| 1 | /* $Id$ $Revision$ */ | 
|---|
| 2 | /* vim:set shiftwidth=4 ts=8: */ | 
|---|
| 3 |  | 
|---|
| 4 | /************************************************************************* | 
|---|
| 5 | * Copyright (c) 2011 AT&T Intellectual Property | 
|---|
| 6 | * All rights reserved. This program and the accompanying materials | 
|---|
| 7 | * are made available under the terms of the Eclipse Public License v1.0 | 
|---|
| 8 | * which accompanies this distribution, and is available at | 
|---|
| 9 | * http://www.eclipse.org/legal/epl-v10.html | 
|---|
| 10 | * | 
|---|
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ | 
|---|
| 12 | *************************************************************************/ | 
|---|
| 13 |  | 
|---|
| 14 |  | 
|---|
| 15 | #include "config.h" | 
|---|
| 16 |  | 
|---|
| 17 | #include "neato.h" | 
|---|
| 18 | #include "adjust.h" | 
|---|
| 19 |  | 
|---|
| 20 | /* For precision, scale up before algorithms, then scale down */ | 
|---|
| 21 | #define SCALE 10 | 
|---|
| 22 | #define SCALE2 (SCALE/2) | 
|---|
| 23 |  | 
|---|
| 24 | typedef struct nitem { | 
|---|
| 25 | Dtlink_t link; | 
|---|
| 26 | int val; | 
|---|
| 27 | point pos;			/* position for sorting */ | 
|---|
| 28 | node_t *np;			/* base node */ | 
|---|
| 29 | node_t *cnode;		/* corresponding node in constraint graph */ | 
|---|
| 30 | node_t *vnode;		/* corresponding node in neighbor graph */ | 
|---|
| 31 | box bb; | 
|---|
| 32 | } nitem; | 
|---|
| 33 |  | 
|---|
| 34 | typedef int (*distfn) (box *, box *); | 
|---|
| 35 | typedef int (*intersectfn) (nitem *, nitem *); | 
|---|
| 36 |  | 
|---|
| 37 | static int cmpitem(Dt_t * d, int *p1, int *p2, Dtdisc_t * disc) | 
|---|
| 38 | { | 
|---|
| 39 | NOTUSED(d); | 
|---|
| 40 | NOTUSED(disc); | 
|---|
| 41 |  | 
|---|
| 42 | return (*p1 - *p2); | 
|---|
| 43 | } | 
|---|
| 44 |  | 
|---|
| 45 | static Dtdisc_t constr = { | 
|---|
| 46 | offsetof(nitem, val), | 
|---|
| 47 | sizeof(int), | 
|---|
| 48 | offsetof(nitem, link), | 
|---|
| 49 | NIL(Dtmake_f), | 
|---|
| 50 | NIL(Dtfree_f), | 
|---|
| 51 | (Dtcompar_f) cmpitem, | 
|---|
| 52 | NIL(Dthash_f), | 
|---|
| 53 | NIL(Dtmemory_f), | 
|---|
| 54 | NIL(Dtevent_f) | 
|---|
| 55 | }; | 
|---|
| 56 |  | 
|---|
| 57 | static int distY(box * b1, box * b2) | 
|---|
| 58 | { | 
|---|
| 59 | return ((b1->UR.y - b1->LL.y) + (b2->UR.y - b2->LL.y)) / 2; | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | static int distX(box * b1, box * b2) | 
|---|
| 63 | { | 
|---|
| 64 | return ((b1->UR.x - b1->LL.x) + (b2->UR.x - b2->LL.x)) / 2; | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | /* intersectX0: | 
|---|
| 68 | * Return true if boxes could overlap if shifted in y but don't, | 
|---|
| 69 | * or if actually overlap and an y move is smallest to remove overlap. | 
|---|
| 70 | * Otherwise (no x overlap or a x move is smaller), return false. | 
|---|
| 71 | * Assume q pos to above of p pos. | 
|---|
| 72 | */ | 
|---|
| 73 | static int intersectX0(nitem * p, nitem * q) | 
|---|
| 74 | { | 
|---|
| 75 | int xdelta, ydelta; | 
|---|
| 76 | int v = ((p->bb.LL.x <= q->bb.UR.x) && (q->bb.LL.x <= p->bb.UR.x)); | 
|---|
| 77 | if (v == 0)  /* no x overlap */ | 
|---|
| 78 | return 0; | 
|---|
| 79 | if (p->bb.UR.y < q->bb.LL.y) /* but boxes don't really overlap */ | 
|---|
| 80 | return 1; | 
|---|
| 81 | ydelta = distY(&p->bb,&q->bb) - (q->pos.y - p->pos.y); | 
|---|
| 82 | if (q->pos.x >= p->pos.x) | 
|---|
| 83 | xdelta = distX(&p->bb,&q->bb) - (q->pos.x - p->pos.x); | 
|---|
| 84 | else | 
|---|
| 85 | xdelta = distX(&p->bb,&q->bb) - (p->pos.x - q->pos.x); | 
|---|
| 86 | return (ydelta <= xdelta); | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | /* intersectY0: | 
|---|
| 90 | * Return true if boxes could overlap if shifted in x but don't, | 
|---|
| 91 | * or if actually overlap and an x move is smallest to remove overlap. | 
|---|
| 92 | * Otherwise (no y overlap or a y move is smaller), return false. | 
|---|
| 93 | * Assume q pos to right of p pos. | 
|---|
| 94 | */ | 
|---|
| 95 | static int intersectY0(nitem * p, nitem * q) | 
|---|
| 96 | { | 
|---|
| 97 | int xdelta, ydelta; | 
|---|
| 98 | int v = ((p->bb.LL.y <= q->bb.UR.y) && (q->bb.LL.y <= p->bb.UR.y)); | 
|---|
| 99 | if (v == 0)  /* no y overlap */ | 
|---|
| 100 | return 0; | 
|---|
| 101 | if (p->bb.UR.x < q->bb.LL.x) /* but boxes don't really overlap */ | 
|---|
| 102 | return 1; | 
|---|
| 103 | xdelta = distX(&p->bb,&q->bb) - (q->pos.x - p->pos.x); | 
|---|
| 104 | if (q->pos.y >= p->pos.y) | 
|---|
| 105 | ydelta = distY(&p->bb,&q->bb) - (q->pos.y - p->pos.y); | 
|---|
| 106 | else | 
|---|
| 107 | ydelta = distY(&p->bb,&q->bb) - (p->pos.y - q->pos.y); | 
|---|
| 108 | return (xdelta <= ydelta); | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | static int intersectY(nitem * p, nitem * q) | 
|---|
| 112 | { | 
|---|
| 113 | return ((p->bb.LL.y <= q->bb.UR.y) && (q->bb.LL.y <= p->bb.UR.y)); | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | static int intersectX(nitem * p, nitem * q) | 
|---|
| 117 | { | 
|---|
| 118 | return ((p->bb.LL.x <= q->bb.UR.x) && (q->bb.LL.x <= p->bb.UR.x)); | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | /* mapGraphs: | 
|---|
| 122 | */ | 
|---|
| 123 | static void mapGraphs(graph_t * g, graph_t * cg, distfn dist) | 
|---|
| 124 | { | 
|---|
| 125 | node_t *n; | 
|---|
| 126 | edge_t *e; | 
|---|
| 127 | edge_t *ce; | 
|---|
| 128 | node_t *t; | 
|---|
| 129 | node_t *h; | 
|---|
| 130 | nitem *tp; | 
|---|
| 131 | nitem *hp; | 
|---|
| 132 | int delta; | 
|---|
| 133 |  | 
|---|
| 134 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { | 
|---|
| 135 | tp = (nitem *) ND_alg(n); | 
|---|
| 136 | t = tp->cnode; | 
|---|
| 137 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { | 
|---|
| 138 | hp = (nitem *) ND_alg(aghead(e)); | 
|---|
| 139 | delta = dist(&tp->bb, &hp->bb); | 
|---|
| 140 | h = hp->cnode; | 
|---|
| 141 | ce = agedge(cg, t, h, NULL, 1); | 
|---|
| 142 | agbindrec(ce, "Agedgeinfo_t", sizeof(Agedgeinfo_t), TRUE); | 
|---|
| 143 | ED_weight(ce) = 1; | 
|---|
| 144 | if (ED_minlen(ce) < delta) { | 
|---|
| 145 | if (ED_minlen(ce) == 0.0) { | 
|---|
| 146 | elist_append(ce, ND_out(t)); | 
|---|
| 147 | elist_append(ce, ND_in(h)); | 
|---|
| 148 | } | 
|---|
| 149 | ED_minlen(ce) = delta; | 
|---|
| 150 | } | 
|---|
| 151 | } | 
|---|
| 152 | } | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 | #if DEBUG > 1 | 
|---|
| 156 | static int | 
|---|
| 157 | indegree (graph_t * g, node_t *n) | 
|---|
| 158 | { | 
|---|
| 159 | edge_t *e; | 
|---|
| 160 | int cnt = 0; | 
|---|
| 161 | for (e = agfstin(g,n); e; e = agnxtin(g,e)) cnt++; | 
|---|
| 162 | return cnt; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | static int | 
|---|
| 166 | outdegree (graph_t * g, node_t *n) | 
|---|
| 167 | { | 
|---|
| 168 | edge_t *e; | 
|---|
| 169 | int cnt = 0; | 
|---|
| 170 | for (e = agfstout(g,n); e; e = agnxtout(g,e)) cnt++; | 
|---|
| 171 | return cnt; | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 | static void | 
|---|
| 175 | validate(graph_t * g) | 
|---|
| 176 | { | 
|---|
| 177 | node_t *n; | 
|---|
| 178 | edge_t *e; | 
|---|
| 179 | int    i, cnt; | 
|---|
| 180 |  | 
|---|
| 181 | cnt = 0; | 
|---|
| 182 | for (n = GD_nlist(g);n; n = ND_next(n)) { | 
|---|
| 183 | assert(outdegree(g,n) == ND_out(n).size); | 
|---|
| 184 | for (i = 0; (e = ND_out(n).list[i]); i++) { | 
|---|
| 185 | assert(agtail(e) == n); | 
|---|
| 186 | assert( e == agfindedge(g, n, aghead(e))); | 
|---|
| 187 | } | 
|---|
| 188 | assert(indegree(g,n) == ND_in(n).size); | 
|---|
| 189 | for (i = 0; (e = ND_in(n).list[i]); i++) { | 
|---|
| 190 | assert(aghead(e) == n); | 
|---|
| 191 | assert( e == agfindedge(g, agtail(e), n)); | 
|---|
| 192 | } | 
|---|
| 193 | cnt++; | 
|---|
| 194 | } | 
|---|
| 195 |  | 
|---|
| 196 | assert (agnnodes(g) == cnt); | 
|---|
| 197 | } | 
|---|
| 198 | #endif | 
|---|
| 199 |  | 
|---|
| 200 | #ifdef OLD | 
|---|
| 201 | static node_t *newNode(graph_t * g) | 
|---|
| 202 | { | 
|---|
| 203 | static int id = 0; | 
|---|
| 204 | char buf[100]; | 
|---|
| 205 |  | 
|---|
| 206 | sprintf(buf, "n%d", id++); | 
|---|
| 207 | return agnode(g, buf); | 
|---|
| 208 | } | 
|---|
| 209 | #endif | 
|---|
| 210 |  | 
|---|
| 211 | /* mkNConstraintG: | 
|---|
| 212 | * Similar to mkConstraintG, except it doesn't enforce orthogonal | 
|---|
| 213 | * ordering. If there is overlap, as defined by intersect, the | 
|---|
| 214 | * nodes will kept/pushed apart in the current order. If not, no | 
|---|
| 215 | * constraint is enforced. If a constraint edge is added, and it | 
|---|
| 216 | * corresponds to a real edge, we increase the weight in an attempt | 
|---|
| 217 | * to keep the resulting shift short. | 
|---|
| 218 | */ | 
|---|
| 219 | static graph_t *mkNConstraintG(graph_t * g, Dt_t * list, | 
|---|
| 220 | intersectfn intersect, distfn dist) | 
|---|
| 221 | { | 
|---|
| 222 | nitem *p; | 
|---|
| 223 | nitem *nxp; | 
|---|
| 224 | node_t *n; | 
|---|
| 225 | edge_t *e; | 
|---|
| 226 | node_t *lastn = NULL; | 
|---|
| 227 | graph_t *cg = agopen( "cg", Agstrictdirected, NIL(Agdisc_t *)); | 
|---|
| 228 | agbindrec(cg, "Agraphinfo_t", sizeof(Agraphinfo_t), TRUE);  // graph custom data | 
|---|
| 229 |  | 
|---|
| 230 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 231 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 232 | n = agnode(cg, agnameof(p->np), 1);      /* FIX */ | 
|---|
| 233 | agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), TRUE); //node custom data | 
|---|
| 234 | ND_alg(n) = p; | 
|---|
| 235 | p->cnode = n; | 
|---|
| 236 | alloc_elist(0, ND_in(n)); | 
|---|
| 237 | alloc_elist(0, ND_out(n)); | 
|---|
| 238 | if (lastn) { | 
|---|
| 239 | ND_next(lastn) = n; | 
|---|
| 240 | lastn = n; | 
|---|
| 241 | } else { | 
|---|
| 242 | lastn = GD_nlist(cg) = n; | 
|---|
| 243 | } | 
|---|
| 244 | } | 
|---|
| 245 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 246 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 247 | for (nxp = (nitem *) dtlink(link, (Dtlink_t *) p); nxp; | 
|---|
| 248 | nxp = (nitem *) dtlink(list, (Dtlink_t *) nxp)) { | 
|---|
| 249 | e = NULL; | 
|---|
| 250 | if (intersect(p, nxp)) { | 
|---|
| 251 | double delta = dist(&p->bb, &nxp->bb); | 
|---|
| 252 | e = agedge(cg, p->cnode, nxp->cnode, NULL, 1); | 
|---|
| 253 | agbindrec(e, "Agedgeinfo_t", sizeof(Agedgeinfo_t), TRUE);   // edge custom data | 
|---|
| 254 | assert (delta <= 0xFFFF); | 
|---|
| 255 | ED_minlen(e) = delta; | 
|---|
| 256 | ED_weight(e) = 1; | 
|---|
| 257 | } | 
|---|
| 258 | if (e && agfindedge(g,p->np, nxp->np)) { | 
|---|
| 259 | ED_weight(e) = 100; | 
|---|
| 260 | } | 
|---|
| 261 | #if 0 | 
|---|
| 262 | if (agfindedge(g,p->np, nxp->np)) { | 
|---|
| 263 | if (e == NULL) | 
|---|
| 264 | e = agedge(cg, p->cnode, nxp->cnode); | 
|---|
| 265 | ED_weight(e) = 100; | 
|---|
| 266 | /* If minlen < SCALE, the nodes can't conflict or there's | 
|---|
| 267 | * an overlap but it will be removed in the orthogonal pass. | 
|---|
| 268 | * So we just keep the node's basically where they are. | 
|---|
| 269 | */ | 
|---|
| 270 | if (SCALE > ED_minlen(e)) | 
|---|
| 271 | ED_minlen(e) = SCALE; | 
|---|
| 272 | } | 
|---|
| 273 | #endif | 
|---|
| 274 | } | 
|---|
| 275 | } | 
|---|
| 276 |  | 
|---|
| 277 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 278 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 279 | n = p->cnode; | 
|---|
| 280 | for (e = agfstout(cg,n); e; e = agnxtout(cg,e)) { | 
|---|
| 281 | elist_append(e, ND_out(n)); | 
|---|
| 282 | elist_append(e, ND_in(aghead(e))); | 
|---|
| 283 | } | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | /* We could remove redundant constraints here. However, the cost of doing | 
|---|
| 287 | * this may be a good deal more than the time saved in network simplex. | 
|---|
| 288 | * Also, if the graph is changed, the ND_in and ND_out data has to be | 
|---|
| 289 | * updated. | 
|---|
| 290 | */ | 
|---|
| 291 | return cg; | 
|---|
| 292 | } | 
|---|
| 293 | /* mkConstraintG: | 
|---|
| 294 | */ | 
|---|
| 295 | static graph_t *mkConstraintG(graph_t * g, Dt_t * list, | 
|---|
| 296 | intersectfn intersect, distfn dist) | 
|---|
| 297 | { | 
|---|
| 298 | nitem *p; | 
|---|
| 299 | nitem *nxt = NULL; | 
|---|
| 300 | nitem *nxp; | 
|---|
| 301 | graph_t *vg; | 
|---|
| 302 | node_t *prev = NULL; | 
|---|
| 303 | node_t *root = NULL; | 
|---|
| 304 | node_t *n = NULL; | 
|---|
| 305 | edge_t *e; | 
|---|
| 306 | int lcnt, cnt; | 
|---|
| 307 | int oldval = -INT_MAX; | 
|---|
| 308 | #ifdef OLD | 
|---|
| 309 | double root_val; | 
|---|
| 310 | #endif | 
|---|
| 311 | node_t *lastn = NULL; | 
|---|
| 312 | graph_t *cg = agopen( "cg", Agstrictdirected, NIL(Agdisc_t *)); | 
|---|
| 313 | agbindrec(cg, "Agraphinfo_t", sizeof(Agraphinfo_t), TRUE);  // graph custom data | 
|---|
| 314 |  | 
|---|
| 315 | /* count distinct nodes */ | 
|---|
| 316 | cnt = 0; | 
|---|
| 317 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 318 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 319 | if (oldval != p->val) { | 
|---|
| 320 | oldval = p->val; | 
|---|
| 321 | cnt++; | 
|---|
| 322 | } | 
|---|
| 323 | } | 
|---|
| 324 |  | 
|---|
| 325 | /* construct basic chain to enforce left to right order */ | 
|---|
| 326 | oldval = -INT_MAX; | 
|---|
| 327 | lcnt = 0; | 
|---|
| 328 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 329 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 330 | if (oldval != p->val) { | 
|---|
| 331 | oldval = p->val; | 
|---|
| 332 | /* n = newNode (cg); */ | 
|---|
| 333 | n = agnode(cg, agnameof(p->np), 1);	/* FIX */ | 
|---|
| 334 | agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), TRUE); //node custom data | 
|---|
| 335 | ND_alg(n) = p; | 
|---|
| 336 | if (root) { | 
|---|
| 337 | ND_next(lastn) = n; | 
|---|
| 338 | lastn = n; | 
|---|
| 339 | } else { | 
|---|
| 340 | root = n; | 
|---|
| 341 | #ifdef OLD | 
|---|
| 342 | root_val = p->val; | 
|---|
| 343 | #endif | 
|---|
| 344 | lastn = GD_nlist(cg) = n; | 
|---|
| 345 | } | 
|---|
| 346 | alloc_elist(lcnt, ND_in(n)); | 
|---|
| 347 | if (prev) { | 
|---|
| 348 | if (prev == root) | 
|---|
| 349 | alloc_elist(2 * (cnt - 1), ND_out(prev)); | 
|---|
| 350 | else | 
|---|
| 351 | alloc_elist(cnt - lcnt - 1, ND_out(prev)); | 
|---|
| 352 | e = agedge(cg, prev, n, NULL, 1); | 
|---|
| 353 | agbindrec(e, "Agedgeinfo_t", sizeof(Agedgeinfo_t), TRUE);   // edge custom data | 
|---|
| 354 | ED_minlen(e) = SCALE; | 
|---|
| 355 | ED_weight(e) = 1; | 
|---|
| 356 | elist_append(e, ND_out(prev)); | 
|---|
| 357 | elist_append(e, ND_in(n)); | 
|---|
| 358 | } | 
|---|
| 359 | lcnt++; | 
|---|
| 360 | prev = n; | 
|---|
| 361 | } | 
|---|
| 362 | p->cnode = n; | 
|---|
| 363 | } | 
|---|
| 364 | alloc_elist(0, ND_out(prev)); | 
|---|
| 365 |  | 
|---|
| 366 | /* add immediate right neighbor constraints | 
|---|
| 367 | * Construct visibility graph, then perform transitive reduction. | 
|---|
| 368 | * Remaining outedges are immediate right neighbors. | 
|---|
| 369 | * FIX: Incremental algorithm to construct trans. reduction? | 
|---|
| 370 | */ | 
|---|
| 371 | vg = agopen( "vg", Agstrictdirected, NIL(Agdisc_t *)); | 
|---|
| 372 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 373 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 374 | n = agnode(vg, agnameof(p->np), 1);  /* FIX */ | 
|---|
| 375 | agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), TRUE);  //node custom data | 
|---|
| 376 | p->vnode = n; | 
|---|
| 377 | ND_alg(n) = p; | 
|---|
| 378 | } | 
|---|
| 379 | oldval = -INT_MAX; | 
|---|
| 380 | for (p = (nitem *) dtflatten(list); p; | 
|---|
| 381 | p = (nitem *) dtlink(list, (Dtlink_t *) p)) { | 
|---|
| 382 | if (oldval != p->val) {	/* new pos: reset nxt */ | 
|---|
| 383 | oldval = p->val; | 
|---|
| 384 | for (nxt = (nitem *) dtlink(link, (Dtlink_t *) p); nxt; | 
|---|
| 385 | nxt = (nitem *) dtlink(list, (Dtlink_t *) nxt)) { | 
|---|
| 386 | if (nxt->val != oldval) | 
|---|
| 387 | break; | 
|---|
| 388 | } | 
|---|
| 389 | if (!nxt) | 
|---|
| 390 | break; | 
|---|
| 391 | } | 
|---|
| 392 | for (nxp = nxt; nxp; | 
|---|
| 393 | nxp = (nitem *) dtlink(list, (Dtlink_t *) nxp)) { | 
|---|
| 394 | if (intersect(p, nxp)) | 
|---|
| 395 | agedge(vg, p->vnode, nxp->vnode, NULL, 1); | 
|---|
| 396 | } | 
|---|
| 397 | } | 
|---|
| 398 |  | 
|---|
| 399 | /* Remove redundant constraints here. However, the cost of doing this | 
|---|
| 400 | * may be a good deal more than the time saved in network simplex. Also, | 
|---|
| 401 | * if the graph is changed, the ND_in and ND_out data has to be updated. | 
|---|
| 402 | */ | 
|---|
| 403 | mapGraphs(vg, cg, dist); | 
|---|
| 404 | agclose(vg); | 
|---|
| 405 |  | 
|---|
| 406 | /* add dummy constraints for absolute values and initial positions */ | 
|---|
| 407 | #ifdef OLD | 
|---|
| 408 | for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) { | 
|---|
| 409 | node_t *vn;		/* slack node for absolute value */ | 
|---|
| 410 | node_t *an;		/* node representing original position */ | 
|---|
| 411 |  | 
|---|
| 412 | p = (nitem *) ND_alg(n); | 
|---|
| 413 | if ((n == root) || (!p)) | 
|---|
| 414 | continue; | 
|---|
| 415 | vn = newNode(cg); | 
|---|
| 416 | ND_next(lastn) = vn; | 
|---|
| 417 | lastn = vn; | 
|---|
| 418 | alloc_elist(0, ND_out(vn)); | 
|---|
| 419 | alloc_elist(2, ND_in(vn)); | 
|---|
| 420 | an = newNode(cg); | 
|---|
| 421 | ND_next(lastn) = an; | 
|---|
| 422 | lastn = an; | 
|---|
| 423 | alloc_elist(1, ND_in(an)); | 
|---|
| 424 | alloc_elist(1, ND_out(an)); | 
|---|
| 425 |  | 
|---|
| 426 | e = agedge(cg, root, an, 1); | 
|---|
| 427 | ED_minlen(e) = p->val - root_val; | 
|---|
| 428 | elist_append(e, ND_out(root)); | 
|---|
| 429 | elist_append(e, ND_in(an)); | 
|---|
| 430 |  | 
|---|
| 431 | e = agedge(cg, an, vn, 1); | 
|---|
| 432 | elist_append(e, ND_out(an)); | 
|---|
| 433 | elist_append(e, ND_in(vn)); | 
|---|
| 434 |  | 
|---|
| 435 | e = agedge(cg, n, vn, 1); | 
|---|
| 436 | elist_append(e, ND_out(n)); | 
|---|
| 437 | elist_append(e, ND_in(vn)); | 
|---|
| 438 | } | 
|---|
| 439 | #endif  /* OLD */ | 
|---|
| 440 |  | 
|---|
| 441 | return cg; | 
|---|
| 442 | } | 
|---|
| 443 |  | 
|---|
| 444 | static void closeGraph(graph_t * cg) | 
|---|
| 445 | { | 
|---|
| 446 | node_t *n; | 
|---|
| 447 | for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) { | 
|---|
| 448 | free_list(ND_in(n)); | 
|---|
| 449 | free_list(ND_out(n)); | 
|---|
| 450 | } | 
|---|
| 451 | agclose(cg); | 
|---|
| 452 | } | 
|---|
| 453 |  | 
|---|
| 454 | /* constrainX: | 
|---|
| 455 | * Create the X constrains and solve. We use a linear objective function | 
|---|
| 456 | * (absolute values rather than squares), so we can reuse network simplex. | 
|---|
| 457 | * The constraints are encoded as a dag with edges having a minimum length. | 
|---|
| 458 | */ | 
|---|
| 459 | static void constrainX(graph_t* g, nitem* nlist, int nnodes, intersectfn ifn, | 
|---|
| 460 | int ortho) | 
|---|
| 461 | { | 
|---|
| 462 | Dt_t *list = dtopen(&constr, Dtobag); | 
|---|
| 463 | nitem *p = nlist; | 
|---|
| 464 | graph_t *cg; | 
|---|
| 465 | int i; | 
|---|
| 466 |  | 
|---|
| 467 | for (i = 0; i < nnodes; i++) { | 
|---|
| 468 | p->val = p->pos.x; | 
|---|
| 469 | dtinsert(list, p); | 
|---|
| 470 | p++; | 
|---|
| 471 | } | 
|---|
| 472 | if (ortho) | 
|---|
| 473 | cg = mkConstraintG(g, list, ifn, distX); | 
|---|
| 474 | else | 
|---|
| 475 | cg = mkNConstraintG(g, list, ifn, distX); | 
|---|
| 476 | rank(cg, 2, INT_MAX); | 
|---|
| 477 |  | 
|---|
| 478 | p = nlist; | 
|---|
| 479 | for (i = 0; i < nnodes; i++) { | 
|---|
| 480 | int newpos, oldpos, delta; | 
|---|
| 481 | oldpos = p->pos.x; | 
|---|
| 482 | newpos = ND_rank(p->cnode); | 
|---|
| 483 | delta = newpos - oldpos; | 
|---|
| 484 | p->pos.x = newpos; | 
|---|
| 485 | p->bb.LL.x += delta; | 
|---|
| 486 | p->bb.UR.x += delta; | 
|---|
| 487 | p++; | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | closeGraph(cg); | 
|---|
| 491 | dtclose(list); | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | /* constrainY: | 
|---|
| 495 | * See constrainX. | 
|---|
| 496 | */ | 
|---|
| 497 | static void constrainY(graph_t* g, nitem* nlist, int nnodes, intersectfn ifn, | 
|---|
| 498 | int ortho) | 
|---|
| 499 | { | 
|---|
| 500 | Dt_t *list = dtopen(&constr, Dtobag); | 
|---|
| 501 | nitem *p = nlist; | 
|---|
| 502 | graph_t *cg; | 
|---|
| 503 | int i; | 
|---|
| 504 |  | 
|---|
| 505 | for (i = 0; i < nnodes; i++) { | 
|---|
| 506 | p->val = p->pos.y; | 
|---|
| 507 | dtinsert(list, p); | 
|---|
| 508 | p++; | 
|---|
| 509 | } | 
|---|
| 510 | if (ortho) | 
|---|
| 511 | cg = mkConstraintG(g, list, ifn, distY); | 
|---|
| 512 | else | 
|---|
| 513 | cg = mkNConstraintG(g, list, ifn, distY); | 
|---|
| 514 | rank(cg, 2, INT_MAX); | 
|---|
| 515 | #ifdef DEBUG | 
|---|
| 516 | { | 
|---|
| 517 | Agsym_t *mlsym = agattr(cg, AGEDGE, "minlen", ""); | 
|---|
| 518 | Agsym_t *rksym = agattr(cg, AGNODE, "rank", ""); | 
|---|
| 519 | char buf[100]; | 
|---|
| 520 | node_t *n; | 
|---|
| 521 | edge_t *e; | 
|---|
| 522 | for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) { | 
|---|
| 523 | sprintf(buf, "%d", ND_rank(n)); | 
|---|
| 524 | agxset(n, rksym, buf); | 
|---|
| 525 | for (e = agfstedge(cg, n); e; e = agnxtedge(cg, e, n)) { | 
|---|
| 526 | sprintf(buf, "%d", ED_minlen(e)); | 
|---|
| 527 | agxset(e, mlsym, buf); | 
|---|
| 528 | } | 
|---|
| 529 | } | 
|---|
| 530 | } | 
|---|
| 531 | #endif | 
|---|
| 532 |  | 
|---|
| 533 | p = nlist; | 
|---|
| 534 | for (i = 0; i < nnodes; i++) { | 
|---|
| 535 | int newpos, oldpos, delta; | 
|---|
| 536 | oldpos = p->pos.y; | 
|---|
| 537 | newpos = ND_rank(p->cnode); | 
|---|
| 538 | delta = newpos - oldpos; | 
|---|
| 539 | p->pos.y = newpos; | 
|---|
| 540 | p->bb.LL.y += delta; | 
|---|
| 541 | p->bb.UR.y += delta; | 
|---|
| 542 | p++; | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | closeGraph(cg); | 
|---|
| 546 | dtclose(list); | 
|---|
| 547 | } | 
|---|
| 548 |  | 
|---|
| 549 | #define overlap(pb,qb) \ | 
|---|
| 550 | ((pb.LL.x <= qb.UR.x) && (qb.LL.x <= pb.UR.x) && \ | 
|---|
| 551 | (pb.LL.y <= qb.UR.y) && (qb.LL.y <= pb.UR.y)) | 
|---|
| 552 |  | 
|---|
| 553 | /* overlaps: | 
|---|
| 554 | */ | 
|---|
| 555 | static int overlaps(nitem * p, int cnt) | 
|---|
| 556 | { | 
|---|
| 557 | int i, j; | 
|---|
| 558 | nitem *pi = p; | 
|---|
| 559 | nitem *pj; | 
|---|
| 560 |  | 
|---|
| 561 | for (i = 0; i < cnt - 1; i++) { | 
|---|
| 562 | pj = pi + 1; | 
|---|
| 563 | for (j = i + 1; j < cnt; j++) { | 
|---|
| 564 | if (overlap(pi->bb, pj->bb)) | 
|---|
| 565 | return 1; | 
|---|
| 566 | pj++; | 
|---|
| 567 | } | 
|---|
| 568 | pi++; | 
|---|
| 569 | } | 
|---|
| 570 | return 0; | 
|---|
| 571 | } | 
|---|
| 572 |  | 
|---|
| 573 | /* initItem: | 
|---|
| 574 | */ | 
|---|
| 575 | static void initItem(node_t * n, nitem * p, expand_t margin) | 
|---|
| 576 | { | 
|---|
| 577 | int x = POINTS(SCALE * ND_pos(n)[0]); | 
|---|
| 578 | int y = POINTS(SCALE * ND_pos(n)[1]); | 
|---|
| 579 | int w2, h2; | 
|---|
| 580 | box b; | 
|---|
| 581 |  | 
|---|
| 582 | if (margin.doAdd) { | 
|---|
| 583 | w2 = SCALE * (POINTS(ND_width(n)/2.0) + margin.x); | 
|---|
| 584 | h2 = SCALE * (POINTS(ND_height(n)/2.0) + margin.y); | 
|---|
| 585 | } | 
|---|
| 586 | else { | 
|---|
| 587 | w2 = POINTS(margin.x * SCALE2 * ND_width(n)); | 
|---|
| 588 | h2 = POINTS(margin.y * SCALE2 * ND_height(n)); | 
|---|
| 589 | } | 
|---|
| 590 |  | 
|---|
| 591 | b.LL.x = x - w2; | 
|---|
| 592 | b.LL.y = y - h2; | 
|---|
| 593 | b.UR.x = x + w2; | 
|---|
| 594 | b.UR.y = y + h2; | 
|---|
| 595 |  | 
|---|
| 596 | p->pos.x = x; | 
|---|
| 597 | p->pos.y = y; | 
|---|
| 598 | p->np = n; | 
|---|
| 599 | p->bb = b; | 
|---|
| 600 | } | 
|---|
| 601 |  | 
|---|
| 602 | /* cAdjust: | 
|---|
| 603 | * Use optimization to remove overlaps. | 
|---|
| 604 | * Modifications; | 
|---|
| 605 | *  - do y;x then x;y and use the better one | 
|---|
| 606 | *  - for all overlaps (or if overlap with leftmost nodes), add a constraint; | 
|---|
| 607 | *     constraint could move both x and y away, or the smallest, or some | 
|---|
| 608 | *     mixture. | 
|---|
| 609 | *  - follow by a scale down using actual shapes | 
|---|
| 610 | * We use an optimization based on Marriott, Stuckey, Tam and He, | 
|---|
| 611 | * "Removing Node Overlapping in Graph Layout Using Constrained Optimization", | 
|---|
| 612 | * Constraints,8(2):143--172, 2003. | 
|---|
| 613 | * We solve 2 constraint problem, one in X, one in Y. In each dimension, | 
|---|
| 614 | * we require relative positions to remain the same. That is, if two nodes | 
|---|
| 615 | * have the same x originally, they have the same x at the end, and if one | 
|---|
| 616 | * node is to the left of another, it remains to the left. In addition, if | 
|---|
| 617 | * two nodes could overlap by moving their X coordinates, we insert a constraint * to keep the two nodes sufficiently apart. Similarly, for Y. | 
|---|
| 618 | * | 
|---|
| 619 | * mode = AM_ORTHOXY => first X, then Y | 
|---|
| 620 | * mode = AM_ORTHOYX => first Y, then X | 
|---|
| 621 | * mode = AM_ORTHO   => first X, then Y | 
|---|
| 622 | * mode = AM_ORTHO_YX   => first Y, then X | 
|---|
| 623 | * In the last 2 cases, relax the constraints as follows: during the X pass, | 
|---|
| 624 | * if two nodes actually intersect and a smaller move in the Y direction | 
|---|
| 625 | * will remove the overlap, we don't force the nodes apart in the X direction, | 
|---|
| 626 | * but leave it for the Y pass to remove any remaining overlaps. Without this, | 
|---|
| 627 | * the X pass will remove all overlaps, and the Y pass only compresses in the | 
|---|
| 628 | * Y direction, causing a skewing of the aspect ratio. | 
|---|
| 629 | * | 
|---|
| 630 | * mode = AM_ORTHOXY => first X, then Y | 
|---|
| 631 | * mode = AM_ORTHOYX => first Y, then X | 
|---|
| 632 | * mode = AM_ORTHO   => first X, then Y | 
|---|
| 633 | * mode = AM_ORTHO_YX   => first Y, then X | 
|---|
| 634 | */ | 
|---|
| 635 | int cAdjust(graph_t * g, int mode) | 
|---|
| 636 | { | 
|---|
| 637 | expand_t margin; | 
|---|
| 638 | int ret, i, nnodes = agnnodes(g); | 
|---|
| 639 | nitem *nlist = N_GNEW(nnodes, nitem); | 
|---|
| 640 | nitem *p = nlist; | 
|---|
| 641 | node_t *n; | 
|---|
| 642 |  | 
|---|
| 643 | margin = sepFactor (g); | 
|---|
| 644 |  | 
|---|
| 645 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { | 
|---|
| 646 | initItem(n, p, margin); | 
|---|
| 647 | p++; | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | if (overlaps(nlist, nnodes)) { | 
|---|
| 651 | point pt; | 
|---|
| 652 |  | 
|---|
| 653 | switch ((adjust_mode)mode) { | 
|---|
| 654 | case AM_ORTHOXY: | 
|---|
| 655 | constrainX(g, nlist, nnodes, intersectY, 1); | 
|---|
| 656 | constrainY(g, nlist, nnodes, intersectX, 1); | 
|---|
| 657 | break; | 
|---|
| 658 | case AM_ORTHOYX: | 
|---|
| 659 | constrainY(g, nlist, nnodes, intersectX, 1); | 
|---|
| 660 | constrainX(g, nlist, nnodes, intersectY, 1); | 
|---|
| 661 | break; | 
|---|
| 662 | case AM_ORTHO : | 
|---|
| 663 | constrainX(g, nlist, nnodes, intersectY0, 1); | 
|---|
| 664 | constrainY(g, nlist, nnodes, intersectX, 1); | 
|---|
| 665 | case AM_ORTHO_YX : | 
|---|
| 666 | constrainY(g, nlist, nnodes, intersectX0, 1); | 
|---|
| 667 | constrainX(g, nlist, nnodes, intersectY, 1); | 
|---|
| 668 | case AM_PORTHOXY: | 
|---|
| 669 | constrainX(g, nlist, nnodes, intersectY, 0); | 
|---|
| 670 | constrainY(g, nlist, nnodes, intersectX, 0); | 
|---|
| 671 | break; | 
|---|
| 672 | case AM_PORTHOYX: | 
|---|
| 673 | constrainY(g, nlist, nnodes, intersectX, 0); | 
|---|
| 674 | constrainX(g, nlist, nnodes, intersectY, 0); | 
|---|
| 675 | break; | 
|---|
| 676 | case AM_PORTHO_YX : | 
|---|
| 677 | constrainY(g, nlist, nnodes, intersectX0, 0); | 
|---|
| 678 | constrainX(g, nlist, nnodes, intersectY, 0); | 
|---|
| 679 | break; | 
|---|
| 680 | case AM_PORTHO : | 
|---|
| 681 | default : | 
|---|
| 682 | constrainX(g, nlist, nnodes, intersectY0, 0); | 
|---|
| 683 | constrainY(g, nlist, nnodes, intersectX, 0); | 
|---|
| 684 | break; | 
|---|
| 685 | } | 
|---|
| 686 | p = nlist; | 
|---|
| 687 | for (i = 0; i < nnodes; i++) { | 
|---|
| 688 | n = p->np; | 
|---|
| 689 | pt = p->pos; | 
|---|
| 690 | ND_pos(n)[0] = PS2INCH(pt.x) / SCALE; | 
|---|
| 691 | ND_pos(n)[1] = PS2INCH(pt.y) / SCALE; | 
|---|
| 692 | p++; | 
|---|
| 693 | } | 
|---|
| 694 | ret = 1; | 
|---|
| 695 | } | 
|---|
| 696 | else ret = 0; | 
|---|
| 697 | free(nlist); | 
|---|
| 698 | return ret; | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | typedef struct { | 
|---|
| 702 | pointf pos;			/* position for sorting */ | 
|---|
| 703 | boxf bb; | 
|---|
| 704 | double wd2; | 
|---|
| 705 | double ht2; | 
|---|
| 706 | node_t *np; | 
|---|
| 707 | } info; | 
|---|
| 708 |  | 
|---|
| 709 | typedef int (*sortfn_t) (const void *, const void *); | 
|---|
| 710 |  | 
|---|
| 711 | static int sortf(pointf * p, pointf * q) | 
|---|
| 712 | { | 
|---|
| 713 | if (p->x < q->x) | 
|---|
| 714 | return -1; | 
|---|
| 715 | else if (p->x > q->x) | 
|---|
| 716 | return 1; | 
|---|
| 717 | else if (p->y < q->y) | 
|---|
| 718 | return -1; | 
|---|
| 719 | else if (p->y > q->y) | 
|---|
| 720 | return 1; | 
|---|
| 721 | else | 
|---|
| 722 | return 0; | 
|---|
| 723 | } | 
|---|
| 724 |  | 
|---|
| 725 | static double compress(info * nl, int nn) | 
|---|
| 726 | { | 
|---|
| 727 | info *p = nl; | 
|---|
| 728 | info *q; | 
|---|
| 729 | int i, j; | 
|---|
| 730 | double s, sc = 0; | 
|---|
| 731 | pointf pt; | 
|---|
| 732 |  | 
|---|
| 733 | for (i = 0; i < nn; i++) { | 
|---|
| 734 | q = p + 1; | 
|---|
| 735 | for (j = i + 1; j < nn; j++) { | 
|---|
| 736 | if (overlap(p->bb, q->bb)) | 
|---|
| 737 | return 0; | 
|---|
| 738 | if (p->pos.x == q->pos.x) | 
|---|
| 739 | pt.x = HUGE_VAL; | 
|---|
| 740 | else { | 
|---|
| 741 | pt.x = (p->wd2 + q->wd2) / fabs(p->pos.x - q->pos.x); | 
|---|
| 742 | } | 
|---|
| 743 | if (p->pos.y == q->pos.y) | 
|---|
| 744 | pt.y = HUGE_VAL; | 
|---|
| 745 | else { | 
|---|
| 746 | pt.y = (p->ht2 + q->ht2) / fabs(p->pos.y - q->pos.y); | 
|---|
| 747 | } | 
|---|
| 748 | if (pt.y < pt.x) | 
|---|
| 749 | s = pt.y; | 
|---|
| 750 | else | 
|---|
| 751 | s = pt.x; | 
|---|
| 752 | if (s > sc) | 
|---|
| 753 | sc = s; | 
|---|
| 754 | q++; | 
|---|
| 755 | } | 
|---|
| 756 | p++; | 
|---|
| 757 | } | 
|---|
| 758 | return sc; | 
|---|
| 759 | } | 
|---|
| 760 |  | 
|---|
| 761 | static pointf *mkOverlapSet(info * nl, int nn, int *cntp) | 
|---|
| 762 | { | 
|---|
| 763 | info *p = nl; | 
|---|
| 764 | info *q; | 
|---|
| 765 | int sz = nn; | 
|---|
| 766 | pointf *S = N_GNEW(sz + 1, pointf); | 
|---|
| 767 | int i, j; | 
|---|
| 768 | int cnt = 0; | 
|---|
| 769 |  | 
|---|
| 770 | for (i = 0; i < nn; i++) { | 
|---|
| 771 | q = p + 1; | 
|---|
| 772 | for (j = i + 1; j < nn; j++) { | 
|---|
| 773 | if (overlap(p->bb, q->bb)) { | 
|---|
| 774 | pointf pt; | 
|---|
| 775 | if (cnt == sz) { | 
|---|
| 776 | sz += nn; | 
|---|
| 777 | S = RALLOC(sz + 1, S, pointf); | 
|---|
| 778 | } | 
|---|
| 779 | if (p->pos.x == q->pos.x) | 
|---|
| 780 | pt.x = HUGE_VAL; | 
|---|
| 781 | else { | 
|---|
| 782 | pt.x = (p->wd2 + q->wd2) / fabs(p->pos.x - q->pos.x); | 
|---|
| 783 | if (pt.x < 1) | 
|---|
| 784 | pt.x = 1; | 
|---|
| 785 | } | 
|---|
| 786 | if (p->pos.y == q->pos.y) | 
|---|
| 787 | pt.y = HUGE_VAL; | 
|---|
| 788 | else { | 
|---|
| 789 | pt.y = (p->ht2 + q->ht2) / fabs(p->pos.y - q->pos.y); | 
|---|
| 790 | if (pt.y < 1) | 
|---|
| 791 | pt.y = 1; | 
|---|
| 792 | } | 
|---|
| 793 | S[++cnt] = pt; | 
|---|
| 794 | } | 
|---|
| 795 | q++; | 
|---|
| 796 | } | 
|---|
| 797 | p++; | 
|---|
| 798 | } | 
|---|
| 799 |  | 
|---|
| 800 | S = RALLOC(cnt + 1, S, pointf); | 
|---|
| 801 | *cntp = cnt; | 
|---|
| 802 | return S; | 
|---|
| 803 | } | 
|---|
| 804 |  | 
|---|
| 805 | static pointf computeScaleXY(pointf * aarr, int m) | 
|---|
| 806 | { | 
|---|
| 807 | pointf *barr; | 
|---|
| 808 | double cost, bestcost; | 
|---|
| 809 | int k, best = 0; | 
|---|
| 810 | pointf scale; | 
|---|
| 811 |  | 
|---|
| 812 | aarr[0].x = 1; | 
|---|
| 813 | aarr[0].y = HUGE_VAL; | 
|---|
| 814 | qsort(aarr + 1, m, sizeof(pointf), (sortfn_t) sortf); | 
|---|
| 815 |  | 
|---|
| 816 | barr = N_GNEW(m + 1, pointf); | 
|---|
| 817 | barr[m].x = aarr[m].x; | 
|---|
| 818 | barr[m].y = 1; | 
|---|
| 819 | for (k = m - 1; k >= 0; k--) { | 
|---|
| 820 | barr[k].x = aarr[k].x; | 
|---|
| 821 | barr[k].y = MAX(aarr[k + 1].y, barr[k + 1].y); | 
|---|
| 822 | } | 
|---|
| 823 |  | 
|---|
| 824 | bestcost = HUGE_VAL; | 
|---|
| 825 | for (k = 0; k <= m; k++) { | 
|---|
| 826 | cost = barr[k].x * barr[k].y; | 
|---|
| 827 | if (cost < bestcost) { | 
|---|
| 828 | bestcost = cost; | 
|---|
| 829 | best = k; | 
|---|
| 830 | } | 
|---|
| 831 | } | 
|---|
| 832 | assert(bestcost < HUGE_VAL); | 
|---|
| 833 | scale.x = barr[best].x; | 
|---|
| 834 | scale.y = barr[best].y; | 
|---|
| 835 |  | 
|---|
| 836 | return scale; | 
|---|
| 837 | } | 
|---|
| 838 |  | 
|---|
| 839 | /* computeScale: | 
|---|
| 840 | * For each (x,y) in aarr, scale has to be bigger than the smallest one. | 
|---|
| 841 | * So, the scale is the max min. | 
|---|
| 842 | */ | 
|---|
| 843 | static double computeScale(pointf * aarr, int m) | 
|---|
| 844 | { | 
|---|
| 845 | int i; | 
|---|
| 846 | double sc = 0; | 
|---|
| 847 | double v; | 
|---|
| 848 | pointf p; | 
|---|
| 849 |  | 
|---|
| 850 | aarr++; | 
|---|
| 851 | for (i = 1; i <= m; i++) { | 
|---|
| 852 | p = *aarr++; | 
|---|
| 853 | v = MIN(p.x, p.y); | 
|---|
| 854 | if (v > sc) | 
|---|
| 855 | sc = v; | 
|---|
| 856 | } | 
|---|
| 857 | return sc; | 
|---|
| 858 | } | 
|---|
| 859 |  | 
|---|
| 860 | /* scAdjust: | 
|---|
| 861 | * Scale the layout. | 
|---|
| 862 | * equal > 0  => scale uniformly in x and y to remove overlaps | 
|---|
| 863 | * equal = 0  => scale separately in x and y to remove overlaps | 
|---|
| 864 | * equal < 0  => scale down uniformly in x and y to remove excess space | 
|---|
| 865 | * The last assumes there are no overlaps at present. | 
|---|
| 866 | * Based on Marriott, Stuckey, Tam and He, | 
|---|
| 867 | * "Removing Node Overlapping in Graph Layout Using Constrained Optimization", | 
|---|
| 868 | * Constraints,8(2):143--172, 2003. | 
|---|
| 869 | */ | 
|---|
| 870 | int scAdjust(graph_t * g, int equal) | 
|---|
| 871 | { | 
|---|
| 872 | int nnodes = agnnodes(g); | 
|---|
| 873 | info *nlist = N_GNEW(nnodes, info); | 
|---|
| 874 | info *p = nlist; | 
|---|
| 875 | node_t *n; | 
|---|
| 876 | pointf s; | 
|---|
| 877 | int i; | 
|---|
| 878 | expand_t margin; | 
|---|
| 879 | pointf *aarr; | 
|---|
| 880 | int m; | 
|---|
| 881 |  | 
|---|
| 882 | margin = sepFactor (g); | 
|---|
| 883 | if (margin.doAdd) { | 
|---|
| 884 | /* we use inches below */ | 
|---|
| 885 | margin.x = PS2INCH(margin.x); | 
|---|
| 886 | margin.y = PS2INCH(margin.y); | 
|---|
| 887 | } | 
|---|
| 888 |  | 
|---|
| 889 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { | 
|---|
| 890 | double w2, h2; | 
|---|
| 891 | if (margin.doAdd) { | 
|---|
| 892 | w2 = (ND_width(n) / 2.0) + margin.x; | 
|---|
| 893 | h2 = (ND_height(n) / 2.0) + margin.y; | 
|---|
| 894 | } | 
|---|
| 895 | else { | 
|---|
| 896 | w2 = margin.x * ND_width(n) / 2.0; | 
|---|
| 897 | h2 = margin.y * ND_height(n) / 2.0; | 
|---|
| 898 | } | 
|---|
| 899 | p->pos.x = ND_pos(n)[0]; | 
|---|
| 900 | p->pos.y = ND_pos(n)[1]; | 
|---|
| 901 | p->bb.LL.x = p->pos.x - w2; | 
|---|
| 902 | p->bb.LL.y = p->pos.y - h2; | 
|---|
| 903 | p->bb.UR.x = p->pos.x + w2; | 
|---|
| 904 | p->bb.UR.y = p->pos.y + h2; | 
|---|
| 905 | p->wd2 = w2; | 
|---|
| 906 | p->ht2 = h2; | 
|---|
| 907 | p->np = n; | 
|---|
| 908 | p++; | 
|---|
| 909 | } | 
|---|
| 910 |  | 
|---|
| 911 | if (equal < 0) { | 
|---|
| 912 | s.x = s.y = compress(nlist, nnodes); | 
|---|
| 913 | if (s.x == 0) {		/* overlaps exist */ | 
|---|
| 914 | free(nlist); | 
|---|
| 915 | return 0; | 
|---|
| 916 | } | 
|---|
| 917 | if (Verbose) fprintf(stderr, "compress %g \n", s.x); | 
|---|
| 918 | } else { | 
|---|
| 919 | aarr = mkOverlapSet(nlist, nnodes, &m); | 
|---|
| 920 |  | 
|---|
| 921 | if (m == 0) {		/* no overlaps */ | 
|---|
| 922 | free(aarr); | 
|---|
| 923 | free(nlist); | 
|---|
| 924 | return 0; | 
|---|
| 925 | } | 
|---|
| 926 |  | 
|---|
| 927 | if (equal) { | 
|---|
| 928 | s.x = s.y = computeScale(aarr, m); | 
|---|
| 929 | } else { | 
|---|
| 930 | s = computeScaleXY(aarr, m); | 
|---|
| 931 | } | 
|---|
| 932 | free(aarr); | 
|---|
| 933 | if (Verbose) fprintf(stderr, "scale by %g,%g \n", s.x, s.y); | 
|---|
| 934 | } | 
|---|
| 935 |  | 
|---|
| 936 | p = nlist; | 
|---|
| 937 | for (i = 0; i < nnodes; i++) { | 
|---|
| 938 | ND_pos(p->np)[0] = s.x * p->pos.x; | 
|---|
| 939 | ND_pos(p->np)[1] = s.y * p->pos.y; | 
|---|
| 940 | p++; | 
|---|
| 941 | } | 
|---|
| 942 |  | 
|---|
| 943 | free(nlist); | 
|---|
| 944 | return 1; | 
|---|
| 945 | } | 
|---|
| 946 |  | 
|---|