| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /****************************************** |
| 16 | |
| 17 | Dijkstra algorithm |
| 18 | Computes single-source distances for |
| 19 | weighted graphs |
| 20 | |
| 21 | ******************************************/ |
| 22 | |
| 23 | |
| 24 | #include "bfs.h" |
| 25 | #include "dijkstra.h" |
| 26 | #include <limits.h> |
| 27 | #include <stdlib.h> |
| 28 | /* #include <math.h> */ |
| 29 | |
| 30 | #define MAX_DIST (double)INT_MAX |
| 31 | |
| 32 | typedef DistType Word; |
| 33 | |
| 34 | #define LOOP while(TRUE) |
| 35 | |
| 36 | /* This heap class is suited to the Dijkstra alg. |
| 37 | data[i]=vertexNum <==> index[vertexNum]=i |
| 38 | */ |
| 39 | |
| 40 | #define left(i) (2*(i)) |
| 41 | #define right(i) (2*(i)+1) |
| 42 | #define parent(i) ((i)/2) |
| 43 | #define insideHeap(h,i) ((i)<h->heapSize) |
| 44 | #define greaterPriority(h,i,j,dist) (dist[h->data[i]]<dist[h->data[j]]) |
| 45 | #define assign(h,i,j,index) {h->data[i]=h->data[j]; index[h->data[i]]=i;} |
| 46 | #define exchange(h,i,j,index) {int temp; \ |
| 47 | temp=h->data[i]; \ |
| 48 | h->data[i]=h->data[j]; \ |
| 49 | h->data[j]=temp; \ |
| 50 | index[h->data[i]]=i; \ |
| 51 | index[h->data[j]]=j; \ |
| 52 | } |
| 53 | |
| 54 | typedef struct { |
| 55 | int *data; |
| 56 | int heapSize; |
| 57 | } heap; |
| 58 | |
| 59 | static void heapify(heap * h, int i, int index[], Word dist[]) |
| 60 | { |
| 61 | int l, r, largest; |
| 62 | while (1) { |
| 63 | l = left(i); |
| 64 | r = right(i); |
| 65 | if (insideHeap(h, l) && greaterPriority(h, l, i, dist)) |
| 66 | largest = l; |
| 67 | else |
| 68 | largest = i; |
| 69 | if (insideHeap(h, r) && greaterPriority(h, r, largest, dist)) |
| 70 | largest = r; |
| 71 | |
| 72 | if (largest == i) |
| 73 | break; |
| 74 | |
| 75 | exchange(h, largest, i, index); |
| 76 | i = largest; |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | #ifdef OBSOLETE |
| 81 | /* originally, the code called mkHeap to allocate space, then |
| 82 | * initHeap to realloc the space. This is silly. |
| 83 | * Now we just call initHeap. |
| 84 | */ |
| 85 | static void mkHeap(heap * h, int size) |
| 86 | { |
| 87 | h->data = N_GNEW(size, int); |
| 88 | h->heapSize = 0; |
| 89 | } |
| 90 | #endif |
| 91 | |
| 92 | static void freeHeap(heap * h) |
| 93 | { |
| 94 | if (h->data) free(h->data); |
| 95 | } |
| 96 | |
| 97 | static void |
| 98 | initHeap(heap * h, int startVertex, int index[], Word dist[], int n) |
| 99 | { |
| 100 | int i, count; |
| 101 | int j; /* We cannot use an unsigned value in this loop */ |
| 102 | /* h->data=(int*) realloc(h->data, (n-1)*sizeof(int)); */ |
| 103 | if (n == 1) h->data = NULL; |
| 104 | else h->data = N_GNEW(n - 1, int); |
| 105 | h->heapSize = n - 1; |
| 106 | |
| 107 | for (count = 0, i = 0; i < n; i++) |
| 108 | if (i != startVertex) { |
| 109 | h->data[count] = i; |
| 110 | index[i] = count; |
| 111 | count++; |
| 112 | } |
| 113 | |
| 114 | for (j = (n - 1) / 2; j >= 0; j--) |
| 115 | heapify(h, j, index, dist); |
| 116 | } |
| 117 | |
| 118 | static boolean (heap * h, int *max, int index[], Word dist[]) |
| 119 | { |
| 120 | if (h->heapSize == 0) |
| 121 | return FALSE; |
| 122 | |
| 123 | *max = h->data[0]; |
| 124 | h->data[0] = h->data[h->heapSize - 1]; |
| 125 | index[h->data[0]] = 0; |
| 126 | h->heapSize--; |
| 127 | heapify(h, 0, index, dist); |
| 128 | |
| 129 | return TRUE; |
| 130 | } |
| 131 | |
| 132 | static void |
| 133 | increaseKey(heap * h, int increasedVertex, Word newDist, int index[], |
| 134 | Word dist[]) |
| 135 | { |
| 136 | int placeInHeap; |
| 137 | int i; |
| 138 | |
| 139 | if (dist[increasedVertex] <= newDist) |
| 140 | return; |
| 141 | |
| 142 | placeInHeap = index[increasedVertex]; |
| 143 | |
| 144 | dist[increasedVertex] = newDist; |
| 145 | |
| 146 | i = placeInHeap; |
| 147 | while (i > 0 && dist[h->data[parent(i)]] > newDist) { /* can write here: greaterPriority(i,parent(i),dist) */ |
| 148 | assign(h, i, parent(i), index); |
| 149 | i = parent(i); |
| 150 | } |
| 151 | h->data[i] = increasedVertex; |
| 152 | index[increasedVertex] = i; |
| 153 | } |
| 154 | |
| 155 | void dijkstra(int vertex, vtx_data * graph, int n, DistType * dist) |
| 156 | { |
| 157 | int i; |
| 158 | heap H; |
| 159 | int closestVertex, neighbor; |
| 160 | DistType closestDist, prevClosestDist = INT_MAX; |
| 161 | static int *index; |
| 162 | |
| 163 | #ifdef OBSOLETE |
| 164 | mkHeap(&H, n); |
| 165 | #endif |
| 166 | index = (int *) realloc(index, n * sizeof(int)); |
| 167 | |
| 168 | /* initial distances with edge weights: */ |
| 169 | for (i = 0; i < n; i++) |
| 170 | dist[i] = (DistType) MAX_DIST; |
| 171 | dist[vertex] = 0; |
| 172 | for (i = 1; i < graph[vertex].nedges; i++) |
| 173 | dist[graph[vertex].edges[i]] = (DistType) graph[vertex].ewgts[i]; |
| 174 | |
| 175 | initHeap(&H, vertex, index, dist, n); |
| 176 | |
| 177 | while (extractMax(&H, &closestVertex, index, dist)) { |
| 178 | closestDist = dist[closestVertex]; |
| 179 | if (closestDist == MAX_DIST) |
| 180 | break; |
| 181 | for (i = 1; i < graph[closestVertex].nedges; i++) { |
| 182 | neighbor = graph[closestVertex].edges[i]; |
| 183 | increaseKey(&H, neighbor, |
| 184 | closestDist + |
| 185 | (DistType) graph[closestVertex].ewgts[i], index, |
| 186 | dist); |
| 187 | } |
| 188 | prevClosestDist = closestDist; |
| 189 | } |
| 190 | |
| 191 | /* For dealing with disconnected graphs: */ |
| 192 | for (i = 0; i < n; i++) |
| 193 | if (dist[i] == MAX_DIST) /* 'i' is not connected to 'vertex' */ |
| 194 | dist[i] = prevClosestDist + 10; |
| 195 | freeHeap(&H); |
| 196 | } |
| 197 | |
| 198 | /* Dijkstra bounded to nodes in *unweighted* radius */ |
| 199 | int |
| 200 | dijkstra_bounded(int vertex, vtx_data * graph, int n, DistType * dist, |
| 201 | int bound, int *visited_nodes) |
| 202 | /* make dijkstra, but consider only nodes whose *unweighted* distance from 'vertex' */ |
| 203 | /* is at most 'bound' */ |
| 204 | /* MON-EFFICIENT implementation, see below. */ |
| 205 | { |
| 206 | int num_visited_nodes; |
| 207 | int i; |
| 208 | static boolean *node_in_neighborhood = NULL; |
| 209 | static int size = 0; |
| 210 | static int *index; |
| 211 | Queue Q; |
| 212 | heap H; |
| 213 | int closestVertex, neighbor; |
| 214 | DistType closestDist; |
| 215 | int num_found = 0; |
| 216 | |
| 217 | /* first, perform BFS to find the nodes in the region */ |
| 218 | mkQueue(&Q, n); |
| 219 | /* remember that dist should be init. with -1's */ |
| 220 | for (i = 0; i < n; i++) { |
| 221 | dist[i] = -1; /* far, TOO COSTLY (O(n))! */ |
| 222 | } |
| 223 | num_visited_nodes = |
| 224 | bfs_bounded(vertex, graph, n, dist, &Q, bound, visited_nodes); |
| 225 | if (size < n) { |
| 226 | node_in_neighborhood = |
| 227 | (boolean *) realloc(node_in_neighborhood, n * sizeof(boolean)); |
| 228 | for (i = size; i < n; i++) { |
| 229 | node_in_neighborhood[i] = FALSE; |
| 230 | } |
| 231 | size = n; |
| 232 | } |
| 233 | for (i = 0; i < num_visited_nodes; i++) { |
| 234 | node_in_neighborhood[visited_nodes[i]] = TRUE; |
| 235 | } |
| 236 | |
| 237 | |
| 238 | #ifdef OBSOLETE |
| 239 | mkHeap(&H, n); |
| 240 | #endif |
| 241 | index = (int *) realloc(index, n * sizeof(int)); |
| 242 | |
| 243 | /* initial distances with edge weights: */ |
| 244 | for (i = 0; i < n; i++) /* far, TOO COSTLY (O(n))! */ |
| 245 | dist[i] = (DistType) MAX_DIST; |
| 246 | dist[vertex] = 0; |
| 247 | for (i = 1; i < graph[vertex].nedges; i++) |
| 248 | dist[graph[vertex].edges[i]] = (DistType) graph[vertex].ewgts[i]; |
| 249 | |
| 250 | /* again, TOO COSTLY (O(n)) to put all nodes in heap! */ |
| 251 | initHeap(&H, vertex, index, dist, n); |
| 252 | |
| 253 | while (num_found < num_visited_nodes |
| 254 | && extractMax(&H, &closestVertex, index, dist)) { |
| 255 | if (node_in_neighborhood[closestVertex]) { |
| 256 | num_found++; |
| 257 | } |
| 258 | closestDist = dist[closestVertex]; |
| 259 | if (closestDist == MAX_DIST) |
| 260 | break; |
| 261 | for (i = 1; i < graph[closestVertex].nedges; i++) { |
| 262 | neighbor = graph[closestVertex].edges[i]; |
| 263 | increaseKey(&H, neighbor, |
| 264 | closestDist + |
| 265 | (DistType) graph[closestVertex].ewgts[i], index, |
| 266 | dist); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /* restore initial false-status of 'node_in_neighborhood' */ |
| 271 | for (i = 0; i < num_visited_nodes; i++) { |
| 272 | node_in_neighborhood[visited_nodes[i]] = FALSE; |
| 273 | } |
| 274 | freeHeap(&H); |
| 275 | freeQueue(&Q); |
| 276 | return num_visited_nodes; |
| 277 | } |
| 278 | |
| 279 | static void heapify_f(heap * h, int i, int index[], float dist[]) |
| 280 | { |
| 281 | int l, r, largest; |
| 282 | while (1) { |
| 283 | l = left(i); |
| 284 | r = right(i); |
| 285 | if (insideHeap(h, l) && greaterPriority(h, l, i, dist)) |
| 286 | largest = l; |
| 287 | else |
| 288 | largest = i; |
| 289 | if (insideHeap(h, r) && greaterPriority(h, r, largest, dist)) |
| 290 | largest = r; |
| 291 | |
| 292 | if (largest == i) |
| 293 | break; |
| 294 | |
| 295 | exchange(h, largest, i, index); |
| 296 | i = largest; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | static void |
| 301 | initHeap_f(heap * h, int startVertex, int index[], float dist[], int n) |
| 302 | { |
| 303 | int i, count; |
| 304 | int j; /* We cannot use an unsigned value in this loop */ |
| 305 | h->data = N_GNEW(n - 1, int); |
| 306 | h->heapSize = n - 1; |
| 307 | |
| 308 | for (count = 0, i = 0; i < n; i++) |
| 309 | if (i != startVertex) { |
| 310 | h->data[count] = i; |
| 311 | index[i] = count; |
| 312 | count++; |
| 313 | } |
| 314 | |
| 315 | for (j = (n - 1) / 2; j >= 0; j--) |
| 316 | heapify_f(h, j, index, dist); |
| 317 | } |
| 318 | |
| 319 | static boolean (heap * h, int *max, int index[], float dist[]) |
| 320 | { |
| 321 | if (h->heapSize == 0) |
| 322 | return FALSE; |
| 323 | |
| 324 | *max = h->data[0]; |
| 325 | h->data[0] = h->data[h->heapSize - 1]; |
| 326 | index[h->data[0]] = 0; |
| 327 | h->heapSize--; |
| 328 | heapify_f(h, 0, index, dist); |
| 329 | |
| 330 | return TRUE; |
| 331 | } |
| 332 | |
| 333 | static void |
| 334 | increaseKey_f(heap * h, int increasedVertex, float newDist, int index[], |
| 335 | float dist[]) |
| 336 | { |
| 337 | int placeInHeap; |
| 338 | int i; |
| 339 | |
| 340 | if (dist[increasedVertex] <= newDist) |
| 341 | return; |
| 342 | |
| 343 | placeInHeap = index[increasedVertex]; |
| 344 | |
| 345 | dist[increasedVertex] = newDist; |
| 346 | |
| 347 | i = placeInHeap; |
| 348 | while (i > 0 && dist[h->data[parent(i)]] > newDist) { /* can write here: greaterPriority(i,parent(i),dist) */ |
| 349 | assign(h, i, parent(i), index); |
| 350 | i = parent(i); |
| 351 | } |
| 352 | h->data[i] = increasedVertex; |
| 353 | index[increasedVertex] = i; |
| 354 | } |
| 355 | |
| 356 | /* dijkstra_f: |
| 357 | * Weighted shortest paths from vertex. |
| 358 | * Assume graph is connected. |
| 359 | */ |
| 360 | void dijkstra_f(int vertex, vtx_data * graph, int n, float *dist) |
| 361 | { |
| 362 | int i; |
| 363 | heap H; |
| 364 | int closestVertex = 0, neighbor; |
| 365 | float closestDist; |
| 366 | int *index; |
| 367 | |
| 368 | #ifdef OBSOLETE |
| 369 | mkHeap(&H, n); |
| 370 | #endif |
| 371 | index = N_GNEW(n, int); |
| 372 | |
| 373 | /* initial distances with edge weights: */ |
| 374 | for (i = 0; i < n; i++) |
| 375 | dist[i] = MAXFLOAT; |
| 376 | dist[vertex] = 0; |
| 377 | for (i = 1; i < graph[vertex].nedges; i++) |
| 378 | dist[graph[vertex].edges[i]] = graph[vertex].ewgts[i]; |
| 379 | |
| 380 | initHeap_f(&H, vertex, index, dist, n); |
| 381 | |
| 382 | while (extractMax_f(&H, &closestVertex, index, dist)) { |
| 383 | closestDist = dist[closestVertex]; |
| 384 | if (closestDist == MAXFLOAT) |
| 385 | break; |
| 386 | for (i = 1; i < graph[closestVertex].nedges; i++) { |
| 387 | neighbor = graph[closestVertex].edges[i]; |
| 388 | increaseKey_f(&H, neighbor, |
| 389 | closestDist + graph[closestVertex].ewgts[i], |
| 390 | index, dist); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | freeHeap(&H); |
| 395 | free(index); |
| 396 | } |
| 397 | |