| 1 | /* $Id$ $Revision$ */ | 
|---|
| 2 | /* vim:set shiftwidth=4 ts=8: */ | 
|---|
| 3 |  | 
|---|
| 4 | /************************************************************************* | 
|---|
| 5 | * Copyright (c) 2011 AT&T Intellectual Property | 
|---|
| 6 | * All rights reserved. This program and the accompanying materials | 
|---|
| 7 | * are made available under the terms of the Eclipse Public License v1.0 | 
|---|
| 8 | * which accompanies this distribution, and is available at | 
|---|
| 9 | * http://www.eclipse.org/legal/epl-v10.html | 
|---|
| 10 | * | 
|---|
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ | 
|---|
| 12 | *************************************************************************/ | 
|---|
| 13 |  | 
|---|
| 14 |  | 
|---|
| 15 | #include "bfs.h" | 
|---|
| 16 | #include "dijkstra.h" | 
|---|
| 17 | #include "kkutils.h" | 
|---|
| 18 | #include <stdlib.h> | 
|---|
| 19 | #include <math.h> | 
|---|
| 20 |  | 
|---|
| 21 | int common_neighbors(vtx_data * graph, int v, int u, int *v_vector) | 
|---|
| 22 | { | 
|---|
| 23 | /* count number of common neighbors of 'v' and 'u' */ | 
|---|
| 24 | int neighbor; | 
|---|
| 25 | int num_shared_neighbors = 0; | 
|---|
| 26 | int j; | 
|---|
| 27 | for (j = 1; j < graph[u].nedges; j++) { | 
|---|
| 28 | neighbor = graph[u].edges[j]; | 
|---|
| 29 | if (v_vector[neighbor] > 0) { | 
|---|
| 30 | /* a shared neighobr */ | 
|---|
| 31 | num_shared_neighbors++; | 
|---|
| 32 | } | 
|---|
| 33 | } | 
|---|
| 34 | return num_shared_neighbors; | 
|---|
| 35 | } | 
|---|
| 36 | void fill_neighbors_vec_unweighted(vtx_data * graph, int vtx, int *vtx_vec) | 
|---|
| 37 | { | 
|---|
| 38 | /* a node is NOT a neighbor of itself! */ | 
|---|
| 39 | /* unlike the other version of this function */ | 
|---|
| 40 | int j; | 
|---|
| 41 | for (j = 1; j < graph[vtx].nedges; j++) { | 
|---|
| 42 | vtx_vec[graph[vtx].edges[j]] = 1; | 
|---|
| 43 | } | 
|---|
| 44 | } | 
|---|
| 45 |  | 
|---|
| 46 | void empty_neighbors_vec(vtx_data * graph, int vtx, int *vtx_vec) | 
|---|
| 47 | { | 
|---|
| 48 | int j; | 
|---|
| 49 | /* a node is NOT a neighbor of itself! */ | 
|---|
| 50 | /* unlike the other version ofthis function */ | 
|---|
| 51 | for (j = 1; j < graph[vtx].nedges; j++) { | 
|---|
| 52 | vtx_vec[graph[vtx].edges[j]] = 0; | 
|---|
| 53 | } | 
|---|
| 54 | } | 
|---|
| 55 |  | 
|---|
| 56 | /* compute_apsp_dijkstra: | 
|---|
| 57 | * Assumes the graph has weights | 
|---|
| 58 | */ | 
|---|
| 59 | static DistType **compute_apsp_dijkstra(vtx_data * graph, int n) | 
|---|
| 60 | { | 
|---|
| 61 | int i; | 
|---|
| 62 | DistType *storage; | 
|---|
| 63 | DistType **dij; | 
|---|
| 64 |  | 
|---|
| 65 | storage = N_GNEW(n * n, DistType); | 
|---|
| 66 | dij = N_GNEW(n, DistType *); | 
|---|
| 67 | for (i = 0; i < n; i++) | 
|---|
| 68 | dij[i] = storage + i * n; | 
|---|
| 69 |  | 
|---|
| 70 | for (i = 0; i < n; i++) { | 
|---|
| 71 | dijkstra(i, graph, n, dij[i]); | 
|---|
| 72 | } | 
|---|
| 73 | return dij; | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | static DistType **compute_apsp_simple(vtx_data * graph, int n) | 
|---|
| 77 | { | 
|---|
| 78 | /* compute all pairs shortest path */ | 
|---|
| 79 | /* for unweighted graph */ | 
|---|
| 80 | int i; | 
|---|
| 81 | DistType *storage = N_GNEW(n * n, int); | 
|---|
| 82 | DistType **dij; | 
|---|
| 83 | Queue Q; | 
|---|
| 84 |  | 
|---|
| 85 | dij = N_GNEW(n, DistType *); | 
|---|
| 86 | for (i = 0; i < n; i++) { | 
|---|
| 87 | dij[i] = storage + i * n; | 
|---|
| 88 | } | 
|---|
| 89 | mkQueue(&Q, n); | 
|---|
| 90 | for (i = 0; i < n; i++) { | 
|---|
| 91 | bfs(i, graph, n, dij[i], &Q); | 
|---|
| 92 | } | 
|---|
| 93 | freeQueue(&Q); | 
|---|
| 94 | return dij; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | DistType **compute_apsp(vtx_data * graph, int n) | 
|---|
| 98 | { | 
|---|
| 99 | if (graph->ewgts) | 
|---|
| 100 | return compute_apsp_dijkstra(graph, n); | 
|---|
| 101 | else | 
|---|
| 102 | return compute_apsp_simple(graph, n); | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | DistType **compute_apsp_artifical_weights(vtx_data * graph, int n) | 
|---|
| 106 | { | 
|---|
| 107 | DistType **Dij; | 
|---|
| 108 | /* compute all-pairs-shortest-path-length while weighting the graph */ | 
|---|
| 109 | /* so high-degree nodes are distantly located */ | 
|---|
| 110 |  | 
|---|
| 111 | float *old_weights = graph[0].ewgts; | 
|---|
| 112 |  | 
|---|
| 113 | compute_new_weights(graph, n); | 
|---|
| 114 | Dij = compute_apsp_dijkstra(graph, n); | 
|---|
| 115 | restore_old_weights(graph, n, old_weights); | 
|---|
| 116 | return Dij; | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|
| 119 |  | 
|---|
| 120 | /**********************/ | 
|---|
| 121 | /*		      */ | 
|---|
| 122 | /*  Quick Sort        */ | 
|---|
| 123 | /*		      */ | 
|---|
| 124 | /**********************/ | 
|---|
| 125 |  | 
|---|
| 126 | static void | 
|---|
| 127 | split_by_place(double *place, int *nodes, int first, int last, int *middle) | 
|---|
| 128 | { | 
|---|
| 129 | unsigned int splitter=((unsigned int)rand()|((unsigned int)rand())<<16)%(unsigned int)(last-first+1)+(unsigned int)first; | 
|---|
| 130 | int val; | 
|---|
| 131 | double place_val; | 
|---|
| 132 | int left = first + 1; | 
|---|
| 133 | int right = last; | 
|---|
| 134 | int temp; | 
|---|
| 135 |  | 
|---|
| 136 | val = nodes[splitter]; | 
|---|
| 137 | nodes[splitter] = nodes[first]; | 
|---|
| 138 | nodes[first] = val; | 
|---|
| 139 | place_val = place[val]; | 
|---|
| 140 |  | 
|---|
| 141 | while (left < right) { | 
|---|
| 142 | while (left < right && place[nodes[left]] <= place_val) | 
|---|
| 143 | left++; | 
|---|
| 144 | /* use here ">" and not ">=" to enable robustness | 
|---|
| 145 | * by ensuring that ALL equal values move to the same side | 
|---|
| 146 | */ | 
|---|
| 147 | while (left < right && place[nodes[right]] > place_val) | 
|---|
| 148 | right--; | 
|---|
| 149 | if (left < right) { | 
|---|
| 150 | temp = nodes[left]; | 
|---|
| 151 | nodes[left] = nodes[right]; | 
|---|
| 152 | nodes[right] = temp; | 
|---|
| 153 | left++; | 
|---|
| 154 | right--;		/* (1) */ | 
|---|
| 155 |  | 
|---|
| 156 | } | 
|---|
| 157 | } | 
|---|
| 158 | /* at this point either, left==right (meeting), or | 
|---|
| 159 | * left=right+1 (because of (1)) | 
|---|
| 160 | * we have to decide to which part the meeting point (or left) belongs. | 
|---|
| 161 | * | 
|---|
| 162 | * notice that always left>first, because of its initialization | 
|---|
| 163 | */ | 
|---|
| 164 | if (place[nodes[left]] > place_val) | 
|---|
| 165 | left = left - 1; | 
|---|
| 166 | *middle = left; | 
|---|
| 167 | nodes[first] = nodes[left]; | 
|---|
| 168 | nodes[left] = val; | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | double distance_kD(double **coords, int dim, int i, int j) | 
|---|
| 172 | { | 
|---|
| 173 | /* compute a k-D Euclidean distance between 'coords[*][i]' and 'coords[*][j]' */ | 
|---|
| 174 | double sum = 0; | 
|---|
| 175 | int k; | 
|---|
| 176 | for (k = 0; k < dim; k++) { | 
|---|
| 177 | sum += | 
|---|
| 178 | (coords[k][i] - coords[k][j]) * (coords[k][i] - coords[k][j]); | 
|---|
| 179 | } | 
|---|
| 180 | return sqrt(sum); | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | static float* fvals; | 
|---|
| 184 | static int | 
|---|
| 185 | fcmpf (int* ip1, int* ip2) | 
|---|
| 186 | { | 
|---|
| 187 | float d1 = fvals[*ip1]; | 
|---|
| 188 | float d2 = fvals[*ip2]; | 
|---|
| 189 | if (d1 < d2) return -1; | 
|---|
| 190 | else if (d1 > d2) return 1; | 
|---|
| 191 | else return 0; | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | void quicksort_placef(float *place, int *ordering, int first, int last) | 
|---|
| 195 | { | 
|---|
| 196 | if (first < last) { | 
|---|
| 197 | fvals = place; | 
|---|
| 198 | qsort(ordering+first, last-first+1, sizeof(ordering[0]), (qsort_cmpf)fcmpf); | 
|---|
| 199 | } | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | static int | 
|---|
| 203 | sorted_place(double * place, int * ordering, int first,int last) | 
|---|
| 204 | { | 
|---|
| 205 | int i, isSorted = 1; | 
|---|
| 206 | for (i=first+1; i<=last && isSorted; i++) { | 
|---|
| 207 | if (place[ordering[i-1]]>place[ordering[i]]) { | 
|---|
| 208 | isSorted = 0; | 
|---|
| 209 | } | 
|---|
| 210 | } | 
|---|
| 211 | return isSorted; | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 | /* quicksort_place: | 
|---|
| 215 | * For now, we keep the current implementation for stability, but | 
|---|
| 216 | * we should consider replacing this with an implementation similar to | 
|---|
| 217 | * quicksort_placef above. | 
|---|
| 218 | */ | 
|---|
| 219 | void quicksort_place(double *place, int *ordering, int first, int last) | 
|---|
| 220 | { | 
|---|
| 221 | if (first < last) { | 
|---|
| 222 | int middle; | 
|---|
| 223 | #ifdef __cplusplus | 
|---|
| 224 | split_by_place(place, ordering, first, last, middle); | 
|---|
| 225 | #else | 
|---|
| 226 | split_by_place(place, ordering, first, last, &middle); | 
|---|
| 227 | #endif | 
|---|
| 228 | quicksort_place(place, ordering, first, middle - 1); | 
|---|
| 229 | quicksort_place(place, ordering, middle + 1, last); | 
|---|
| 230 | /* Checking for "already sorted" dramatically improves running time | 
|---|
| 231 | * and robustness (against uneven recursion) when not all values are | 
|---|
| 232 | * distinct (thefore we expect emerging chunks of equal values) | 
|---|
| 233 | * it never increased running time even when values were distinct | 
|---|
| 234 | */ | 
|---|
| 235 | if (!sorted_place(place,ordering,first,middle-1)) | 
|---|
| 236 | quicksort_place(place,ordering,first,middle-1); | 
|---|
| 237 | if (!sorted_place(place,ordering,middle+1,last)) | 
|---|
| 238 | quicksort_place(place,ordering,middle+1,last); | 
|---|
| 239 | } | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | void compute_new_weights(vtx_data * graph, int n) | 
|---|
| 243 | { | 
|---|
| 244 | /* Reweight graph so that high degree nodes will be separated */ | 
|---|
| 245 |  | 
|---|
| 246 | int i, j; | 
|---|
| 247 | int nedges = 0; | 
|---|
| 248 | float *weights; | 
|---|
| 249 | int *vtx_vec = N_GNEW(n, int); | 
|---|
| 250 | int deg_i, deg_j, neighbor; | 
|---|
| 251 |  | 
|---|
| 252 | for (i = 0; i < n; i++) { | 
|---|
| 253 | nedges += graph[i].nedges; | 
|---|
| 254 | } | 
|---|
| 255 | weights = N_GNEW(nedges, float); | 
|---|
| 256 |  | 
|---|
| 257 | for (i = 0; i < n; i++) { | 
|---|
| 258 | vtx_vec[i] = 0; | 
|---|
| 259 | } | 
|---|
| 260 |  | 
|---|
| 261 | for (i = 0; i < n; i++) { | 
|---|
| 262 | graph[i].ewgts = weights; | 
|---|
| 263 | fill_neighbors_vec_unweighted(graph, i, vtx_vec); | 
|---|
| 264 | deg_i = graph[i].nedges - 1; | 
|---|
| 265 | for (j = 1; j <= deg_i; j++) { | 
|---|
| 266 | neighbor = graph[i].edges[j]; | 
|---|
| 267 | deg_j = graph[neighbor].nedges - 1; | 
|---|
| 268 | weights[j] = | 
|---|
| 269 | (float) (deg_i + deg_j - | 
|---|
| 270 | 2 * common_neighbors(graph, i, neighbor, | 
|---|
| 271 | vtx_vec)); | 
|---|
| 272 | } | 
|---|
| 273 | empty_neighbors_vec(graph, i, vtx_vec); | 
|---|
| 274 | weights += graph[i].nedges; | 
|---|
| 275 | } | 
|---|
| 276 | free(vtx_vec); | 
|---|
| 277 | } | 
|---|
| 278 |  | 
|---|
| 279 | void restore_old_weights(vtx_data * graph, int n, float *old_weights) | 
|---|
| 280 | { | 
|---|
| 281 | int i; | 
|---|
| 282 | free(graph[0].ewgts); | 
|---|
| 283 | graph[0].ewgts = NULL; | 
|---|
| 284 | if (old_weights != NULL) { | 
|---|
| 285 | for (i = 0; i < n; i++) { | 
|---|
| 286 | graph[i].ewgts = old_weights; | 
|---|
| 287 | old_weights += graph[i].nedges; | 
|---|
| 288 | } | 
|---|
| 289 | } | 
|---|
| 290 | } | 
|---|
| 291 |  | 
|---|