| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "matrix_ops.h" |
| 16 | #include "conjgrad.h" |
| 17 | /* #include <math.h> */ |
| 18 | #include <stdlib.h> |
| 19 | |
| 20 | |
| 21 | /************************* |
| 22 | ** C.G. method - SPARSE * |
| 23 | *************************/ |
| 24 | |
| 25 | int conjugate_gradient |
| 26 | (vtx_data * A, double *x, double *b, int n, double tol, |
| 27 | int max_iterations) { |
| 28 | /* Solves Ax=b using Conjugate-Gradients method */ |
| 29 | /* 'x' and 'b' are orthogonalized against 1 */ |
| 30 | |
| 31 | int i, rv = 0; |
| 32 | |
| 33 | double alpha, beta, r_r, r_r_new, p_Ap; |
| 34 | double *r = N_GNEW(n, double); |
| 35 | double *p = N_GNEW(n, double); |
| 36 | double *Ap = N_GNEW(n, double); |
| 37 | double *Ax = N_GNEW(n, double); |
| 38 | double *alphap = N_GNEW(n, double); |
| 39 | |
| 40 | double *orth_b = N_GNEW(n, double); |
| 41 | copy_vector(n, b, orth_b); |
| 42 | orthog1(n, orth_b); |
| 43 | orthog1(n, x); |
| 44 | right_mult_with_vector(A, n, x, Ax); |
| 45 | vectors_subtraction(n, orth_b, Ax, r); |
| 46 | copy_vector(n, r, p); |
| 47 | r_r = vectors_inner_product(n, r, r); |
| 48 | |
| 49 | for (i = 0; i < max_iterations && max_abs(n, r) > tol; i++) { |
| 50 | right_mult_with_vector(A, n, p, Ap); |
| 51 | p_Ap = vectors_inner_product(n, p, Ap); |
| 52 | if (p_Ap == 0) |
| 53 | break; /*exit(1); */ |
| 54 | alpha = r_r / p_Ap; |
| 55 | |
| 56 | /* derive new x: */ |
| 57 | vectors_scalar_mult(n, p, alpha, alphap); |
| 58 | vectors_addition(n, x, alphap, x); |
| 59 | |
| 60 | /* compute values for next iteration: */ |
| 61 | if (i < max_iterations - 1) { /* not last iteration */ |
| 62 | vectors_scalar_mult(n, Ap, alpha, Ap); |
| 63 | vectors_subtraction(n, r, Ap, r); /* fast computation of r, the residual */ |
| 64 | |
| 65 | /* Alternaive accurate, but slow, computation of the residual - r */ |
| 66 | /* right_mult_with_vector(A, n, x, Ax); */ |
| 67 | /* vectors_subtraction(n,b,Ax,r); */ |
| 68 | |
| 69 | r_r_new = vectors_inner_product(n, r, r); |
| 70 | if (r_r == 0) { |
| 71 | agerr (AGERR, "conjugate_gradient: unexpected length 0 vector\n" ); |
| 72 | rv = 1; |
| 73 | goto cleanup0; |
| 74 | } |
| 75 | beta = r_r_new / r_r; |
| 76 | r_r = r_r_new; |
| 77 | vectors_scalar_mult(n, p, beta, p); |
| 78 | vectors_addition(n, r, p, p); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | cleanup0 : |
| 83 | free(r); |
| 84 | free(p); |
| 85 | free(Ap); |
| 86 | free(Ax); |
| 87 | free(alphap); |
| 88 | free(orth_b); |
| 89 | |
| 90 | return rv; |
| 91 | } |
| 92 | |
| 93 | |
| 94 | /**************************** |
| 95 | ** C.G. method - DENSE * |
| 96 | ****************************/ |
| 97 | |
| 98 | int conjugate_gradient_f |
| 99 | (float **A, double *x, double *b, int n, double tol, |
| 100 | int max_iterations, boolean ortho1) { |
| 101 | /* Solves Ax=b using Conjugate-Gradients method */ |
| 102 | /* 'x' and 'b' are orthogonalized against 1 if 'ortho1=true' */ |
| 103 | |
| 104 | int i, rv = 0; |
| 105 | |
| 106 | double alpha, beta, r_r, r_r_new, p_Ap; |
| 107 | double *r = N_GNEW(n, double); |
| 108 | double *p = N_GNEW(n, double); |
| 109 | double *Ap = N_GNEW(n, double); |
| 110 | double *Ax = N_GNEW(n, double); |
| 111 | double *alphap = N_GNEW(n, double); |
| 112 | |
| 113 | double *orth_b = N_GNEW(n, double); |
| 114 | copy_vector(n, b, orth_b); |
| 115 | if (ortho1) { |
| 116 | orthog1(n, orth_b); |
| 117 | orthog1(n, x); |
| 118 | } |
| 119 | right_mult_with_vector_f(A, n, x, Ax); |
| 120 | vectors_subtraction(n, orth_b, Ax, r); |
| 121 | copy_vector(n, r, p); |
| 122 | r_r = vectors_inner_product(n, r, r); |
| 123 | |
| 124 | for (i = 0; i < max_iterations && max_abs(n, r) > tol; i++) { |
| 125 | right_mult_with_vector_f(A, n, p, Ap); |
| 126 | p_Ap = vectors_inner_product(n, p, Ap); |
| 127 | if (p_Ap == 0) |
| 128 | break; /*exit(1); */ |
| 129 | alpha = r_r / p_Ap; |
| 130 | |
| 131 | /* derive new x: */ |
| 132 | vectors_scalar_mult(n, p, alpha, alphap); |
| 133 | vectors_addition(n, x, alphap, x); |
| 134 | |
| 135 | /* compute values for next iteration: */ |
| 136 | if (i < max_iterations - 1) { /* not last iteration */ |
| 137 | vectors_scalar_mult(n, Ap, alpha, Ap); |
| 138 | vectors_subtraction(n, r, Ap, r); /* fast computation of r, the residual */ |
| 139 | |
| 140 | /* Alternaive accurate, but slow, computation of the residual - r */ |
| 141 | /* right_mult_with_vector(A, n, x, Ax); */ |
| 142 | /* vectors_subtraction(n,b,Ax,r); */ |
| 143 | |
| 144 | r_r_new = vectors_inner_product(n, r, r); |
| 145 | if (r_r == 0) { |
| 146 | rv = 1; |
| 147 | agerr (AGERR, "conjugate_gradient: unexpected length 0 vector\n" ); |
| 148 | goto cleanup1; |
| 149 | } |
| 150 | beta = r_r_new / r_r; |
| 151 | r_r = r_r_new; |
| 152 | vectors_scalar_mult(n, p, beta, p); |
| 153 | vectors_addition(n, r, p, p); |
| 154 | } |
| 155 | } |
| 156 | cleanup1: |
| 157 | free(r); |
| 158 | free(p); |
| 159 | free(Ap); |
| 160 | free(Ax); |
| 161 | free(alphap); |
| 162 | free(orth_b); |
| 163 | |
| 164 | return rv; |
| 165 | } |
| 166 | |
| 167 | int |
| 168 | conjugate_gradient_mkernel(float *A, float *x, float *b, int n, |
| 169 | double tol, int max_iterations) |
| 170 | { |
| 171 | /* Solves Ax=b using Conjugate-Gradients method */ |
| 172 | /* A is a packed symmetric matrix */ |
| 173 | /* matrux A is "packed" (only upper triangular portion exists, row-major); */ |
| 174 | |
| 175 | int i, rv = 0; |
| 176 | |
| 177 | double alpha, beta, r_r, r_r_new, p_Ap; |
| 178 | float *r = N_NEW(n, float); |
| 179 | float *p = N_NEW(n, float); |
| 180 | float *Ap = N_NEW(n, float); |
| 181 | float *Ax = N_NEW(n, float); |
| 182 | |
| 183 | /* centering x and b */ |
| 184 | orthog1f(n, x); |
| 185 | orthog1f(n, b); |
| 186 | |
| 187 | right_mult_with_vector_ff(A, n, x, Ax); |
| 188 | /* centering Ax */ |
| 189 | orthog1f(n, Ax); |
| 190 | |
| 191 | |
| 192 | vectors_substractionf(n, b, Ax, r); |
| 193 | copy_vectorf(n, r, p); |
| 194 | |
| 195 | r_r = vectors_inner_productf(n, r, r); |
| 196 | |
| 197 | for (i = 0; i < max_iterations && max_absf(n, r) > tol; i++) { |
| 198 | orthog1f(n, p); |
| 199 | orthog1f(n, x); |
| 200 | orthog1f(n, r); |
| 201 | |
| 202 | right_mult_with_vector_ff(A, n, p, Ap); |
| 203 | /* centering Ap */ |
| 204 | orthog1f(n, Ap); |
| 205 | |
| 206 | p_Ap = vectors_inner_productf(n, p, Ap); |
| 207 | if (p_Ap == 0) |
| 208 | break; |
| 209 | alpha = r_r / p_Ap; |
| 210 | |
| 211 | /* derive new x: */ |
| 212 | vectors_mult_additionf(n, x, (float) alpha, p); |
| 213 | |
| 214 | /* compute values for next iteration: */ |
| 215 | if (i < max_iterations - 1) { /* not last iteration */ |
| 216 | vectors_mult_additionf(n, r, (float) -alpha, Ap); |
| 217 | |
| 218 | |
| 219 | r_r_new = vectors_inner_productf(n, r, r); |
| 220 | |
| 221 | if (r_r == 0) { |
| 222 | rv = 1; |
| 223 | agerr (AGERR, "conjugate_gradient: unexpected length 0 vector\n" ); |
| 224 | goto cleanup2; |
| 225 | } |
| 226 | beta = r_r_new / r_r; |
| 227 | r_r = r_r_new; |
| 228 | |
| 229 | vectors_scalar_multf(n, p, (float) beta, p); |
| 230 | |
| 231 | vectors_additionf(n, r, p, p); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | cleanup2 : |
| 236 | free(r); |
| 237 | free(p); |
| 238 | free(Ap); |
| 239 | free(Ax); |
| 240 | return rv; |
| 241 | } |
| 242 | |