| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "digcola.h" |
| 15 | #ifdef DIGCOLA |
| 16 | #include <math.h> |
| 17 | #include <stdlib.h> |
| 18 | #include <time.h> |
| 19 | #include <stdio.h> |
| 20 | #include <float.h> |
| 21 | #include "stress.h" |
| 22 | #include "dijkstra.h" |
| 23 | #include "bfs.h" |
| 24 | #include "matrix_ops.h" |
| 25 | #include "kkutils.h" |
| 26 | #include "conjgrad.h" |
| 27 | #include "quad_prog_solver.h" |
| 28 | #include "matrix_ops.h" |
| 29 | |
| 30 | #define localConstrMajorIterations 15 |
| 31 | #define levels_sep_tol 1e-1 |
| 32 | |
| 33 | int stress_majorization_with_hierarchy(vtx_data * graph, /* Input graph in sparse representation */ |
| 34 | int n, /* Number of nodes */ |
| 35 | int nedges_graph, /* Number of edges */ |
| 36 | double **d_coords, /* Coordinates of nodes (output layout) */ |
| 37 | node_t ** nodes, /* Original nodes */ |
| 38 | int dim, /* Dimemsionality of layout */ |
| 39 | int opts, /* options */ |
| 40 | int model, /* difference model */ |
| 41 | int maxi, /* max iterations */ |
| 42 | double levels_gap) |
| 43 | { |
| 44 | int iterations = 0; /* Output: number of iteration of the process */ |
| 45 | |
| 46 | /************************************************* |
| 47 | ** Computation of full, dense, unrestricted k-D ** |
| 48 | ** stress minimization by majorization ** |
| 49 | ** This function imposes HIERARCHY CONSTRAINTS ** |
| 50 | *************************************************/ |
| 51 | |
| 52 | int i, j, k; |
| 53 | boolean directionalityExist = FALSE; |
| 54 | float *lap1 = NULL; |
| 55 | float *dist_accumulator = NULL; |
| 56 | float *tmp_coords = NULL; |
| 57 | float **b = NULL; |
| 58 | #ifdef NONCORE |
| 59 | FILE *fp = NULL; |
| 60 | #endif |
| 61 | double *degrees = NULL; |
| 62 | float *lap2 = NULL; |
| 63 | int lap_length; |
| 64 | float *f_storage = NULL; |
| 65 | float **coords = NULL; |
| 66 | |
| 67 | double conj_tol = tolerance_cg; /* tolerance of Conjugate Gradient */ |
| 68 | float **unpackedLap = NULL; |
| 69 | CMajEnv *cMajEnv = NULL; |
| 70 | double y_0; |
| 71 | int length; |
| 72 | int smart_ini = opts & opt_smart_init; |
| 73 | DistType diameter; |
| 74 | float *Dij = NULL; |
| 75 | /* to compensate noises, we never consider gaps smaller than 'abs_tol' */ |
| 76 | double abs_tol = 1e-2; |
| 77 | /* Additionally, we never consider gaps smaller than 'abs_tol'*<avg_gap> */ |
| 78 | double relative_tol = levels_sep_tol; |
| 79 | int *ordering = NULL, *levels = NULL; |
| 80 | float constant_term; |
| 81 | int count; |
| 82 | double degree; |
| 83 | int step; |
| 84 | float val; |
| 85 | double old_stress, new_stress; |
| 86 | boolean converged; |
| 87 | int len; |
| 88 | int num_levels; |
| 89 | float *hierarchy_boundaries; |
| 90 | |
| 91 | if (graph[0].edists != NULL) { |
| 92 | for (i = 0; i < n; i++) { |
| 93 | for (j = 1; j < graph[i].nedges; j++) { |
| 94 | directionalityExist = directionalityExist |
| 95 | || (graph[i].edists[j] != 0); |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | if (!directionalityExist) { |
| 100 | return stress_majorization_kD_mkernel(graph, n, nedges_graph, |
| 101 | d_coords, nodes, dim, opts, |
| 102 | model, maxi); |
| 103 | } |
| 104 | |
| 105 | /****************************************************************** |
| 106 | ** First, partition nodes into layers: These are our constraints ** |
| 107 | ******************************************************************/ |
| 108 | |
| 109 | if (smart_ini) { |
| 110 | double *x; |
| 111 | double *y; |
| 112 | if (dim > 2) { |
| 113 | /* the dim==2 case is handled below */ |
| 114 | if (stress_majorization_kD_mkernel(graph, n, nedges_graph, |
| 115 | d_coords + 1, nodes, dim - 1, |
| 116 | opts, model, 15) < 0) |
| 117 | return -1; |
| 118 | /* now copy the y-axis into the (dim-1)-axis */ |
| 119 | for (i = 0; i < n; i++) { |
| 120 | d_coords[dim - 1][i] = d_coords[1][i]; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | x = d_coords[0]; |
| 125 | y = d_coords[1]; |
| 126 | if (compute_y_coords(graph, n, y, n)) { |
| 127 | iterations = -1; |
| 128 | goto finish; |
| 129 | } |
| 130 | if (compute_hierarchy(graph, n, abs_tol, relative_tol, y, &ordering, |
| 131 | &levels, &num_levels)) { |
| 132 | iterations = -1; |
| 133 | goto finish; |
| 134 | } |
| 135 | if (num_levels < 1) { |
| 136 | /* no hierarchy found, use faster algorithm */ |
| 137 | return stress_majorization_kD_mkernel(graph, n, nedges_graph, |
| 138 | d_coords, nodes, dim, |
| 139 | opts, model, maxi); |
| 140 | } |
| 141 | |
| 142 | if (levels_gap > 0) { |
| 143 | /* ensure that levels are separated in the initial layout */ |
| 144 | double displacement = 0; |
| 145 | int stop; |
| 146 | for (i = 0; i < num_levels; i++) { |
| 147 | displacement += |
| 148 | MAX((double) 0, |
| 149 | levels_gap - (y[ordering[levels[i]]] + |
| 150 | displacement - |
| 151 | y[ordering[levels[i] - 1]])); |
| 152 | stop = i < num_levels - 1 ? levels[i + 1] : n; |
| 153 | for (j = levels[i]; j < stop; j++) { |
| 154 | y[ordering[j]] += displacement; |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | if (dim == 2) { |
| 159 | if (IMDS_given_dim(graph, n, y, x, Epsilon)) { |
| 160 | iterations = -1; |
| 161 | goto finish; |
| 162 | } |
| 163 | } |
| 164 | } else { |
| 165 | initLayout(graph, n, dim, d_coords, nodes); |
| 166 | if (compute_hierarchy(graph, n, abs_tol, relative_tol, NULL, &ordering, |
| 167 | &levels, &num_levels)) { |
| 168 | iterations = -1; |
| 169 | goto finish; |
| 170 | } |
| 171 | } |
| 172 | if (n == 1) |
| 173 | return 0; |
| 174 | |
| 175 | hierarchy_boundaries = N_GNEW(num_levels, float); |
| 176 | |
| 177 | /**************************************************** |
| 178 | ** Compute the all-pairs-shortest-distances matrix ** |
| 179 | ****************************************************/ |
| 180 | |
| 181 | if (maxi == 0) |
| 182 | return iterations; |
| 183 | |
| 184 | if (Verbose) |
| 185 | start_timer(); |
| 186 | |
| 187 | if (model == MODEL_SUBSET) { |
| 188 | /* weight graph to separate high-degree nodes */ |
| 189 | /* and perform slower Dijkstra-based computation */ |
| 190 | if (Verbose) |
| 191 | fprintf(stderr, "Calculating subset model" ); |
| 192 | Dij = compute_apsp_artifical_weights_packed(graph, n); |
| 193 | } else if (model == MODEL_CIRCUIT) { |
| 194 | Dij = circuitModel(graph, n); |
| 195 | if (!Dij) { |
| 196 | agerr(AGWARN, |
| 197 | "graph is disconnected. Hence, the circuit model\n" ); |
| 198 | agerr(AGPREV, |
| 199 | "is undefined. Reverting to the shortest path model.\n" ); |
| 200 | } |
| 201 | } else if (model == MODEL_MDS) { |
| 202 | if (Verbose) |
| 203 | fprintf(stderr, "Calculating MDS model" ); |
| 204 | Dij = mdsModel(graph, n); |
| 205 | } |
| 206 | if (!Dij) { |
| 207 | if (Verbose) |
| 208 | fprintf(stderr, "Calculating shortest paths" ); |
| 209 | Dij = compute_apsp_packed(graph, n); |
| 210 | } |
| 211 | if (Verbose) { |
| 212 | fprintf(stderr, ": %.2f sec\n" , elapsed_sec()); |
| 213 | fprintf(stderr, "Setting initial positions" ); |
| 214 | start_timer(); |
| 215 | } |
| 216 | |
| 217 | diameter = -1; |
| 218 | length = n + n * (n - 1) / 2; |
| 219 | for (i = 0; i < length; i++) { |
| 220 | if (Dij[i] > diameter) { |
| 221 | diameter = (int) Dij[i]; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | if (!smart_ini) { |
| 226 | /* for numerical stability, scale down layout */ |
| 227 | /* No Jiggling, might conflict with constraints */ |
| 228 | double max = 1; |
| 229 | for (i = 0; i < dim; i++) { |
| 230 | for (j = 0; j < n; j++) { |
| 231 | if (fabs(d_coords[i][j]) > max) { |
| 232 | max = fabs(d_coords[i][j]); |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | for (i = 0; i < dim; i++) { |
| 237 | for (j = 0; j < n; j++) { |
| 238 | d_coords[i][j] *= 10 / max; |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | if (levels_gap > 0) { |
| 244 | int length = n + n * (n - 1) / 2; |
| 245 | double sum1, sum2, scale_ratio; |
| 246 | int count; |
| 247 | sum1 = (float) (n * (n - 1) / 2); |
| 248 | sum2 = 0; |
| 249 | for (count = 0, i = 0; i < n - 1; i++) { |
| 250 | count++; // skip self distance |
| 251 | for (j = i + 1; j < n; j++, count++) { |
| 252 | sum2 += distance_kD(d_coords, dim, i, j) / Dij[count]; |
| 253 | } |
| 254 | } |
| 255 | scale_ratio = sum2 / sum1; |
| 256 | /* double scale_ratio=10; */ |
| 257 | for (i = 0; i < length; i++) { |
| 258 | Dij[i] *= (float) scale_ratio; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /************************** |
| 263 | ** Layout initialization ** |
| 264 | **************************/ |
| 265 | |
| 266 | for (i = 0; i < dim; i++) { |
| 267 | orthog1(n, d_coords[i]); |
| 268 | } |
| 269 | |
| 270 | /* for the y-coords, don't center them, but translate them so y[0]=0 */ |
| 271 | y_0 = d_coords[1][0]; |
| 272 | for (i = 0; i < n; i++) { |
| 273 | d_coords[1][i] -= y_0; |
| 274 | } |
| 275 | |
| 276 | coords = N_GNEW(dim, float *); |
| 277 | f_storage = N_GNEW(dim * n, float); |
| 278 | for (i = 0; i < dim; i++) { |
| 279 | coords[i] = f_storage + i * n; |
| 280 | for (j = 0; j < n; j++) { |
| 281 | coords[i][j] = (float) (d_coords[i][j]); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | /* compute constant term in stress sum |
| 286 | * which is \sum_{i<j} w_{ij}d_{ij}^2 |
| 287 | */ |
| 288 | constant_term = (float) (n * (n - 1) / 2); |
| 289 | |
| 290 | if (Verbose) |
| 291 | fprintf(stderr, ": %.2f sec" , elapsed_sec()); |
| 292 | |
| 293 | /************************** |
| 294 | ** Laplacian computation ** |
| 295 | **************************/ |
| 296 | |
| 297 | lap2 = Dij; |
| 298 | lap_length = n + n * (n - 1) / 2; |
| 299 | square_vec(lap_length, lap2); |
| 300 | /* compute off-diagonal entries */ |
| 301 | invert_vec(lap_length, lap2); |
| 302 | |
| 303 | /* compute diagonal entries */ |
| 304 | count = 0; |
| 305 | degrees = N_GNEW(n, double); |
| 306 | set_vector_val(n, 0, degrees); |
| 307 | for (i = 0; i < n - 1; i++) { |
| 308 | degree = 0; |
| 309 | count++; // skip main diag entry |
| 310 | for (j = 1; j < n - i; j++, count++) { |
| 311 | val = lap2[count]; |
| 312 | degree += val; |
| 313 | degrees[i + j] -= val; |
| 314 | } |
| 315 | degrees[i] -= degree; |
| 316 | } |
| 317 | for (step = n, count = 0, i = 0; i < n; i++, count += step, step--) { |
| 318 | lap2[count] = (float) degrees[i]; |
| 319 | } |
| 320 | |
| 321 | #ifdef NONCORE |
| 322 | fpos_t pos; |
| 323 | if (n > max_nodes_in_mem) { |
| 324 | #define FILENAME "tmp_Dij$$$.bin" |
| 325 | fp = fopen(FILENAME, "wb" ); |
| 326 | fwrite(lap2, sizeof(float), lap_length, fp); |
| 327 | fclose(fp); |
| 328 | fp = NULL; |
| 329 | } |
| 330 | #endif |
| 331 | |
| 332 | /************************* |
| 333 | ** Layout optimization ** |
| 334 | *************************/ |
| 335 | |
| 336 | b = N_GNEW(dim, float *); |
| 337 | b[0] = N_GNEW(dim * n, float); |
| 338 | for (k = 1; k < dim; k++) { |
| 339 | b[k] = b[0] + k * n; |
| 340 | } |
| 341 | |
| 342 | tmp_coords = N_GNEW(n, float); |
| 343 | dist_accumulator = N_GNEW(n, float); |
| 344 | #ifdef NONCORE |
| 345 | if (n <= max_nodes_in_mem) { |
| 346 | #endif |
| 347 | lap1 = N_GNEW(lap_length, float); |
| 348 | #ifdef NONCORE |
| 349 | } else { |
| 350 | lap1 = lap2; |
| 351 | fp = fopen(FILENAME, "rb" ); |
| 352 | fgetpos(fp, &pos); |
| 353 | } |
| 354 | #endif |
| 355 | |
| 356 | old_stress = DBL_MAX; /* at least one iteration */ |
| 357 | |
| 358 | unpackedLap = unpackMatrix(lap2, n); |
| 359 | cMajEnv = |
| 360 | initConstrainedMajorization(lap2, n, ordering, levels, num_levels); |
| 361 | |
| 362 | for (converged = FALSE, iterations = 0; |
| 363 | iterations < maxi && !converged; iterations++) { |
| 364 | |
| 365 | /* First, construct Laplacian of 1/(d_ij*|p_i-p_j|) */ |
| 366 | set_vector_val(n, 0, degrees); |
| 367 | #ifdef NONCORE |
| 368 | if (n <= max_nodes_in_mem) { |
| 369 | #endif |
| 370 | sqrt_vecf(lap_length, lap2, lap1); |
| 371 | #ifdef NONCORE |
| 372 | } else { |
| 373 | sqrt_vec(lap_length, lap1); |
| 374 | } |
| 375 | #endif |
| 376 | for (count = 0, i = 0; i < n - 1; i++) { |
| 377 | len = n - i - 1; |
| 378 | /* init 'dist_accumulator' with zeros */ |
| 379 | set_vector_valf(n, 0, dist_accumulator); |
| 380 | |
| 381 | /* put into 'dist_accumulator' all squared distances |
| 382 | * between 'i' and 'i'+1,...,'n'-1 |
| 383 | */ |
| 384 | for (k = 0; k < dim; k++) { |
| 385 | set_vector_valf(len, coords[k][i], tmp_coords); |
| 386 | vectors_mult_additionf(len, tmp_coords, -1, |
| 387 | coords[k] + i + 1); |
| 388 | square_vec(len, tmp_coords); |
| 389 | vectors_additionf(len, tmp_coords, dist_accumulator, |
| 390 | dist_accumulator); |
| 391 | } |
| 392 | |
| 393 | /* convert to 1/d_{ij} */ |
| 394 | invert_sqrt_vec(len, dist_accumulator); |
| 395 | /* detect overflows */ |
| 396 | for (j = 0; j < len; j++) { |
| 397 | if (dist_accumulator[j] >= FLT_MAX |
| 398 | || dist_accumulator[j] < 0) { |
| 399 | dist_accumulator[j] = 0; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | count++; /* save place for the main diagonal entry */ |
| 404 | degree = 0; |
| 405 | for (j = 0; j < len; j++, count++) { |
| 406 | val = lap1[count] *= dist_accumulator[j]; |
| 407 | degree += val; |
| 408 | degrees[i + j + 1] -= val; |
| 409 | } |
| 410 | degrees[i] -= degree; |
| 411 | } |
| 412 | for (step = n, count = 0, i = 0; i < n; i++, count += step, step--) { |
| 413 | lap1[count] = (float) degrees[i]; |
| 414 | } |
| 415 | |
| 416 | /* Now compute b[] (L^(X(t))*X(t)) */ |
| 417 | for (k = 0; k < dim; k++) { |
| 418 | /* b[k] := lap1*coords[k] */ |
| 419 | right_mult_with_vector_ff(lap1, n, coords[k], b[k]); |
| 420 | } |
| 421 | |
| 422 | /* compute new stress |
| 423 | * remember that the Laplacians are negated, so we subtract |
| 424 | * instead of add and vice versa |
| 425 | */ |
| 426 | new_stress = 0; |
| 427 | for (k = 0; k < dim; k++) { |
| 428 | new_stress += vectors_inner_productf(n, coords[k], b[k]); |
| 429 | } |
| 430 | new_stress *= 2; |
| 431 | new_stress += constant_term; // only after mult by 2 |
| 432 | #ifdef NONCORE |
| 433 | if (n > max_nodes_in_mem) { |
| 434 | /* restore lap2 from disk */ |
| 435 | fsetpos(fp, &pos); |
| 436 | fread(lap2, sizeof(float), lap_length, fp); |
| 437 | } |
| 438 | #endif |
| 439 | for (k = 0; k < dim; k++) { |
| 440 | right_mult_with_vector_ff(lap2, n, coords[k], tmp_coords); |
| 441 | new_stress -= vectors_inner_productf(n, coords[k], tmp_coords); |
| 442 | } |
| 443 | |
| 444 | #ifdef ALTERNATIVE_STRESS_CALC |
| 445 | { |
| 446 | double mat_stress = new_stress; |
| 447 | double compute_stress(float **coords, float *lap, int dim, |
| 448 | int n); |
| 449 | new_stress = compute_stress(coords, lap2, dim, n); |
| 450 | if (fabs(mat_stress - new_stress) / |
| 451 | min(mat_stress, new_stress) > 0.001) { |
| 452 | fprintf(stderr, |
| 453 | "Diff stress vals: %lf %lf (iteration #%d)\n" , |
| 454 | mat_stress, new_stress, iterations); |
| 455 | } |
| 456 | } |
| 457 | #endif |
| 458 | /* check for convergence */ |
| 459 | converged = |
| 460 | fabs(new_stress - old_stress) / fabs(old_stress + 1e-10) < |
| 461 | Epsilon; |
| 462 | converged = converged || (iterations > 1 |
| 463 | && new_stress > old_stress); |
| 464 | /* in first iteration we allowed stress increase, which |
| 465 | * might result ny imposing constraints |
| 466 | */ |
| 467 | old_stress = new_stress; |
| 468 | |
| 469 | for (k = 0; k < dim; k++) { |
| 470 | /* now we find the optimizer of trace(X'LX)+X'B by solving 'dim' |
| 471 | * system of equations, thereby obtaining the new coordinates. |
| 472 | * If we use the constraints (given by the var's: 'ordering', |
| 473 | * 'levels' and 'num_levels'), we cannot optimize |
| 474 | * trace(X'LX)+X'B by simply solving equations, but we have |
| 475 | * to use a quadratic programming solver |
| 476 | * note: 'lap2' is a packed symmetric matrix, that is its |
| 477 | * upper-triangular part is arranged in a vector row-wise |
| 478 | * also note: 'lap2' is really the negated laplacian (the |
| 479 | * laplacian is -'lap2') |
| 480 | */ |
| 481 | |
| 482 | if (k == 1) { |
| 483 | /* use quad solver in the y-dimension */ |
| 484 | constrained_majorization_new_with_gaps(cMajEnv, b[k], |
| 485 | coords, dim, k, |
| 486 | localConstrMajorIterations, |
| 487 | hierarchy_boundaries, |
| 488 | levels_gap); |
| 489 | |
| 490 | } else { |
| 491 | /* use conjugate gradient for all dimensions except y */ |
| 492 | if (conjugate_gradient_mkernel(lap2, coords[k], b[k], n, |
| 493 | conj_tol, n)) { |
| 494 | iterations = -1; |
| 495 | goto finish; |
| 496 | } |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | free(hierarchy_boundaries); |
| 501 | deleteCMajEnv(cMajEnv); |
| 502 | |
| 503 | if (coords != NULL) { |
| 504 | for (i = 0; i < dim; i++) { |
| 505 | for (j = 0; j < n; j++) { |
| 506 | d_coords[i][j] = coords[i][j]; |
| 507 | } |
| 508 | } |
| 509 | free(coords[0]); |
| 510 | free(coords); |
| 511 | } |
| 512 | |
| 513 | if (b) { |
| 514 | free(b[0]); |
| 515 | free(b); |
| 516 | } |
| 517 | free(tmp_coords); |
| 518 | free(dist_accumulator); |
| 519 | free(degrees); |
| 520 | free(lap2); |
| 521 | |
| 522 | |
| 523 | #ifdef NONCORE |
| 524 | if (n <= max_nodes_in_mem) { |
| 525 | #endif |
| 526 | free(lap1); |
| 527 | #ifdef NONCORE |
| 528 | } |
| 529 | if (fp) |
| 530 | fclose(fp); |
| 531 | #endif |
| 532 | |
| 533 | finish: |
| 534 | free(ordering); |
| 535 | |
| 536 | free(levels); |
| 537 | |
| 538 | if (unpackedLap) { |
| 539 | free(unpackedLap[0]); |
| 540 | free(unpackedLap); |
| 541 | } |
| 542 | return iterations; |
| 543 | } |
| 544 | #endif /* DIGCOLA */ |
| 545 | |