| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include <digcola.h> |
| 15 | #ifdef DIGCOLA |
| 16 | #include "kkutils.h" |
| 17 | |
| 18 | static int *given_levels = NULL; |
| 19 | /* |
| 20 | * This function partitions the graph nodes into levels |
| 21 | * according to the minimizer of the hierarchy energy. |
| 22 | * |
| 23 | * To allow more flexibility we define a new level only |
| 24 | * when the hierarchy energy shows a significant jump |
| 25 | * (to compensate for noise). |
| 26 | * This is controlled by two parameters: 'abs_tol' and |
| 27 | * 'relative_tol'. The smaller these two are, the more |
| 28 | * levels we'll get. |
| 29 | * More speciffically: |
| 30 | * We never consider gaps smaller than 'abs_tol' |
| 31 | * Additionally, we never consider gaps smaller than 'abs_tol'*<avg_gap> |
| 32 | * |
| 33 | * The output is an ordering of the nodes according to |
| 34 | * their levels, as follows: |
| 35 | * First level: |
| 36 | * ordering[0],ordering[1],...ordering[levels[0]-1] |
| 37 | * Second level: |
| 38 | * ordering[levels[0]],ordering[levels[0]+1],...ordering[levels[1]-1] |
| 39 | * ... |
| 40 | * Last level: |
| 41 | * ordering[levels[num_levels-1]],ordering[levels[num_levels-1]+1],...ordering[n-1] |
| 42 | * |
| 43 | * Hence, the nodes were partitioned into 'num_levels'+1 |
| 44 | * levels. |
| 45 | * |
| 46 | * Please note that 'ordering[levels[i]]' contains the first node at level i+1, |
| 47 | * and not the last node of level i. |
| 48 | */ |
| 49 | int |
| 50 | compute_hierarchy(vtx_data * graph, int n, double abs_tol, |
| 51 | double relative_tol, double *given_coords, |
| 52 | int **orderingp, int **levelsp, int *num_levelsp) |
| 53 | { |
| 54 | double *y; |
| 55 | int i, rv=0; |
| 56 | double spread; |
| 57 | int use_given_levels = FALSE; |
| 58 | int *ordering; |
| 59 | int *levels; |
| 60 | double tol; /* node 'i' precedes 'j' in hierarchy iff y[i]-y[j]>tol */ |
| 61 | double hierarchy_span; |
| 62 | int num_levels; |
| 63 | |
| 64 | /* compute optimizer of hierarchy energy: 'y' */ |
| 65 | if (given_coords) { |
| 66 | y = given_coords; |
| 67 | } else { |
| 68 | y = N_GNEW(n, double); |
| 69 | if (compute_y_coords(graph, n, y, n)) { |
| 70 | rv = 1; |
| 71 | goto finish; |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | /* sort nodes accoridng to their y-ordering */ |
| 76 | *orderingp = ordering = N_NEW(n, int); |
| 77 | for (i = 0; i < n; i++) { |
| 78 | ordering[i] = i; |
| 79 | } |
| 80 | quicksort_place(y, ordering, 0, n - 1); |
| 81 | |
| 82 | spread = y[ordering[n - 1]] - y[ordering[0]]; |
| 83 | |
| 84 | /* after spread is computed, we may take the y-coords as the given levels */ |
| 85 | if (given_levels) { |
| 86 | use_given_levels = TRUE; |
| 87 | for (i = 0; i < n; i++) { |
| 88 | use_given_levels = use_given_levels && given_levels[i] >= 0; |
| 89 | } |
| 90 | } |
| 91 | if (use_given_levels) { |
| 92 | for (i = 0; i < n; i++) { |
| 93 | y[i] = given_levels[i]; |
| 94 | ordering[i] = i; |
| 95 | } |
| 96 | quicksort_place(y, ordering, 0, n - 1); |
| 97 | } |
| 98 | |
| 99 | /* compute tolerance |
| 100 | * take the maximum between 'abs_tol' and a fraction of the average gap |
| 101 | * controlled by 'relative_tol' |
| 102 | */ |
| 103 | hierarchy_span = y[ordering[n - 1]] - y[ordering[0]]; |
| 104 | tol = MAX(abs_tol, relative_tol * hierarchy_span / (n - 1)); |
| 105 | /* 'hierarchy_span/(n-1)' - average gap between consecutive nodes */ |
| 106 | |
| 107 | |
| 108 | /* count how many levels the hierarchy contains (a SINGLE_LINK clustering */ |
| 109 | /* alternatively we could use COMPLETE_LINK clustering) */ |
| 110 | num_levels = 0; |
| 111 | for (i = 1; i < n; i++) { |
| 112 | if (y[ordering[i]] - y[ordering[i - 1]] > tol) { |
| 113 | num_levels++; |
| 114 | } |
| 115 | } |
| 116 | *num_levelsp = num_levels; |
| 117 | if (num_levels == 0) { |
| 118 | *levelsp = levels = N_GNEW(1, int); |
| 119 | levels[0] = n; |
| 120 | } else { |
| 121 | int count = 0; |
| 122 | *levelsp = levels = N_GNEW(num_levels, int); |
| 123 | for (i = 1; i < n; i++) { |
| 124 | if (y[ordering[i]] - y[ordering[i - 1]] > tol) { |
| 125 | levels[count++] = i; |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | finish: |
| 130 | if (!given_coords) { |
| 131 | free(y); |
| 132 | } |
| 133 | |
| 134 | return rv; |
| 135 | } |
| 136 | |
| 137 | #endif /* DIGCOLA */ |
| 138 | |