| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "config.h" |
| 15 | |
| 16 | #include <stdio.h> |
| 17 | #include <stdlib.h> |
| 18 | #include <string.h> |
| 19 | #include <math.h> |
| 20 | #include "cgraph.h" /* for agerr() and friends */ |
| 21 | #include "delaunay.h" |
| 22 | #include "memory.h" |
| 23 | #include "logic.h" |
| 24 | |
| 25 | #if HAVE_GTS |
| 26 | #include <gts.h> |
| 27 | |
| 28 | static gboolean triangle_is_hole(GtsTriangle * t) |
| 29 | { |
| 30 | GtsEdge *e1, *e2, *e3; |
| 31 | GtsVertex *v1, *v2, *v3; |
| 32 | gboolean ret; |
| 33 | |
| 34 | gts_triangle_vertices_edges(t, NULL, &v1, &v2, &v3, &e1, &e2, &e3); |
| 35 | |
| 36 | if ((GTS_IS_CONSTRAINT(e1) && GTS_SEGMENT(e1)->v1 != v1) || |
| 37 | (GTS_IS_CONSTRAINT(e2) && GTS_SEGMENT(e2)->v1 != v2) || |
| 38 | (GTS_IS_CONSTRAINT(e3) && GTS_SEGMENT(e3)->v1 != v3)) |
| 39 | ret = TRUE; |
| 40 | else ret = FALSE; |
| 41 | return ret; |
| 42 | } |
| 43 | |
| 44 | static guint delaunay_remove_holes(GtsSurface * surface) |
| 45 | { |
| 46 | return gts_surface_foreach_face_remove(surface, |
| 47 | (GtsFunc) triangle_is_hole, NULL); |
| 48 | } |
| 49 | |
| 50 | /* Derived classes for vertices and faces so we can assign integer ids |
| 51 | * to make it easier to identify them. In particular, this allows the |
| 52 | * segments and faces to refer to vertices using the order in which |
| 53 | * they were passed in. |
| 54 | */ |
| 55 | typedef struct { |
| 56 | GtsVertex v; |
| 57 | int idx; |
| 58 | } GVertex; |
| 59 | |
| 60 | typedef struct { |
| 61 | GtsVertexClass parent_class; |
| 62 | } GVertexClass; |
| 63 | |
| 64 | static GVertexClass *g_vertex_class(void) |
| 65 | { |
| 66 | static GVertexClass *klass = NULL; |
| 67 | |
| 68 | if (klass == NULL) { |
| 69 | GtsObjectClassInfo vertex_info = { |
| 70 | "GVertex" , |
| 71 | sizeof(GVertex), |
| 72 | sizeof(GVertexClass), |
| 73 | (GtsObjectClassInitFunc) NULL, |
| 74 | (GtsObjectInitFunc) NULL, |
| 75 | (GtsArgSetFunc) NULL, |
| 76 | (GtsArgGetFunc) NULL |
| 77 | }; |
| 78 | klass = gts_object_class_new(GTS_OBJECT_CLASS(gts_vertex_class()), |
| 79 | &vertex_info); |
| 80 | } |
| 81 | |
| 82 | return klass; |
| 83 | } |
| 84 | |
| 85 | typedef struct { |
| 86 | GtsFace v; |
| 87 | int idx; |
| 88 | } GFace; |
| 89 | |
| 90 | typedef struct { |
| 91 | GtsFaceClass parent_class; |
| 92 | } GFaceClass; |
| 93 | |
| 94 | static GFaceClass *g_face_class(void) |
| 95 | { |
| 96 | static GFaceClass *klass = NULL; |
| 97 | |
| 98 | if (klass == NULL) { |
| 99 | GtsObjectClassInfo face_info = { |
| 100 | "GFace" , |
| 101 | sizeof(GFace), |
| 102 | sizeof(GFaceClass), |
| 103 | (GtsObjectClassInitFunc) NULL, |
| 104 | (GtsObjectInitFunc) NULL, |
| 105 | (GtsArgSetFunc) NULL, |
| 106 | (GtsArgGetFunc) NULL |
| 107 | }; |
| 108 | klass = gts_object_class_new(GTS_OBJECT_CLASS(gts_face_class()), |
| 109 | &face_info); |
| 110 | } |
| 111 | |
| 112 | return klass; |
| 113 | } |
| 114 | |
| 115 | /* destroy: |
| 116 | * Destroy each edge using v, then destroy v |
| 117 | */ |
| 118 | static void |
| 119 | destroy (GtsVertex* v) |
| 120 | { |
| 121 | GSList * i; |
| 122 | |
| 123 | i = v->segments; |
| 124 | while (i) { |
| 125 | GSList * next = i->next; |
| 126 | gts_object_destroy (i->data); |
| 127 | i = next; |
| 128 | } |
| 129 | g_assert (v->segments == NULL); |
| 130 | gts_object_destroy(GTS_OBJECT(v)); |
| 131 | } |
| 132 | |
| 133 | /* tri: |
| 134 | * Main entry point to using GTS for triangulation. |
| 135 | * Input is npt points with x and y coordinates stored either separately |
| 136 | * in x[] and y[] (sepArr != 0) or consecutively in x[] (sepArr == 0). |
| 137 | * Optionally, the input can include nsegs line segments, whose endpoint |
| 138 | * indices are supplied in segs[2*i] and segs[2*i+1] yielding a constrained |
| 139 | * triangulation. |
| 140 | * |
| 141 | * The return value is the corresponding gts surface, which can be queries for |
| 142 | * the triangles and line segments composing the triangulation. |
| 143 | */ |
| 144 | static GtsSurface* |
| 145 | tri(double *x, double *y, int npt, int *segs, int nsegs, int sepArr) |
| 146 | { |
| 147 | int i; |
| 148 | GtsSurface *surface; |
| 149 | GVertex **vertices = N_GNEW(npt, GVertex *); |
| 150 | GtsEdge **edges = N_GNEW(nsegs, GtsEdge*); |
| 151 | GSList *list = NULL; |
| 152 | GtsVertex *v1, *v2, *v3; |
| 153 | GtsTriangle *t; |
| 154 | GtsVertexClass *vcl = (GtsVertexClass *) g_vertex_class(); |
| 155 | GtsEdgeClass *ecl = GTS_EDGE_CLASS (gts_constraint_class ()); |
| 156 | |
| 157 | if (sepArr) { |
| 158 | for (i = 0; i < npt; i++) { |
| 159 | GVertex *p = (GVertex *) gts_vertex_new(vcl, x[i], y[i], 0); |
| 160 | p->idx = i; |
| 161 | vertices[i] = p; |
| 162 | } |
| 163 | } |
| 164 | else { |
| 165 | for (i = 0; i < npt; i++) { |
| 166 | GVertex *p = (GVertex *) gts_vertex_new(vcl, x[2*i], x[2*i+1], 0); |
| 167 | p->idx = i; |
| 168 | vertices[i] = p; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | /* N.B. Edges need to be created here, presumably before the |
| 173 | * the vertices are added to the face. In particular, they cannot |
| 174 | * be added created and added vi gts_delaunay_add_constraint() below. |
| 175 | */ |
| 176 | for (i = 0; i < nsegs; i++) { |
| 177 | edges[i] = gts_edge_new(ecl, |
| 178 | (GtsVertex *) (vertices[ segs[ 2 * i]]), |
| 179 | (GtsVertex *) (vertices[ segs[ 2 * i + 1]])); |
| 180 | } |
| 181 | |
| 182 | for (i = 0; i < npt; i++) |
| 183 | list = g_slist_prepend(list, vertices[i]); |
| 184 | t = gts_triangle_enclosing(gts_triangle_class(), list, 100.); |
| 185 | g_slist_free(list); |
| 186 | |
| 187 | gts_triangle_vertices(t, &v1, &v2, &v3); |
| 188 | |
| 189 | surface = gts_surface_new(gts_surface_class(), |
| 190 | (GtsFaceClass *) g_face_class(), |
| 191 | gts_edge_class(), |
| 192 | gts_vertex_class()); |
| 193 | gts_surface_add_face(surface, gts_face_new(gts_face_class(), |
| 194 | t->e1, t->e2, t->e3)); |
| 195 | |
| 196 | for (i = 0; i < npt; i++) { |
| 197 | GtsVertex *v1 = (GtsVertex *) vertices[i]; |
| 198 | GtsVertex *v = gts_delaunay_add_vertex(surface, v1, NULL); |
| 199 | |
| 200 | /* if v != NULL, it is a previously added pt with the same |
| 201 | * coordinates as v1, in which case we replace v1 with v |
| 202 | */ |
| 203 | if (v) { |
| 204 | /* agerr (AGWARN, "Duplicate point %d %d\n", i, ((GVertex*)v)->idx); */ |
| 205 | gts_vertex_replace (v1, v); |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | for (i = 0; i < nsegs; i++) { |
| 210 | gts_delaunay_add_constraint(surface,GTS_CONSTRAINT(edges[i])); |
| 211 | } |
| 212 | |
| 213 | /* destroy enclosing triangle */ |
| 214 | gts_allow_floating_vertices = TRUE; |
| 215 | gts_allow_floating_edges = TRUE; |
| 216 | /* |
| 217 | gts_object_destroy(GTS_OBJECT(v1)); |
| 218 | gts_object_destroy(GTS_OBJECT(v2)); |
| 219 | gts_object_destroy(GTS_OBJECT(v3)); |
| 220 | */ |
| 221 | destroy(v1); |
| 222 | destroy(v2); |
| 223 | destroy(v3); |
| 224 | gts_allow_floating_edges = FALSE; |
| 225 | gts_allow_floating_vertices = FALSE; |
| 226 | |
| 227 | if (nsegs) |
| 228 | delaunay_remove_holes(surface); |
| 229 | |
| 230 | free (edges); |
| 231 | free(vertices); |
| 232 | return surface; |
| 233 | } |
| 234 | |
| 235 | typedef struct { |
| 236 | int n; |
| 237 | v_data *delaunay; |
| 238 | } estats; |
| 239 | |
| 240 | static void cnt_edge (GtsSegment * e, estats* sp) |
| 241 | { |
| 242 | sp->n++; |
| 243 | if (sp->delaunay) { |
| 244 | sp->delaunay[((GVertex*)(e->v1))->idx].nedges++; |
| 245 | sp->delaunay[((GVertex*)(e->v2))->idx].nedges++; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | static void |
| 250 | edgeStats (GtsSurface* s, estats* sp) |
| 251 | { |
| 252 | gts_surface_foreach_edge (s, (GtsFunc) cnt_edge, sp); |
| 253 | } |
| 254 | |
| 255 | static void add_edge (GtsSegment * e, v_data* delaunay) |
| 256 | { |
| 257 | int source = ((GVertex*)(e->v1))->idx; |
| 258 | int dest = ((GVertex*)(e->v2))->idx; |
| 259 | |
| 260 | delaunay[source].edges[delaunay[source].nedges++] = dest; |
| 261 | delaunay[dest].edges[delaunay[dest].nedges++] = source; |
| 262 | } |
| 263 | |
| 264 | v_data *delaunay_triangulation(double *x, double *y, int n) |
| 265 | { |
| 266 | v_data *delaunay; |
| 267 | GtsSurface* s = tri(x, y, n, NULL, 0, 1); |
| 268 | int i, nedges; |
| 269 | int* edges; |
| 270 | estats stats; |
| 271 | |
| 272 | if (!s) return NULL; |
| 273 | |
| 274 | delaunay = N_GNEW(n, v_data); |
| 275 | |
| 276 | for (i = 0; i < n; i++) { |
| 277 | delaunay[i].ewgts = NULL; |
| 278 | delaunay[i].nedges = 1; |
| 279 | } |
| 280 | |
| 281 | stats.n = 0; |
| 282 | stats.delaunay = delaunay; |
| 283 | edgeStats (s, &stats); |
| 284 | nedges = stats.n; |
| 285 | edges = N_GNEW(2 * nedges + n, int); |
| 286 | |
| 287 | for (i = 0; i < n; i++) { |
| 288 | delaunay[i].edges = edges; |
| 289 | edges += delaunay[i].nedges; |
| 290 | delaunay[i].edges[0] = i; |
| 291 | delaunay[i].nedges = 1; |
| 292 | } |
| 293 | gts_surface_foreach_edge (s, (GtsFunc) add_edge, delaunay); |
| 294 | |
| 295 | gts_object_destroy (GTS_OBJECT (s)); |
| 296 | |
| 297 | return delaunay; |
| 298 | } |
| 299 | |
| 300 | typedef struct { |
| 301 | int n; |
| 302 | int* edges; |
| 303 | } estate; |
| 304 | |
| 305 | static void addEdge (GtsSegment * e, estate* es) |
| 306 | { |
| 307 | int source = ((GVertex*)(e->v1))->idx; |
| 308 | int dest = ((GVertex*)(e->v2))->idx; |
| 309 | |
| 310 | es->edges[2*(es->n)] = source; |
| 311 | es->edges[2*(es->n)+1] = dest; |
| 312 | es->n += 1; |
| 313 | } |
| 314 | |
| 315 | /* If qsort_r ever becomes standardized, this should be used |
| 316 | * instead of having a global variable. |
| 317 | */ |
| 318 | static double* _vals; |
| 319 | typedef int (*qsort_cmpf) (const void *, const void *); |
| 320 | |
| 321 | static int |
| 322 | vcmp (int* a, int* b) |
| 323 | { |
| 324 | double va = _vals[*a]; |
| 325 | double vb = _vals[*b]; |
| 326 | |
| 327 | if (va < vb) return -1; |
| 328 | else if (va > vb) return 1; |
| 329 | else return 0; |
| 330 | } |
| 331 | |
| 332 | /* delaunay_tri: |
| 333 | * Given n points whose coordinates are in the x[] and y[] |
| 334 | * arrays, compute a Delaunay triangulation of the points. |
| 335 | * The number of edges in the triangulation is returned in pnedges. |
| 336 | * The return value itself is an array e of 2*(*pnedges) integers, |
| 337 | * with edge i having points whose indices are e[2*i] and e[2*i+1]. |
| 338 | * |
| 339 | * If the points are collinear, GTS fails with 0 edges. |
| 340 | * In this case, we sort the points by x coordinates (or y coordinates |
| 341 | * if the points form a vertical line). We then return a "triangulation" |
| 342 | * consisting of the n-1 pairs of adjacent points. |
| 343 | */ |
| 344 | int *delaunay_tri(double *x, double *y, int n, int* pnedges) |
| 345 | { |
| 346 | GtsSurface* s = tri(x, y, n, NULL, 0, 1); |
| 347 | int nedges; |
| 348 | int* edges; |
| 349 | estats stats; |
| 350 | estate state; |
| 351 | |
| 352 | if (!s) return NULL; |
| 353 | |
| 354 | stats.n = 0; |
| 355 | stats.delaunay = NULL; |
| 356 | edgeStats (s, &stats); |
| 357 | *pnedges = nedges = stats.n; |
| 358 | |
| 359 | if (nedges) { |
| 360 | edges = N_GNEW(2 * nedges, int); |
| 361 | state.n = 0; |
| 362 | state.edges = edges; |
| 363 | gts_surface_foreach_edge (s, (GtsFunc) addEdge, &state); |
| 364 | } |
| 365 | else { |
| 366 | int* vs = N_GNEW(n, int); |
| 367 | int* ip; |
| 368 | int i, hd, tl; |
| 369 | |
| 370 | *pnedges = nedges = n-1; |
| 371 | ip = edges = N_GNEW(2 * nedges, int); |
| 372 | |
| 373 | for (i = 0; i < n; i++) |
| 374 | vs[i] = i; |
| 375 | |
| 376 | if (x[0] == x[1]) /* vertical line */ |
| 377 | _vals = y; |
| 378 | else |
| 379 | _vals = x; |
| 380 | qsort (vs, n, sizeof(int), (qsort_cmpf)vcmp); |
| 381 | |
| 382 | tl = vs[0]; |
| 383 | for (i = 1; i < n; i++) { |
| 384 | hd = vs[i]; |
| 385 | *ip++ = tl; |
| 386 | *ip++ = hd; |
| 387 | tl = hd; |
| 388 | } |
| 389 | |
| 390 | free (vs); |
| 391 | } |
| 392 | |
| 393 | gts_object_destroy (GTS_OBJECT (s)); |
| 394 | |
| 395 | return edges; |
| 396 | } |
| 397 | |
| 398 | static void cntFace (GFace* fp, int* ip) |
| 399 | { |
| 400 | fp->idx = *ip; |
| 401 | *ip += 1; |
| 402 | } |
| 403 | |
| 404 | typedef struct { |
| 405 | GtsSurface* s; |
| 406 | int* faces; |
| 407 | int* neigh; |
| 408 | } fstate; |
| 409 | |
| 410 | typedef struct { |
| 411 | int nneigh; |
| 412 | int* neigh; |
| 413 | } ninfo; |
| 414 | |
| 415 | static void addNeighbor (GFace* f, ninfo* es) |
| 416 | { |
| 417 | es->neigh[es->nneigh] = f->idx; |
| 418 | es->nneigh++; |
| 419 | } |
| 420 | |
| 421 | static void addFace (GFace* f, fstate* es) |
| 422 | { |
| 423 | int i, myid = f->idx; |
| 424 | int* ip = es->faces + 3*myid; |
| 425 | int* neigh = es->neigh + 3*myid; |
| 426 | ninfo ni; |
| 427 | GtsVertex *v1, *v2, *v3; |
| 428 | |
| 429 | gts_triangle_vertices (&f->v.triangle, &v1, &v2, &v3); |
| 430 | *ip++ = ((GVertex*)(v1))->idx; |
| 431 | *ip++ = ((GVertex*)(v2))->idx; |
| 432 | *ip++ = ((GVertex*)(v3))->idx; |
| 433 | |
| 434 | ni.nneigh = 0; |
| 435 | ni.neigh = neigh; |
| 436 | gts_face_foreach_neighbor ((GtsFace*)f, 0, (GtsFunc) addNeighbor, &ni); |
| 437 | for (i = ni.nneigh; i < 3; i++) |
| 438 | neigh[i] = -1; |
| 439 | } |
| 440 | |
| 441 | static void addTri (GFace* f, fstate* es) |
| 442 | { |
| 443 | int myid = f->idx; |
| 444 | int* ip = es->faces + 3*myid; |
| 445 | GtsVertex *v1, *v2, *v3; |
| 446 | |
| 447 | gts_triangle_vertices (&f->v.triangle, &v1, &v2, &v3); |
| 448 | *ip++ = ((GVertex*)(v1))->idx; |
| 449 | *ip++ = ((GVertex*)(v2))->idx; |
| 450 | *ip++ = ((GVertex*)(v3))->idx; |
| 451 | } |
| 452 | |
| 453 | /* mkSurface: |
| 454 | * Given n points whose coordinates are in x[] and y[], and nsegs line |
| 455 | * segments whose end point indices are given in segs, return a surface |
| 456 | * corresponding the constrained Delaunay triangulation. |
| 457 | * The surface records the line segments, the triangles, and the neighboring |
| 458 | * triangles. |
| 459 | */ |
| 460 | surface_t* |
| 461 | mkSurface (double *x, double *y, int n, int* segs, int nsegs) |
| 462 | { |
| 463 | GtsSurface* s = tri(x, y, n, segs, nsegs, 1); |
| 464 | estats stats; |
| 465 | estate state; |
| 466 | fstate statf; |
| 467 | surface_t* sf; |
| 468 | int nfaces = 0; |
| 469 | int* faces; |
| 470 | int* neigh; |
| 471 | |
| 472 | if (!s) return NULL; |
| 473 | |
| 474 | sf = GNEW(surface_t); |
| 475 | stats.n = 0; |
| 476 | stats.delaunay = NULL; |
| 477 | edgeStats (s, &stats); |
| 478 | nsegs = stats.n; |
| 479 | segs = N_GNEW(2 * nsegs, int); |
| 480 | |
| 481 | state.n = 0; |
| 482 | state.edges = segs; |
| 483 | gts_surface_foreach_edge (s, (GtsFunc) addEdge, &state); |
| 484 | |
| 485 | gts_surface_foreach_face (s, (GtsFunc) cntFace, &nfaces); |
| 486 | |
| 487 | faces = N_GNEW(3 * nfaces, int); |
| 488 | neigh = N_GNEW(3 * nfaces, int); |
| 489 | |
| 490 | statf.faces = faces; |
| 491 | statf.neigh = neigh; |
| 492 | gts_surface_foreach_face (s, (GtsFunc) addFace, &statf); |
| 493 | |
| 494 | sf->nedges = nsegs; |
| 495 | sf->edges = segs; |
| 496 | sf->nfaces = nfaces; |
| 497 | sf->faces = faces; |
| 498 | sf->neigh = neigh; |
| 499 | |
| 500 | gts_object_destroy (GTS_OBJECT (s)); |
| 501 | |
| 502 | return sf; |
| 503 | } |
| 504 | |
| 505 | /* get_triangles: |
| 506 | * Given n points whose coordinates are stored as (x[2*i],x[2*i+1]), |
| 507 | * compute a Delaunay triangulation of the points. |
| 508 | * The number of triangles in the triangulation is returned in tris. |
| 509 | * The return value t is an array of 3*(*tris) integers, |
| 510 | * with triangle i having points whose indices are t[3*i], t[3*i+1] and t[3*i+2]. |
| 511 | */ |
| 512 | int* |
| 513 | get_triangles (double *x, int n, int* tris) |
| 514 | { |
| 515 | GtsSurface* s; |
| 516 | int nfaces = 0; |
| 517 | fstate statf; |
| 518 | |
| 519 | if (n <= 2) return NULL; |
| 520 | |
| 521 | s = tri(x, NULL, n, NULL, 0, 0); |
| 522 | if (!s) return NULL; |
| 523 | |
| 524 | gts_surface_foreach_face (s, (GtsFunc) cntFace, &nfaces); |
| 525 | statf.faces = N_GNEW(3 * nfaces, int); |
| 526 | gts_surface_foreach_face (s, (GtsFunc) addTri, &statf); |
| 527 | |
| 528 | gts_object_destroy (GTS_OBJECT (s)); |
| 529 | |
| 530 | *tris = nfaces; |
| 531 | return statf.faces; |
| 532 | } |
| 533 | |
| 534 | void |
| 535 | freeSurface (surface_t* s) |
| 536 | { |
| 537 | free (s->edges); |
| 538 | free (s->faces); |
| 539 | free (s->neigh); |
| 540 | } |
| 541 | #elif HAVE_TRIANGLE |
| 542 | #define TRILIBRARY |
| 543 | #include "triangle.c" |
| 544 | #include "assert.h" |
| 545 | #include "general.h" |
| 546 | |
| 547 | int* |
| 548 | get_triangles (double *x, int n, int* tris) |
| 549 | { |
| 550 | struct triangulateio in, mid, vorout; |
| 551 | int i; |
| 552 | |
| 553 | if (n <= 2) return NULL; |
| 554 | |
| 555 | in.numberofpoints = n; |
| 556 | in.numberofpointattributes = 0; |
| 557 | in.pointlist = (REAL *) N_GNEW(in.numberofpoints * 2, REAL); |
| 558 | |
| 559 | for (i = 0; i < n; i++){ |
| 560 | in.pointlist[i*2] = x[i*2]; |
| 561 | in.pointlist[i*2 + 1] = x[i*2 + 1]; |
| 562 | } |
| 563 | in.pointattributelist = NULL; |
| 564 | in.pointmarkerlist = NULL; |
| 565 | in.numberofsegments = 0; |
| 566 | in.numberofholes = 0; |
| 567 | in.numberofregions = 0; |
| 568 | in.regionlist = NULL; |
| 569 | mid.pointlist = (REAL *) NULL; /* Not needed if -N switch used. */ |
| 570 | mid.pointattributelist = (REAL *) NULL; |
| 571 | mid.pointmarkerlist = (int *) NULL; /* Not needed if -N or -B switch used. */ |
| 572 | mid.trianglelist = (int *) NULL; /* Not needed if -E switch used. */ |
| 573 | mid.triangleattributelist = (REAL *) NULL; |
| 574 | mid.neighborlist = (int *) NULL; /* Needed only if -n switch used. */ |
| 575 | mid.segmentlist = (int *) NULL; |
| 576 | mid.segmentmarkerlist = (int *) NULL; |
| 577 | mid.edgelist = (int *) NULL; /* Needed only if -e switch used. */ |
| 578 | mid.edgemarkerlist = (int *) NULL; /* Needed if -e used and -B not used. */ |
| 579 | vorout.pointlist = (REAL *) NULL; /* Needed only if -v switch used. */ |
| 580 | vorout.pointattributelist = (REAL *) NULL; |
| 581 | vorout.edgelist = (int *) NULL; /* Needed only if -v switch used. */ |
| 582 | vorout.normlist = (REAL *) NULL; /* Needed only if -v switch used. */ |
| 583 | |
| 584 | /* Triangulate the points. Switches are chosen to read and write a */ |
| 585 | /* PSLG (p), preserve the convex hull (c), number everything from */ |
| 586 | /* zero (z), assign a regional attribute to each element (A), and */ |
| 587 | /* produce an edge list (e), a Voronoi diagram (v), and a triangle */ |
| 588 | /* neighbor list (n). */ |
| 589 | |
| 590 | triangulate("Qenv" , &in, &mid, &vorout); |
| 591 | assert (mid.numberofcorners == 3); |
| 592 | |
| 593 | *tris = mid.numberoftriangles; |
| 594 | |
| 595 | FREE(in.pointlist); |
| 596 | FREE(in.pointattributelist); |
| 597 | FREE(in.pointmarkerlist); |
| 598 | FREE(in.regionlist); |
| 599 | FREE(mid.pointlist); |
| 600 | FREE(mid.pointattributelist); |
| 601 | FREE(mid.pointmarkerlist); |
| 602 | FREE(mid.triangleattributelist); |
| 603 | FREE(mid.neighborlist); |
| 604 | FREE(mid.segmentlist); |
| 605 | FREE(mid.segmentmarkerlist); |
| 606 | FREE(mid.edgelist); |
| 607 | FREE(mid.edgemarkerlist); |
| 608 | FREE(vorout.pointlist); |
| 609 | FREE(vorout.pointattributelist); |
| 610 | FREE(vorout.edgelist); |
| 611 | FREE(vorout.normlist); |
| 612 | |
| 613 | return mid.trianglelist; |
| 614 | } |
| 615 | |
| 616 | // maybe it should be replaced by RNG - relative neighborhood graph, or by GG - gabriel graph |
| 617 | int* |
| 618 | delaunay_tri (double *x, double *y, int n, int* nedges) |
| 619 | { |
| 620 | struct triangulateio in, out; |
| 621 | int i; |
| 622 | |
| 623 | in.pointlist = N_GNEW(2 * n, REAL); |
| 624 | for (i = 0; i < n; i++) { |
| 625 | in.pointlist[2 * i] = x[i]; |
| 626 | in.pointlist[2 * i + 1] = y[i]; |
| 627 | } |
| 628 | |
| 629 | in.pointattributelist = NULL; |
| 630 | in.pointmarkerlist = NULL; |
| 631 | in.numberofpoints = n; |
| 632 | in.numberofpointattributes = 0; |
| 633 | in.trianglearealist = NULL; |
| 634 | in.triangleattributelist = NULL; |
| 635 | in.numberoftriangleattributes = 0; |
| 636 | in.neighborlist = NULL; |
| 637 | in.segmentlist = NULL; |
| 638 | in.segmentmarkerlist = NULL; |
| 639 | in.holelist = NULL; |
| 640 | in.numberofholes = 0; |
| 641 | in.regionlist = NULL; |
| 642 | in.edgelist = NULL; |
| 643 | in.edgemarkerlist = NULL; |
| 644 | in.normlist = NULL; |
| 645 | |
| 646 | out.pointattributelist = NULL; |
| 647 | out.pointmarkerlist = NULL; |
| 648 | out.numberofpoints = n; |
| 649 | out.numberofpointattributes = 0; |
| 650 | out.trianglearealist = NULL; |
| 651 | out.triangleattributelist = NULL; |
| 652 | out.numberoftriangleattributes = 0; |
| 653 | out.neighborlist = NULL; |
| 654 | out.segmentlist = NULL; |
| 655 | out.segmentmarkerlist = NULL; |
| 656 | out.holelist = NULL; |
| 657 | out.numberofholes = 0; |
| 658 | out.regionlist = NULL; |
| 659 | out.edgelist = NULL; |
| 660 | out.edgemarkerlist = NULL; |
| 661 | out.normlist = NULL; |
| 662 | |
| 663 | triangulate("zQNEeB" , &in, &out, NULL); |
| 664 | |
| 665 | *nedges = out.numberofedges; |
| 666 | free (in.pointlist); |
| 667 | free (in.pointattributelist); |
| 668 | free (in.pointmarkerlist); |
| 669 | free (in.trianglearealist); |
| 670 | free (in.triangleattributelist); |
| 671 | free (in.neighborlist); |
| 672 | free (in.segmentlist); |
| 673 | free (in.segmentmarkerlist); |
| 674 | free (in.holelist); |
| 675 | free (in.regionlist); |
| 676 | free (in.edgemarkerlist); |
| 677 | free (in.normlist); |
| 678 | free (out.pointattributelist); |
| 679 | free (out.pointmarkerlist); |
| 680 | free (out.trianglearealist); |
| 681 | free (out.triangleattributelist); |
| 682 | free (out.neighborlist); |
| 683 | free (out.segmentlist); |
| 684 | free (out.segmentmarkerlist); |
| 685 | free (out.holelist); |
| 686 | free (out.regionlist); |
| 687 | free (out.edgemarkerlist); |
| 688 | free (out.normlist); |
| 689 | return out.edgelist; |
| 690 | } |
| 691 | |
| 692 | v_data *delaunay_triangulation(double *x, double *y, int n) |
| 693 | { |
| 694 | v_data *delaunay; |
| 695 | int nedges; |
| 696 | int *edges; |
| 697 | int source, dest; |
| 698 | int* edgelist = delaunay_tri (x, y, n, &nedges); |
| 699 | int i; |
| 700 | |
| 701 | delaunay = N_GNEW(n, v_data); |
| 702 | edges = N_GNEW(2 * nedges + n, int); |
| 703 | |
| 704 | for (i = 0; i < n; i++) { |
| 705 | delaunay[i].ewgts = NULL; |
| 706 | delaunay[i].nedges = 1; |
| 707 | } |
| 708 | |
| 709 | for (i = 0; i < 2 * nedges; i++) |
| 710 | delaunay[edgelist[i]].nedges++; |
| 711 | |
| 712 | for (i = 0; i < n; i++) { |
| 713 | delaunay[i].edges = edges; |
| 714 | edges += delaunay[i].nedges; |
| 715 | delaunay[i].edges[0] = i; |
| 716 | delaunay[i].nedges = 1; |
| 717 | } |
| 718 | for (i = 0; i < nedges; i++) { |
| 719 | source = edgelist[2 * i]; |
| 720 | dest = edgelist[2 * i + 1]; |
| 721 | delaunay[source].edges[delaunay[source].nedges++] = dest; |
| 722 | delaunay[dest].edges[delaunay[dest].nedges++] = source; |
| 723 | } |
| 724 | |
| 725 | free(edgelist); |
| 726 | return delaunay; |
| 727 | } |
| 728 | |
| 729 | surface_t* |
| 730 | mkSurface (double *x, double *y, int n, int* segs, int nsegs) |
| 731 | { |
| 732 | agerr (AGERR, "mkSurface not yet implemented using Triangle library\n" ); |
| 733 | assert (0); |
| 734 | return 0; |
| 735 | } |
| 736 | void |
| 737 | freeSurface (surface_t* s) |
| 738 | { |
| 739 | agerr (AGERR, "freeSurface not yet implemented using Triangle library\n" ); |
| 740 | assert (0); |
| 741 | } |
| 742 | #else |
| 743 | static char* err = "Graphviz built without any triangulation library\n" ; |
| 744 | int* get_triangles (double *x, int n, int* tris) |
| 745 | { |
| 746 | agerr(AGERR, "get_triangles: %s\n" , err); |
| 747 | return 0; |
| 748 | } |
| 749 | v_data *delaunay_triangulation(double *x, double *y, int n) |
| 750 | { |
| 751 | agerr(AGERR, "delaunay_triangulation: %s\n" , err); |
| 752 | return 0; |
| 753 | } |
| 754 | int *delaunay_tri(double *x, double *y, int n, int* nedges) |
| 755 | { |
| 756 | agerr(AGERR, "delaunay_tri: %s\n" , err); |
| 757 | return 0; |
| 758 | } |
| 759 | surface_t* |
| 760 | mkSurface (double *x, double *y, int n, int* segs, int nsegs) |
| 761 | { |
| 762 | agerr(AGERR, "mkSurface: %s\n" , err); |
| 763 | return 0; |
| 764 | } |
| 765 | void |
| 766 | freeSurface (surface_t* s) |
| 767 | { |
| 768 | agerr (AGERR, "freeSurface: %s\n" , err); |
| 769 | } |
| 770 | #endif |
| 771 | |
| 772 | static void remove_edge(v_data * graph, int source, int dest) |
| 773 | { |
| 774 | int i; |
| 775 | for (i = 1; i < graph[source].nedges; i++) { |
| 776 | if (graph[source].edges[i] == dest) { |
| 777 | graph[source].edges[i] = |
| 778 | graph[source].edges[--graph[source].nedges]; |
| 779 | break; |
| 780 | } |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | v_data *UG_graph(double *x, double *y, int n, int accurate_computation) |
| 785 | { |
| 786 | v_data *delaunay; |
| 787 | int i; |
| 788 | double dist_ij, dist_ik, dist_jk, x_i, y_i, x_j, y_j; |
| 789 | int j, k, neighbor_j, neighbor_k; |
| 790 | int removed; |
| 791 | |
| 792 | if (n == 2) { |
| 793 | int *edges = N_GNEW(4, int); |
| 794 | delaunay = N_GNEW(n, v_data); |
| 795 | delaunay[0].ewgts = NULL; |
| 796 | delaunay[0].edges = edges; |
| 797 | delaunay[0].nedges = 2; |
| 798 | delaunay[0].edges[0] = 0; |
| 799 | delaunay[0].edges[1] = 1; |
| 800 | delaunay[1].edges = edges + 2; |
| 801 | delaunay[1].ewgts = NULL; |
| 802 | delaunay[1].nedges = 2; |
| 803 | delaunay[1].edges[0] = 1; |
| 804 | delaunay[1].edges[1] = 0; |
| 805 | return delaunay; |
| 806 | } else if (n == 1) { |
| 807 | int *edges = N_GNEW(1, int); |
| 808 | delaunay = N_GNEW(n, v_data); |
| 809 | delaunay[0].ewgts = NULL; |
| 810 | delaunay[0].edges = edges; |
| 811 | delaunay[0].nedges = 1; |
| 812 | delaunay[0].edges[0] = 0; |
| 813 | return delaunay; |
| 814 | } |
| 815 | |
| 816 | delaunay = delaunay_triangulation(x, y, n); |
| 817 | |
| 818 | if (accurate_computation) { |
| 819 | for (i = 0; i < n; i++) { |
| 820 | x_i = x[i]; |
| 821 | y_i = y[i]; |
| 822 | for (j = 1; j < delaunay[i].nedges;) { |
| 823 | neighbor_j = delaunay[i].edges[j]; |
| 824 | if (neighbor_j < i) { |
| 825 | j++; |
| 826 | continue; |
| 827 | } |
| 828 | x_j = x[neighbor_j]; |
| 829 | y_j = y[neighbor_j]; |
| 830 | dist_ij = |
| 831 | (x_j - x_i) * (x_j - x_i) + (y_j - y_i) * (y_j - y_i); |
| 832 | removed = FALSE; |
| 833 | for (k = 0; k < n && !removed; k++) { |
| 834 | dist_ik = |
| 835 | (x[k] - x_i) * (x[k] - x_i) + (y[k] - |
| 836 | y_i) * (y[k] - y_i); |
| 837 | if (dist_ik < dist_ij) { |
| 838 | dist_jk = |
| 839 | (x[k] - x_j) * (x[k] - x_j) + (y[k] - |
| 840 | y_j) * (y[k] - |
| 841 | y_j); |
| 842 | if (dist_jk < dist_ij) { |
| 843 | // remove the edge beteween i and neighbor j |
| 844 | delaunay[i].edges[j] = |
| 845 | delaunay[i].edges[--delaunay[i].nedges]; |
| 846 | remove_edge(delaunay, neighbor_j, i); |
| 847 | removed = TRUE; |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | if (!removed) { |
| 852 | j++; |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | } else { |
| 857 | // remove all edges v-u if there is w, neighbor of u or v, that is closer to both u and v than dist(u,v) |
| 858 | for (i = 0; i < n; i++) { |
| 859 | x_i = x[i]; |
| 860 | y_i = y[i]; |
| 861 | for (j = 1; j < delaunay[i].nedges;) { |
| 862 | neighbor_j = delaunay[i].edges[j]; |
| 863 | x_j = x[neighbor_j]; |
| 864 | y_j = y[neighbor_j]; |
| 865 | dist_ij = |
| 866 | (x_j - x_i) * (x_j - x_i) + (y_j - y_i) * (y_j - y_i); |
| 867 | // now look at i'th neighbors to see whether there is a node in the "forbidden region" |
| 868 | // we will also go through neighbor_j's neighbors when we traverse the edge from its other side |
| 869 | removed = FALSE; |
| 870 | for (k = 1; k < delaunay[i].nedges && !removed; k++) { |
| 871 | neighbor_k = delaunay[i].edges[k]; |
| 872 | dist_ik = |
| 873 | (x[neighbor_k] - x_i) * (x[neighbor_k] - x_i) + |
| 874 | (y[neighbor_k] - y_i) * (y[neighbor_k] - y_i); |
| 875 | if (dist_ik < dist_ij) { |
| 876 | dist_jk = |
| 877 | (x[neighbor_k] - x_j) * (x[neighbor_k] - x_j) + |
| 878 | (y[neighbor_k] - y_j) * (y[neighbor_k] - y_j); |
| 879 | if (dist_jk < dist_ij) { |
| 880 | // remove the edge beteween i and neighbor j |
| 881 | delaunay[i].edges[j] = |
| 882 | delaunay[i].edges[--delaunay[i].nedges]; |
| 883 | remove_edge(delaunay, neighbor_j, i); |
| 884 | removed = TRUE; |
| 885 | } |
| 886 | } |
| 887 | } |
| 888 | if (!removed) { |
| 889 | j++; |
| 890 | } |
| 891 | } |
| 892 | } |
| 893 | } |
| 894 | return delaunay; |
| 895 | } |
| 896 | |
| 897 | void freeGraph (v_data * graph) |
| 898 | { |
| 899 | if (graph != NULL) { |
| 900 | if (graph[0].edges != NULL) |
| 901 | free(graph[0].edges); |
| 902 | if (graph[0].ewgts != NULL) |
| 903 | free(graph[0].ewgts); |
| 904 | free(graph); |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | void freeGraphData(vtx_data * graph) |
| 909 | { |
| 910 | if (graph != NULL) { |
| 911 | if (graph[0].edges != NULL) |
| 912 | free(graph[0].edges); |
| 913 | if (graph[0].ewgts != NULL) |
| 914 | free(graph[0].ewgts); |
| 915 | #ifdef USE_STYLES |
| 916 | if (graph[0].styles != NULL) |
| 917 | free(graph[0].styles); |
| 918 | #endif |
| 919 | #ifdef DIGCOLA |
| 920 | if (graph[0].edists != NULL) |
| 921 | free(graph[0].edists); |
| 922 | #endif |
| 923 | free(graph); |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | |