| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "bfs.h" |
| 16 | #include "dijkstra.h" |
| 17 | #include "kkutils.h" |
| 18 | #include <stdlib.h> |
| 19 | #include <math.h> |
| 20 | |
| 21 | int common_neighbors(vtx_data * graph, int v, int u, int *v_vector) |
| 22 | { |
| 23 | /* count number of common neighbors of 'v' and 'u' */ |
| 24 | int neighbor; |
| 25 | int num_shared_neighbors = 0; |
| 26 | int j; |
| 27 | for (j = 1; j < graph[u].nedges; j++) { |
| 28 | neighbor = graph[u].edges[j]; |
| 29 | if (v_vector[neighbor] > 0) { |
| 30 | /* a shared neighobr */ |
| 31 | num_shared_neighbors++; |
| 32 | } |
| 33 | } |
| 34 | return num_shared_neighbors; |
| 35 | } |
| 36 | void fill_neighbors_vec_unweighted(vtx_data * graph, int vtx, int *vtx_vec) |
| 37 | { |
| 38 | /* a node is NOT a neighbor of itself! */ |
| 39 | /* unlike the other version of this function */ |
| 40 | int j; |
| 41 | for (j = 1; j < graph[vtx].nedges; j++) { |
| 42 | vtx_vec[graph[vtx].edges[j]] = 1; |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | void empty_neighbors_vec(vtx_data * graph, int vtx, int *vtx_vec) |
| 47 | { |
| 48 | int j; |
| 49 | /* a node is NOT a neighbor of itself! */ |
| 50 | /* unlike the other version ofthis function */ |
| 51 | for (j = 1; j < graph[vtx].nedges; j++) { |
| 52 | vtx_vec[graph[vtx].edges[j]] = 0; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | /* compute_apsp_dijkstra: |
| 57 | * Assumes the graph has weights |
| 58 | */ |
| 59 | static DistType **compute_apsp_dijkstra(vtx_data * graph, int n) |
| 60 | { |
| 61 | int i; |
| 62 | DistType *storage; |
| 63 | DistType **dij; |
| 64 | |
| 65 | storage = N_GNEW(n * n, DistType); |
| 66 | dij = N_GNEW(n, DistType *); |
| 67 | for (i = 0; i < n; i++) |
| 68 | dij[i] = storage + i * n; |
| 69 | |
| 70 | for (i = 0; i < n; i++) { |
| 71 | dijkstra(i, graph, n, dij[i]); |
| 72 | } |
| 73 | return dij; |
| 74 | } |
| 75 | |
| 76 | static DistType **compute_apsp_simple(vtx_data * graph, int n) |
| 77 | { |
| 78 | /* compute all pairs shortest path */ |
| 79 | /* for unweighted graph */ |
| 80 | int i; |
| 81 | DistType *storage = N_GNEW(n * n, int); |
| 82 | DistType **dij; |
| 83 | Queue Q; |
| 84 | |
| 85 | dij = N_GNEW(n, DistType *); |
| 86 | for (i = 0; i < n; i++) { |
| 87 | dij[i] = storage + i * n; |
| 88 | } |
| 89 | mkQueue(&Q, n); |
| 90 | for (i = 0; i < n; i++) { |
| 91 | bfs(i, graph, n, dij[i], &Q); |
| 92 | } |
| 93 | freeQueue(&Q); |
| 94 | return dij; |
| 95 | } |
| 96 | |
| 97 | DistType **compute_apsp(vtx_data * graph, int n) |
| 98 | { |
| 99 | if (graph->ewgts) |
| 100 | return compute_apsp_dijkstra(graph, n); |
| 101 | else |
| 102 | return compute_apsp_simple(graph, n); |
| 103 | } |
| 104 | |
| 105 | DistType **compute_apsp_artifical_weights(vtx_data * graph, int n) |
| 106 | { |
| 107 | DistType **Dij; |
| 108 | /* compute all-pairs-shortest-path-length while weighting the graph */ |
| 109 | /* so high-degree nodes are distantly located */ |
| 110 | |
| 111 | float *old_weights = graph[0].ewgts; |
| 112 | |
| 113 | compute_new_weights(graph, n); |
| 114 | Dij = compute_apsp_dijkstra(graph, n); |
| 115 | restore_old_weights(graph, n, old_weights); |
| 116 | return Dij; |
| 117 | } |
| 118 | |
| 119 | |
| 120 | /**********************/ |
| 121 | /* */ |
| 122 | /* Quick Sort */ |
| 123 | /* */ |
| 124 | /**********************/ |
| 125 | |
| 126 | static void |
| 127 | split_by_place(double *place, int *nodes, int first, int last, int *middle) |
| 128 | { |
| 129 | unsigned int splitter=((unsigned int)rand()|((unsigned int)rand())<<16)%(unsigned int)(last-first+1)+(unsigned int)first; |
| 130 | int val; |
| 131 | double place_val; |
| 132 | int left = first + 1; |
| 133 | int right = last; |
| 134 | int temp; |
| 135 | |
| 136 | val = nodes[splitter]; |
| 137 | nodes[splitter] = nodes[first]; |
| 138 | nodes[first] = val; |
| 139 | place_val = place[val]; |
| 140 | |
| 141 | while (left < right) { |
| 142 | while (left < right && place[nodes[left]] <= place_val) |
| 143 | left++; |
| 144 | /* use here ">" and not ">=" to enable robustness |
| 145 | * by ensuring that ALL equal values move to the same side |
| 146 | */ |
| 147 | while (left < right && place[nodes[right]] > place_val) |
| 148 | right--; |
| 149 | if (left < right) { |
| 150 | temp = nodes[left]; |
| 151 | nodes[left] = nodes[right]; |
| 152 | nodes[right] = temp; |
| 153 | left++; |
| 154 | right--; /* (1) */ |
| 155 | |
| 156 | } |
| 157 | } |
| 158 | /* at this point either, left==right (meeting), or |
| 159 | * left=right+1 (because of (1)) |
| 160 | * we have to decide to which part the meeting point (or left) belongs. |
| 161 | * |
| 162 | * notice that always left>first, because of its initialization |
| 163 | */ |
| 164 | if (place[nodes[left]] > place_val) |
| 165 | left = left - 1; |
| 166 | *middle = left; |
| 167 | nodes[first] = nodes[left]; |
| 168 | nodes[left] = val; |
| 169 | } |
| 170 | |
| 171 | double distance_kD(double **coords, int dim, int i, int j) |
| 172 | { |
| 173 | /* compute a k-D Euclidean distance between 'coords[*][i]' and 'coords[*][j]' */ |
| 174 | double sum = 0; |
| 175 | int k; |
| 176 | for (k = 0; k < dim; k++) { |
| 177 | sum += |
| 178 | (coords[k][i] - coords[k][j]) * (coords[k][i] - coords[k][j]); |
| 179 | } |
| 180 | return sqrt(sum); |
| 181 | } |
| 182 | |
| 183 | static float* fvals; |
| 184 | static int |
| 185 | fcmpf (int* ip1, int* ip2) |
| 186 | { |
| 187 | float d1 = fvals[*ip1]; |
| 188 | float d2 = fvals[*ip2]; |
| 189 | if (d1 < d2) return -1; |
| 190 | else if (d1 > d2) return 1; |
| 191 | else return 0; |
| 192 | } |
| 193 | |
| 194 | void quicksort_placef(float *place, int *ordering, int first, int last) |
| 195 | { |
| 196 | if (first < last) { |
| 197 | fvals = place; |
| 198 | qsort(ordering+first, last-first+1, sizeof(ordering[0]), (qsort_cmpf)fcmpf); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | static int |
| 203 | sorted_place(double * place, int * ordering, int first,int last) |
| 204 | { |
| 205 | int i, isSorted = 1; |
| 206 | for (i=first+1; i<=last && isSorted; i++) { |
| 207 | if (place[ordering[i-1]]>place[ordering[i]]) { |
| 208 | isSorted = 0; |
| 209 | } |
| 210 | } |
| 211 | return isSorted; |
| 212 | } |
| 213 | |
| 214 | /* quicksort_place: |
| 215 | * For now, we keep the current implementation for stability, but |
| 216 | * we should consider replacing this with an implementation similar to |
| 217 | * quicksort_placef above. |
| 218 | */ |
| 219 | void quicksort_place(double *place, int *ordering, int first, int last) |
| 220 | { |
| 221 | if (first < last) { |
| 222 | int middle; |
| 223 | #ifdef __cplusplus |
| 224 | split_by_place(place, ordering, first, last, middle); |
| 225 | #else |
| 226 | split_by_place(place, ordering, first, last, &middle); |
| 227 | #endif |
| 228 | quicksort_place(place, ordering, first, middle - 1); |
| 229 | quicksort_place(place, ordering, middle + 1, last); |
| 230 | /* Checking for "already sorted" dramatically improves running time |
| 231 | * and robustness (against uneven recursion) when not all values are |
| 232 | * distinct (thefore we expect emerging chunks of equal values) |
| 233 | * it never increased running time even when values were distinct |
| 234 | */ |
| 235 | if (!sorted_place(place,ordering,first,middle-1)) |
| 236 | quicksort_place(place,ordering,first,middle-1); |
| 237 | if (!sorted_place(place,ordering,middle+1,last)) |
| 238 | quicksort_place(place,ordering,middle+1,last); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | void compute_new_weights(vtx_data * graph, int n) |
| 243 | { |
| 244 | /* Reweight graph so that high degree nodes will be separated */ |
| 245 | |
| 246 | int i, j; |
| 247 | int nedges = 0; |
| 248 | float *weights; |
| 249 | int *vtx_vec = N_GNEW(n, int); |
| 250 | int deg_i, deg_j, neighbor; |
| 251 | |
| 252 | for (i = 0; i < n; i++) { |
| 253 | nedges += graph[i].nedges; |
| 254 | } |
| 255 | weights = N_GNEW(nedges, float); |
| 256 | |
| 257 | for (i = 0; i < n; i++) { |
| 258 | vtx_vec[i] = 0; |
| 259 | } |
| 260 | |
| 261 | for (i = 0; i < n; i++) { |
| 262 | graph[i].ewgts = weights; |
| 263 | fill_neighbors_vec_unweighted(graph, i, vtx_vec); |
| 264 | deg_i = graph[i].nedges - 1; |
| 265 | for (j = 1; j <= deg_i; j++) { |
| 266 | neighbor = graph[i].edges[j]; |
| 267 | deg_j = graph[neighbor].nedges - 1; |
| 268 | weights[j] = |
| 269 | (float) (deg_i + deg_j - |
| 270 | 2 * common_neighbors(graph, i, neighbor, |
| 271 | vtx_vec)); |
| 272 | } |
| 273 | empty_neighbors_vec(graph, i, vtx_vec); |
| 274 | weights += graph[i].nedges; |
| 275 | } |
| 276 | free(vtx_vec); |
| 277 | } |
| 278 | |
| 279 | void restore_old_weights(vtx_data * graph, int n, float *old_weights) |
| 280 | { |
| 281 | int i; |
| 282 | free(graph[0].ewgts); |
| 283 | graph[0].ewgts = NULL; |
| 284 | if (old_weights != NULL) { |
| 285 | for (i = 0; i < n; i++) { |
| 286 | graph[i].ewgts = old_weights; |
| 287 | old_weights += graph[i].nedges; |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | |