| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "geometry.h" |
| 15 | #include <math.h> |
| 16 | |
| 17 | |
| 18 | Point origin = { 0, 0 }; |
| 19 | |
| 20 | double xmin, xmax, ymin, ymax; /* min and max x and y values of sites */ |
| 21 | double deltax, /* xmax - xmin */ |
| 22 | deltay; /* ymax - ymin */ |
| 23 | |
| 24 | int nsites; |
| 25 | int sqrt_nsites; |
| 26 | |
| 27 | void geominit() |
| 28 | { |
| 29 | double sn; |
| 30 | |
| 31 | sn = nsites + 4; |
| 32 | sqrt_nsites = (int) sqrt(sn); |
| 33 | /* deltay = ymax - ymin; */ |
| 34 | /* deltax = xmax - xmin; */ |
| 35 | } |
| 36 | |
| 37 | double dist_2(Point * pp, Point * qp) |
| 38 | { |
| 39 | double dx = pp->x - qp->x; |
| 40 | double dy = pp->y - qp->y; |
| 41 | |
| 42 | return (dx * dx + dy * dy); |
| 43 | } |
| 44 | |
| 45 | void subpt(Point * a, Point b, Point c) |
| 46 | { |
| 47 | a->x = b.x - c.x; |
| 48 | a->y = b.y - c.y; |
| 49 | } |
| 50 | |
| 51 | void addpt(Point * c, Point a, Point b) |
| 52 | { |
| 53 | c->x = a.x + b.x; |
| 54 | c->y = a.y + b.y; |
| 55 | } |
| 56 | |
| 57 | double area_2(Point a, Point b, Point c) |
| 58 | { |
| 59 | return ((a.y - b.y) * (c.x - b.x) - (c.y - b.y) * (a.x - b.x)); |
| 60 | } |
| 61 | |
| 62 | int leftOf(Point a, Point b, Point c) |
| 63 | { |
| 64 | return (area_2(a, b, c) > 0); |
| 65 | } |
| 66 | |
| 67 | int intersection(Point a, Point b, Point c, Point d, Point * p) |
| 68 | { |
| 69 | double s, t; /* The two parameters of the parametric eqns. */ |
| 70 | double denom; /* Denominator of solutions. */ |
| 71 | |
| 72 | denom = |
| 73 | a.x * (d.y - c.y) + |
| 74 | b.x * (c.y - d.y) + d.x * (b.y - a.y) + c.x * (a.y - b.y); |
| 75 | |
| 76 | /* If denom is zero, then the line segments are parallel. */ |
| 77 | /* In this case, return false even though the segments might overlap. */ |
| 78 | if (denom == 0.0) |
| 79 | return 0; |
| 80 | |
| 81 | s = (a.x * (d.y - c.y) + c.x * (a.y - d.y) + d.x * (c.y - a.y) |
| 82 | ) / denom; |
| 83 | t = -(a.x * (c.y - b.y) + b.x * (a.y - c.y) + c.x * (b.y - a.y) |
| 84 | ) / denom; |
| 85 | |
| 86 | p->x = a.x + s * (b.x - a.x); |
| 87 | p->y = a.y + s * (b.y - a.y); |
| 88 | |
| 89 | if ((0.0 <= s) && (s <= 1.0) && (0.0 <= t) && (t <= 1.0)) |
| 90 | return 1; |
| 91 | else |
| 92 | return 0; |
| 93 | } |
| 94 | |