |
| 226 | } |
| 227 | |
| 228 | /* Initialize heap with all consecutive pairs */ |
| 229 | initHeap(&heap, place, ordering, n); |
| 230 | |
| 231 | /* store the leftmost and rightmost neighbors of each node that were entered into heap */ |
| 232 | for (i = 1; i < n; i++) { |
| 233 | left[ordering[i]] = ordering[i - 1]; |
| 234 | } |
| 235 | for (i = 0; i < n - 1; i++) { |
| 236 | right[ordering[i]] = ordering[i + 1]; |
| 237 | } |
| 238 | |
| 239 | /* extract the 'num_pairs' closest pairs */ |
| 240 | for (i = 0; i < num_pairs; i++) { |
| 241 | int left_index; |
| 242 | int right_index; |
| 243 | int neighbor; |
| 244 | |
| 245 | if (!extractMax(&heap, &pair)) { |
| 246 | break; /* not enough pairs */ |
| 247 | } |
| 248 | push(pairs_stack, pair); |
| 249 | /* insert to heap "descendant" pairs */ |
| 250 | left_index = inv_ordering[pair.left]; |
| 251 | right_index = inv_ordering[pair.right]; |
| 252 | if (left_index > 0) { |
| 253 | neighbor = ordering[left_index - 1]; |
| 254 | if (inv_ordering[right[neighbor]] < right_index) { |
| 255 | /* we have a new pair */ |
| 256 | new_pair.left = neighbor; |
| 257 | new_pair.right = pair.right; |
| 258 | new_pair.dist = place[pair.right] - place[neighbor]; |
| 259 | insert(&heap, new_pair); |
| 260 | right[neighbor] = pair.right; |
| 261 | left[pair.right] = neighbor; |
| 262 | } |
| 263 | } |
| 264 | if (right_index < n - 1) { |
| 265 | neighbor = ordering[right_index + 1]; |
| 266 | if (inv_ordering[left[neighbor]] > left_index) { |
| 267 | /* we have a new pair */ |
| 268 | new_pair.left = pair.left; |
| 269 | new_pair.right = neighbor; |
| 270 | new_pair.dist = place[neighbor] - place[pair.left]; |
| 271 | insert(&heap, new_pair); |
| 272 | left[neighbor] = pair.left; |
| 273 | right[pair.left] = neighbor; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | free(left); |
| 278 | free(right); |
| 279 | free(ordering); |
| 280 | free(inv_ordering); |
| 281 | freeHeap(&heap); |
| 282 | } |
| 283 | |
| 284 | static void add_edge(vtx_data * graph, int u, int v) |
| 285 | { |
| 286 | int i; |
| 287 | for (i = 0; i < graph[u].nedges; i++) { |
| 288 | if (graph[u].edges[i] == v) { |
| 289 | /* edge already exist */ |
| 290 | return; |
| 291 | } |
| 292 | } |
| 293 | /* add the edge */ |
| 294 | graph[u].edges[graph[u].nedges++] = v; |
| 295 | graph[v].edges[graph[v].nedges++] = u; |
| 296 | if (graph[0].ewgts != NULL) { |
| 297 | graph[u].ewgts[0]--; |
| 298 | graph[v].ewgts[0]--; |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | static void |
| 303 | construct_graph(int n, PairStack * edges_stack, vtx_data ** New_graph) |
| 304 | { |
| 305 | /* construct an unweighted graph using the edges 'edges_stack' */ |
| 306 | int i; |
| 307 | vtx_data *new_graph; |
| 308 | |
| 309 | /* first compute new degrees and nedges; */ |
| 310 | int *degrees = N_GNEW(n, int); |
| 311 | int top = edges_stack->top; |
| 312 | int new_nedges = 2 * top + n; |
| 313 | Pair pair; |
| 314 | int *edges = N_GNEW(new_nedges, int); |
| 315 | float *weights = N_GNEW(new_nedges, float); |
| 316 | |
| 317 | for (i = 0; i < n; i++) { |
| 318 | degrees[i] = 1; /* save place for the self loop */ |
| 319 | } |
| 320 | for (i = 0; i < top; i++) { |
| 321 | pair = sub(edges_stack, i); |
| 322 | degrees[pair.left]++; |
| 323 | degrees[pair.right]++; |
| 324 | } |
| 325 | |
| 326 | /* copy graph into new_graph: */ |
| 327 | for (i = 0; i < new_nedges; i++) { |
| 328 | weights[i] = 1.0; |
| 329 | } |
| 330 | |
| 331 | *New_graph = new_graph = N_GNEW(n, vtx_data); |
| 332 | for (i = 0; i < n; i++) { |
| 333 | new_graph[i].nedges = 1; |
| 334 | new_graph[i].ewgts = weights; |
| 335 | #ifdef USE_STYLES |
| 336 | new_graph[i].styles = NULL; |
| 337 | #endif |
| 338 | new_graph[i].edges = edges; |
| 339 | *edges = i; /* self loop for Lap */ |
| 340 | *weights = 0; /* self loop weight for Lap */ |
| 341 | weights += degrees[i]; |
| 342 | edges += degrees[i]; /* reserve space for possible more edges */ |
| 343 | } |
| 344 | |
| 345 | free(degrees); |
| 346 | |
| 347 | /* add all edges from stack */ |
| 348 | while (pop(edges_stack, pair)) { |
| 349 | add_edge(new_graph, pair.left, pair.right); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | void |
| 354 | closest_pairs2graph(double *place, int n, int num_pairs, vtx_data ** graph) |
| 355 | { |
| 356 | /* build a graph with with edges between the 'num_pairs' closest pairs in the 1-D space: 'place' */ |
| 357 | PairStack pairs_stack; |
| 358 | initStack(&pairs_stack, num_pairs); |
| 359 | find_closest_pairs(place, n, num_pairs, &pairs_stack); |
| 360 | construct_graph(n, &pairs_stack, graph); |
| 361 | freeStack(&pairs_stack); |
| 362 | } |
| 363 | |