| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /************************************************ |
| 16 | |
| 17 | Functions for computing the high-dimensional |
| 18 | embedding and the PCA projection. |
| 19 | |
| 20 | ************************************************/ |
| 21 | |
| 22 | |
| 23 | #include "dijkstra.h" |
| 24 | #include "bfs.h" |
| 25 | #include "kkutils.h" |
| 26 | #include "embed_graph.h" |
| 27 | #include <stdlib.h> |
| 28 | #include <stdio.h> |
| 29 | #include <time.h> |
| 30 | /* #include <math.h> */ |
| 31 | |
| 32 | void embed_graph(vtx_data * graph, int n, int dim, DistType *** Coords, |
| 33 | int reweight_graph) |
| 34 | { |
| 35 | /* Compute 'dim'-dimensional high-dimensional embedding (HDE) for the 'n' nodes |
| 36 | The embedding is based on chossing 'dim' pivots, and associating each |
| 37 | coordinate with a unique pivot, assigning it to the graph-theoretic distances |
| 38 | of all nodes from the pivots |
| 39 | */ |
| 40 | |
| 41 | int i, j; |
| 42 | int node; |
| 43 | DistType *storage = N_GNEW(n * dim, DistType); |
| 44 | DistType **coords = *Coords; |
| 45 | DistType *dist = N_GNEW(n, DistType); /* this vector stores the distances of |
| 46 | each nodes to the selected "pivots" */ |
| 47 | float *old_weights = graph[0].ewgts; |
| 48 | Queue Q; |
| 49 | DistType max_dist = 0; |
| 50 | |
| 51 | if (coords != NULL) { |
| 52 | free(coords[0]); |
| 53 | free(coords); |
| 54 | } |
| 55 | |
| 56 | /* this matrix stores the distance between each node and each "pivot" */ |
| 57 | *Coords = coords = N_GNEW(dim, DistType *); |
| 58 | for (i = 0; i < dim; i++) |
| 59 | coords[i] = storage + i * n; |
| 60 | |
| 61 | if (reweight_graph) { |
| 62 | compute_new_weights(graph, n); |
| 63 | } |
| 64 | |
| 65 | /* select the first pivot */ |
| 66 | node = rand() % n; |
| 67 | |
| 68 | mkQueue(&Q, n); |
| 69 | if (reweight_graph) { |
| 70 | dijkstra(node, graph, n, coords[0]); |
| 71 | } else { |
| 72 | bfs(node, graph, n, coords[0], &Q); |
| 73 | } |
| 74 | |
| 75 | for (i = 0; i < n; i++) { |
| 76 | dist[i] = coords[0][i]; |
| 77 | if (dist[i] > max_dist) { |
| 78 | node = i; |
| 79 | max_dist = dist[i]; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | /* select other dim-1 nodes as pivots */ |
| 84 | for (i = 1; i < dim; i++) { |
| 85 | if (reweight_graph) { |
| 86 | dijkstra(node, graph, n, coords[i]); |
| 87 | } else { |
| 88 | bfs(node, graph, n, coords[i], &Q); |
| 89 | } |
| 90 | max_dist = 0; |
| 91 | for (j = 0; j < n; j++) { |
| 92 | dist[j] = MIN(dist[j], coords[i][j]); |
| 93 | if (dist[j] > max_dist) { |
| 94 | node = j; |
| 95 | max_dist = dist[j]; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | } |
| 100 | |
| 101 | free(dist); |
| 102 | |
| 103 | if (reweight_graph) { |
| 104 | restore_old_weights(graph, n, old_weights); |
| 105 | } |
| 106 | |
| 107 | } |
| 108 | |
| 109 | /* Make each axis centered around 0 */ |
| 110 | void center_coordinate(DistType ** coords, int n, int dim) |
| 111 | { |
| 112 | int i, j; |
| 113 | double sum, avg; |
| 114 | for (i = 0; i < dim; i++) { |
| 115 | sum = 0; |
| 116 | for (j = 0; j < n; j++) { |
| 117 | sum += coords[i][j]; |
| 118 | } |
| 119 | avg = sum / n; |
| 120 | for (j = 0; j < n; j++) { |
| 121 | coords[i][j] -= (DistType) avg; |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | |