| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "matrix_ops.h" |
| 16 | #include "memory.h" |
| 17 | #include <stdlib.h> |
| 18 | #include <stdio.h> |
| 19 | #include <math.h> |
| 20 | |
| 21 | static double p_iteration_threshold = 1e-3; |
| 22 | |
| 23 | int |
| 24 | power_iteration(double **square_mat, int n, int neigs, double **eigs, |
| 25 | double *evals, int initialize) |
| 26 | { |
| 27 | /* compute the 'neigs' top eigenvectors of 'square_mat' using power iteration */ |
| 28 | |
| 29 | int i, j; |
| 30 | double *tmp_vec = N_GNEW(n, double); |
| 31 | double *last_vec = N_GNEW(n, double); |
| 32 | double *curr_vector; |
| 33 | double len; |
| 34 | double angle; |
| 35 | double alpha; |
| 36 | int iteration = 0; |
| 37 | int largest_index; |
| 38 | double largest_eval; |
| 39 | int Max_iterations = 30 * n; |
| 40 | |
| 41 | double tol = 1 - p_iteration_threshold; |
| 42 | |
| 43 | if (neigs >= n) { |
| 44 | neigs = n; |
| 45 | } |
| 46 | |
| 47 | for (i = 0; i < neigs; i++) { |
| 48 | curr_vector = eigs[i]; |
| 49 | /* guess the i-th eigen vector */ |
| 50 | choose: |
| 51 | if (initialize) |
| 52 | for (j = 0; j < n; j++) |
| 53 | curr_vector[j] = rand() % 100; |
| 54 | /* orthogonalize against higher eigenvectors */ |
| 55 | for (j = 0; j < i; j++) { |
| 56 | alpha = -dot(eigs[j], 0, n - 1, curr_vector); |
| 57 | scadd(curr_vector, 0, n - 1, alpha, eigs[j]); |
| 58 | } |
| 59 | len = norm(curr_vector, 0, n - 1); |
| 60 | if (len < 1e-10) { |
| 61 | /* We have chosen a vector colinear with prvious ones */ |
| 62 | goto choose; |
| 63 | } |
| 64 | vecscale(curr_vector, 0, n - 1, 1.0 / len, curr_vector); |
| 65 | iteration = 0; |
| 66 | do { |
| 67 | iteration++; |
| 68 | cpvec(last_vec, 0, n - 1, curr_vector); |
| 69 | |
| 70 | right_mult_with_vector_d(square_mat, n, n, curr_vector, |
| 71 | tmp_vec); |
| 72 | cpvec(curr_vector, 0, n - 1, tmp_vec); |
| 73 | |
| 74 | /* orthogonalize against higher eigenvectors */ |
| 75 | for (j = 0; j < i; j++) { |
| 76 | alpha = -dot(eigs[j], 0, n - 1, curr_vector); |
| 77 | scadd(curr_vector, 0, n - 1, alpha, eigs[j]); |
| 78 | } |
| 79 | len = norm(curr_vector, 0, n - 1); |
| 80 | if (len < 1e-10 || iteration > Max_iterations) { |
| 81 | /* We have reached the null space (e.vec. associated with e.val. 0) */ |
| 82 | goto exit; |
| 83 | } |
| 84 | |
| 85 | vecscale(curr_vector, 0, n - 1, 1.0 / len, curr_vector); |
| 86 | angle = dot(curr_vector, 0, n - 1, last_vec); |
| 87 | } while (fabs(angle) < tol); |
| 88 | evals[i] = angle * len; /* this is the Rayleigh quotient (up to errors due to orthogonalization): |
| 89 | u*(A*u)/||A*u||)*||A*u||, where u=last_vec, and ||u||=1 |
| 90 | */ |
| 91 | } |
| 92 | exit: |
| 93 | for (; i < neigs; i++) { |
| 94 | /* compute the smallest eigenvector, which are */ |
| 95 | /* probably associated with eigenvalue 0 and for */ |
| 96 | /* which power-iteration is dangerous */ |
| 97 | curr_vector = eigs[i]; |
| 98 | /* guess the i-th eigen vector */ |
| 99 | for (j = 0; j < n; j++) |
| 100 | curr_vector[j] = rand() % 100; |
| 101 | /* orthogonalize against higher eigenvectors */ |
| 102 | for (j = 0; j < i; j++) { |
| 103 | alpha = -dot(eigs[j], 0, n - 1, curr_vector); |
| 104 | scadd(curr_vector, 0, n - 1, alpha, eigs[j]); |
| 105 | } |
| 106 | len = norm(curr_vector, 0, n - 1); |
| 107 | vecscale(curr_vector, 0, n - 1, 1.0 / len, curr_vector); |
| 108 | evals[i] = 0; |
| 109 | |
| 110 | } |
| 111 | |
| 112 | |
| 113 | /* sort vectors by their evals, for overcoming possible mis-convergence: */ |
| 114 | for (i = 0; i < neigs - 1; i++) { |
| 115 | largest_index = i; |
| 116 | largest_eval = evals[largest_index]; |
| 117 | for (j = i + 1; j < neigs; j++) { |
| 118 | if (largest_eval < evals[j]) { |
| 119 | largest_index = j; |
| 120 | largest_eval = evals[largest_index]; |
| 121 | } |
| 122 | } |
| 123 | if (largest_index != i) { /* exchange eigenvectors: */ |
| 124 | cpvec(tmp_vec, 0, n - 1, eigs[i]); |
| 125 | cpvec(eigs[i], 0, n - 1, eigs[largest_index]); |
| 126 | cpvec(eigs[largest_index], 0, n - 1, tmp_vec); |
| 127 | |
| 128 | evals[largest_index] = evals[i]; |
| 129 | evals[i] = largest_eval; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | free(tmp_vec); |
| 134 | free(last_vec); |
| 135 | |
| 136 | return (iteration <= Max_iterations); |
| 137 | } |
| 138 | |
| 139 | |
| 140 | |
| 141 | void |
| 142 | mult_dense_mat(double **A, float **B, int dim1, int dim2, int dim3, |
| 143 | float ***CC) |
| 144 | { |
| 145 | /* |
| 146 | A is dim1 x dim2, B is dim2 x dim3, C = A x B |
| 147 | */ |
| 148 | |
| 149 | double sum; |
| 150 | int i, j, k; |
| 151 | float *storage; |
| 152 | float **C = *CC; |
| 153 | if (C != NULL) { |
| 154 | storage = (float *) realloc(C[0], dim1 * dim3 * sizeof(A[0])); |
| 155 | *CC = C = (float **) realloc(C, dim1 * sizeof(A)); |
| 156 | } else { |
| 157 | storage = (float *) malloc(dim1 * dim3 * sizeof(A[0])); |
| 158 | *CC = C = (float **) malloc(dim1 * sizeof(A)); |
| 159 | } |
| 160 | |
| 161 | for (i = 0; i < dim1; i++) { |
| 162 | C[i] = storage; |
| 163 | storage += dim3; |
| 164 | } |
| 165 | |
| 166 | for (i = 0; i < dim1; i++) { |
| 167 | for (j = 0; j < dim3; j++) { |
| 168 | sum = 0; |
| 169 | for (k = 0; k < dim2; k++) { |
| 170 | sum += A[i][k] * B[k][j]; |
| 171 | } |
| 172 | C[i][j] = (float) (sum); |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | void |
| 178 | mult_dense_mat_d(double **A, float **B, int dim1, int dim2, int dim3, |
| 179 | double ***CC) |
| 180 | { |
| 181 | /* |
| 182 | A is dim1 x dim2, B is dim2 x dim3, C = A x B |
| 183 | */ |
| 184 | double **C = *CC; |
| 185 | double *storage; |
| 186 | int i, j, k; |
| 187 | double sum; |
| 188 | |
| 189 | if (C != NULL) { |
| 190 | storage = (double *) realloc(C[0], dim1 * dim3 * sizeof(double)); |
| 191 | *CC = C = (double **) realloc(C, dim1 * sizeof(double *)); |
| 192 | } else { |
| 193 | storage = (double *) malloc(dim1 * dim3 * sizeof(double)); |
| 194 | *CC = C = (double **) malloc(dim1 * sizeof(double *)); |
| 195 | } |
| 196 | |
| 197 | for (i = 0; i < dim1; i++) { |
| 198 | C[i] = storage; |
| 199 | storage += dim3; |
| 200 | } |
| 201 | |
| 202 | for (i = 0; i < dim1; i++) { |
| 203 | for (j = 0; j < dim3; j++) { |
| 204 | sum = 0; |
| 205 | for (k = 0; k < dim2; k++) { |
| 206 | sum += A[i][k] * B[k][j]; |
| 207 | } |
| 208 | C[i][j] = sum; |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | void |
| 214 | mult_sparse_dense_mat_transpose(vtx_data * A, double **B, int dim1, |
| 215 | int dim2, float ***CC) |
| 216 | { |
| 217 | /* |
| 218 | A is dim1 x dim1 and sparse, B is dim2 x dim1, C = A x B |
| 219 | */ |
| 220 | |
| 221 | float *storage; |
| 222 | int i, j, k; |
| 223 | double sum; |
| 224 | float *ewgts; |
| 225 | int *edges; |
| 226 | int nedges; |
| 227 | float **C = *CC; |
| 228 | if (C != NULL) { |
| 229 | storage = (float *) realloc(C[0], dim1 * dim2 * sizeof(A[0])); |
| 230 | *CC = C = (float **) realloc(C, dim1 * sizeof(A)); |
| 231 | } else { |
| 232 | storage = (float *) malloc(dim1 * dim2 * sizeof(A[0])); |
| 233 | *CC = C = (float **) malloc(dim1 * sizeof(A)); |
| 234 | } |
| 235 | |
| 236 | for (i = 0; i < dim1; i++) { |
| 237 | C[i] = storage; |
| 238 | storage += dim2; |
| 239 | } |
| 240 | |
| 241 | for (i = 0; i < dim1; i++) { |
| 242 | edges = A[i].edges; |
| 243 | ewgts = A[i].ewgts; |
| 244 | nedges = A[i].nedges; |
| 245 | for (j = 0; j < dim2; j++) { |
| 246 | sum = 0; |
| 247 | for (k = 0; k < nedges; k++) { |
| 248 | sum += ewgts[k] * B[j][edges[k]]; |
| 249 | } |
| 250 | C[i][j] = (float) (sum); |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | |
| 256 | |
| 257 | /* Copy a range of a double vector to a double vector */ |
| 258 | void cpvec(double *copy, int beg, int end, double *vec) |
| 259 | { |
| 260 | int i; |
| 261 | |
| 262 | copy = copy + beg; |
| 263 | vec = vec + beg; |
| 264 | for (i = end - beg + 1; i; i--) { |
| 265 | *copy++ = *vec++; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | /* Returns scalar product of two double n-vectors. */ |
| 270 | double dot(double *vec1, int beg, int end, double *vec2) |
| 271 | { |
| 272 | int i; |
| 273 | double sum; |
| 274 | |
| 275 | sum = 0.0; |
| 276 | vec1 = vec1 + beg; |
| 277 | vec2 = vec2 + beg; |
| 278 | for (i = end - beg + 1; i; i--) { |
| 279 | sum += (*vec1++) * (*vec2++); |
| 280 | } |
| 281 | return (sum); |
| 282 | } |
| 283 | |
| 284 | |
| 285 | /* Scaled add - fills double vec1 with vec1 + alpha*vec2 over range*/ |
| 286 | void scadd(double *vec1, int beg, int end, double fac, double *vec2) |
| 287 | { |
| 288 | int i; |
| 289 | |
| 290 | vec1 = vec1 + beg; |
| 291 | vec2 = vec2 + beg; |
| 292 | for (i = end - beg + 1; i; i--) { |
| 293 | (*vec1++) += fac * (*vec2++); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /* Scale - fills vec1 with alpha*vec2 over range, double version */ |
| 298 | void vecscale(double *vec1, int beg, int end, double alpha, double *vec2) |
| 299 | { |
| 300 | int i; |
| 301 | |
| 302 | vec1 += beg; |
| 303 | vec2 += beg; |
| 304 | for (i = end - beg + 1; i; i--) { |
| 305 | (*vec1++) = alpha * (*vec2++); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /* Returns 2-norm of a double n-vector over range. */ |
| 310 | double norm(double *vec, int beg, int end) |
| 311 | { |
| 312 | return (sqrt(dot(vec, beg, end, vec))); |
| 313 | } |
| 314 | |
| 315 | |
| 316 | #ifndef __cplusplus |
| 317 | |
| 318 | /* inline */ |
| 319 | void orthog1(int n, double *vec /* vector to be orthogonalized against 1 */ |
| 320 | ) |
| 321 | { |
| 322 | int i; |
| 323 | double *pntr; |
| 324 | double sum; |
| 325 | |
| 326 | sum = 0.0; |
| 327 | pntr = vec; |
| 328 | for (i = n; i; i--) { |
| 329 | sum += *pntr++; |
| 330 | } |
| 331 | sum /= n; |
| 332 | pntr = vec; |
| 333 | for (i = n; i; i--) { |
| 334 | *pntr++ -= sum; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | #define RANGE 500 |
| 339 | |
| 340 | /* inline */ |
| 341 | void init_vec_orth1(int n, double *vec) |
| 342 | { |
| 343 | /* randomly generate a vector orthogonal to 1 (i.e., with mean 0) */ |
| 344 | int i; |
| 345 | |
| 346 | for (i = 0; i < n; i++) |
| 347 | vec[i] = rand() % RANGE; |
| 348 | |
| 349 | orthog1(n, vec); |
| 350 | } |
| 351 | |
| 352 | /* inline */ |
| 353 | void |
| 354 | right_mult_with_vector(vtx_data * matrix, int n, double *vector, |
| 355 | double *result) |
| 356 | { |
| 357 | int i, j; |
| 358 | |
| 359 | double res; |
| 360 | for (i = 0; i < n; i++) { |
| 361 | res = 0; |
| 362 | for (j = 0; j < matrix[i].nedges; j++) |
| 363 | res += matrix[i].ewgts[j] * vector[matrix[i].edges[j]]; |
| 364 | result[i] = res; |
| 365 | } |
| 366 | /* orthog1(n,vector); */ |
| 367 | } |
| 368 | |
| 369 | /* inline */ |
| 370 | void |
| 371 | right_mult_with_vector_f(float **matrix, int n, double *vector, |
| 372 | double *result) |
| 373 | { |
| 374 | int i, j; |
| 375 | |
| 376 | double res; |
| 377 | for (i = 0; i < n; i++) { |
| 378 | res = 0; |
| 379 | for (j = 0; j < n; j++) |
| 380 | res += matrix[i][j] * vector[j]; |
| 381 | result[i] = res; |
| 382 | } |
| 383 | /* orthog1(n,vector); */ |
| 384 | } |
| 385 | |
| 386 | /* inline */ |
| 387 | void |
| 388 | vectors_subtraction(int n, double *vector1, double *vector2, |
| 389 | double *result) |
| 390 | { |
| 391 | int i; |
| 392 | for (i = 0; i < n; i++) { |
| 393 | result[i] = vector1[i] - vector2[i]; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | /* inline */ |
| 398 | void |
| 399 | vectors_addition(int n, double *vector1, double *vector2, double *result) |
| 400 | { |
| 401 | int i; |
| 402 | for (i = 0; i < n; i++) { |
| 403 | result[i] = vector1[i] + vector2[i]; |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | #ifdef UNUSED |
| 408 | /* inline */ |
| 409 | void |
| 410 | vectors_mult_addition(int n, double *vector1, double alpha, |
| 411 | double *vector2) |
| 412 | { |
| 413 | int i; |
| 414 | for (i = 0; i < n; i++) { |
| 415 | vector1[i] = vector1[i] + alpha * vector2[i]; |
| 416 | } |
| 417 | } |
| 418 | #endif |
| 419 | |
| 420 | /* inline */ |
| 421 | void |
| 422 | vectors_scalar_mult(int n, double *vector, double alpha, double *result) |
| 423 | { |
| 424 | int i; |
| 425 | for (i = 0; i < n; i++) { |
| 426 | result[i] = vector[i] * alpha; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | /* inline */ |
| 431 | void copy_vector(int n, double *source, double *dest) |
| 432 | { |
| 433 | int i; |
| 434 | for (i = 0; i < n; i++) |
| 435 | dest[i] = source[i]; |
| 436 | } |
| 437 | |
| 438 | /* inline */ |
| 439 | double vectors_inner_product(int n, double *vector1, double *vector2) |
| 440 | { |
| 441 | int i; |
| 442 | double result = 0; |
| 443 | for (i = 0; i < n; i++) { |
| 444 | result += vector1[i] * vector2[i]; |
| 445 | } |
| 446 | |
| 447 | return result; |
| 448 | } |
| 449 | |
| 450 | /* inline */ |
| 451 | double max_abs(int n, double *vector) |
| 452 | { |
| 453 | double max_val = -1e50; |
| 454 | int i; |
| 455 | for (i = 0; i < n; i++) |
| 456 | if (fabs(vector[i]) > max_val) |
| 457 | max_val = fabs(vector[i]); |
| 458 | |
| 459 | return max_val; |
| 460 | } |
| 461 | |
| 462 | #ifdef UNUSED |
| 463 | /* inline */ |
| 464 | void orthogvec(int n, double *vec1, /* vector to be orthogonalized */ |
| 465 | double *vec2 /* normalized vector to be orthogonalized against */ |
| 466 | ) |
| 467 | { |
| 468 | double alpha; |
| 469 | if (vec2 == NULL) { |
| 470 | return; |
| 471 | } |
| 472 | |
| 473 | alpha = -vectors_inner_product(n, vec1, vec2); |
| 474 | |
| 475 | vectors_mult_addition(n, vec1, alpha, vec2); |
| 476 | } |
| 477 | |
| 478 | /* sparse matrix extensions: */ |
| 479 | |
| 480 | /* inline */ |
| 481 | void mat_mult_vec(vtx_data * L, int n, double *vec, double *result) |
| 482 | { |
| 483 | /* compute result= -L*vec */ |
| 484 | int i, j; |
| 485 | double sum; |
| 486 | int *edges; |
| 487 | float *ewgts; |
| 488 | |
| 489 | for (i = 0; i < n; i++) { |
| 490 | sum = 0; |
| 491 | edges = L[i].edges; |
| 492 | ewgts = L[i].ewgts; |
| 493 | for (j = 0; j < L[i].nedges; j++) { |
| 494 | sum -= ewgts[j] * vec[edges[j]]; |
| 495 | } |
| 496 | result[i] = sum; |
| 497 | } |
| 498 | } |
| 499 | #endif |
| 500 | |
| 501 | /* inline */ |
| 502 | void |
| 503 | right_mult_with_vector_transpose(double **matrix, |
| 504 | int dim1, int dim2, |
| 505 | double *vector, double *result) |
| 506 | { |
| 507 | /* matrix is dim2 x dim1, vector has dim2 components, result=matrix^T x vector */ |
| 508 | int i, j; |
| 509 | |
| 510 | double res; |
| 511 | for (i = 0; i < dim1; i++) { |
| 512 | res = 0; |
| 513 | for (j = 0; j < dim2; j++) |
| 514 | res += matrix[j][i] * vector[j]; |
| 515 | result[i] = res; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | /* inline */ |
| 520 | void |
| 521 | right_mult_with_vector_d(double **matrix, |
| 522 | int dim1, int dim2, |
| 523 | double *vector, double *result) |
| 524 | { |
| 525 | /* matrix is dim1 x dim2, vector has dim2 components, result=matrix x vector */ |
| 526 | int i, j; |
| 527 | |
| 528 | double res; |
| 529 | for (i = 0; i < dim1; i++) { |
| 530 | res = 0; |
| 531 | for (j = 0; j < dim2; j++) |
| 532 | res += matrix[i][j] * vector[j]; |
| 533 | result[i] = res; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | |
| 538 | /***************************** |
| 539 | ** Single precision (float) ** |
| 540 | ** version ** |
| 541 | *****************************/ |
| 542 | |
| 543 | /* inline */ |
| 544 | void orthog1f(int n, float *vec) |
| 545 | { |
| 546 | int i; |
| 547 | float *pntr; |
| 548 | float sum; |
| 549 | |
| 550 | sum = 0.0; |
| 551 | pntr = vec; |
| 552 | for (i = n; i; i--) { |
| 553 | sum += *pntr++; |
| 554 | } |
| 555 | sum /= n; |
| 556 | pntr = vec; |
| 557 | for (i = n; i; i--) { |
| 558 | *pntr++ -= sum; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | #ifdef UNUSED |
| 563 | /* inline */ |
| 564 | void right_mult_with_vectorf |
| 565 | (vtx_data * matrix, int n, float *vector, float *result) { |
| 566 | int i, j; |
| 567 | |
| 568 | float res; |
| 569 | for (i = 0; i < n; i++) { |
| 570 | res = 0; |
| 571 | for (j = 0; j < matrix[i].nedges; j++) |
| 572 | res += matrix[i].ewgts[j] * vector[matrix[i].edges[j]]; |
| 573 | result[i] = res; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /* inline */ |
| 578 | void right_mult_with_vector_fd |
| 579 | (float **matrix, int n, float *vector, double *result) { |
| 580 | int i, j; |
| 581 | |
| 582 | float res; |
| 583 | for (i = 0; i < n; i++) { |
| 584 | res = 0; |
| 585 | for (j = 0; j < n; j++) |
| 586 | res += matrix[i][j] * vector[j]; |
| 587 | result[i] = res; |
| 588 | } |
| 589 | } |
| 590 | #endif |
| 591 | |
| 592 | /* inline */ |
| 593 | void right_mult_with_vector_ff |
| 594 | (float *packed_matrix, int n, float *vector, float *result) { |
| 595 | /* packed matrix is the upper-triangular part of a symmetric matrix arranged in a vector row-wise */ |
| 596 | int i, j, index; |
| 597 | float vector_i; |
| 598 | |
| 599 | float res; |
| 600 | for (i = 0; i < n; i++) { |
| 601 | result[i] = 0; |
| 602 | } |
| 603 | for (index = 0, i = 0; i < n; i++) { |
| 604 | res = 0; |
| 605 | vector_i = vector[i]; |
| 606 | /* deal with main diag */ |
| 607 | res += packed_matrix[index++] * vector_i; |
| 608 | /* deal with off diag */ |
| 609 | for (j = i + 1; j < n; j++, index++) { |
| 610 | res += packed_matrix[index] * vector[j]; |
| 611 | result[j] += packed_matrix[index] * vector_i; |
| 612 | } |
| 613 | result[i] += res; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | /* inline */ |
| 618 | void |
| 619 | vectors_substractionf(int n, float *vector1, float *vector2, float *result) |
| 620 | { |
| 621 | int i; |
| 622 | for (i = 0; i < n; i++) { |
| 623 | result[i] = vector1[i] - vector2[i]; |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | /* inline */ |
| 628 | void |
| 629 | vectors_additionf(int n, float *vector1, float *vector2, float *result) |
| 630 | { |
| 631 | int i; |
| 632 | for (i = 0; i < n; i++) { |
| 633 | result[i] = vector1[i] + vector2[i]; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /* inline */ |
| 638 | void |
| 639 | vectors_mult_additionf(int n, float *vector1, float alpha, float *vector2) |
| 640 | { |
| 641 | int i; |
| 642 | for (i = 0; i < n; i++) { |
| 643 | vector1[i] = vector1[i] + alpha * vector2[i]; |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | /* inline */ |
| 648 | void vectors_scalar_multf(int n, float *vector, float alpha, float *result) |
| 649 | { |
| 650 | int i; |
| 651 | for (i = 0; i < n; i++) { |
| 652 | result[i] = (float) vector[i] * alpha; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* inline */ |
| 657 | void copy_vectorf(int n, float *source, float *dest) |
| 658 | { |
| 659 | int i; |
| 660 | for (i = 0; i < n; i++) |
| 661 | dest[i] = source[i]; |
| 662 | } |
| 663 | |
| 664 | /* inline */ |
| 665 | double vectors_inner_productf(int n, float *vector1, float *vector2) |
| 666 | { |
| 667 | int i; |
| 668 | double result = 0; |
| 669 | for (i = 0; i < n; i++) { |
| 670 | result += vector1[i] * vector2[i]; |
| 671 | } |
| 672 | |
| 673 | return result; |
| 674 | } |
| 675 | |
| 676 | /* inline */ |
| 677 | void set_vector_val(int n, double val, double *result) |
| 678 | { |
| 679 | int i; |
| 680 | for (i = 0; i < n; i++) |
| 681 | result[i] = val; |
| 682 | } |
| 683 | |
| 684 | /* inline */ |
| 685 | void set_vector_valf(int n, float val, float* result) |
| 686 | { |
| 687 | int i; |
| 688 | for (i = 0; i < n; i++) |
| 689 | result[i] = val; |
| 690 | } |
| 691 | |
| 692 | /* inline */ |
| 693 | double max_absf(int n, float *vector) |
| 694 | { |
| 695 | int i; |
| 696 | float max_val = -1e30f; |
| 697 | for (i = 0; i < n; i++) |
| 698 | if (fabs(vector[i]) > max_val) |
| 699 | max_val = (float) (fabs(vector[i])); |
| 700 | |
| 701 | return max_val; |
| 702 | } |
| 703 | |
| 704 | /* inline */ |
| 705 | void square_vec(int n, float *vec) |
| 706 | { |
| 707 | int i; |
| 708 | for (i = 0; i < n; i++) { |
| 709 | vec[i] *= vec[i]; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | /* inline */ |
| 714 | void invert_vec(int n, float *vec) |
| 715 | { |
| 716 | int i; |
| 717 | float v; |
| 718 | for (i = 0; i < n; i++) { |
| 719 | if ((v = vec[i]) != 0.0) |
| 720 | vec[i] = 1.0f / v; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | /* inline */ |
| 725 | void sqrt_vec(int n, float *vec) |
| 726 | { |
| 727 | int i; |
| 728 | double d; |
| 729 | for (i = 0; i < n; i++) { |
| 730 | /* do this in two steps to avoid a bug in gcc-4.00 on AIX */ |
| 731 | d = sqrt(vec[i]); |
| 732 | vec[i] = (float) d; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | /* inline */ |
| 737 | void sqrt_vecf(int n, float *source, float *target) |
| 738 | { |
| 739 | int i; |
| 740 | double d; |
| 741 | float v; |
| 742 | for (i = 0; i < n; i++) { |
| 743 | if ((v = source[i]) >= 0.0) { |
| 744 | /* do this in two steps to avoid a bug in gcc-4.00 on AIX */ |
| 745 | d = sqrt(v); |
| 746 | target[i] = (float) d; |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | /* inline */ |
| 752 | void invert_sqrt_vec(int n, float *vec) |
| 753 | { |
| 754 | int i; |
| 755 | double d; |
| 756 | float v; |
| 757 | for (i = 0; i < n; i++) { |
| 758 | if ((v = vec[i]) > 0.0) { |
| 759 | /* do this in two steps to avoid a bug in gcc-4.00 on AIX */ |
| 760 | d = 1. / sqrt(v); |
| 761 | vec[i] = (float) d; |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | #ifdef UNUSED |
| 767 | /* inline */ |
| 768 | void init_vec_orth1f(int n, float *vec) |
| 769 | { |
| 770 | /* randomly generate a vector orthogonal to 1 (i.e., with mean 0) */ |
| 771 | int i; |
| 772 | |
| 773 | for (i = 0; i < n; i++) |
| 774 | vec[i] = (float) (rand() % RANGE); |
| 775 | |
| 776 | orthog1f(n, vec); |
| 777 | } |
| 778 | |
| 779 | |
| 780 | /* sparse matrix extensions: */ |
| 781 | |
| 782 | /* inline */ |
| 783 | void mat_mult_vecf(vtx_data * L, int n, float *vec, float *result) |
| 784 | { |
| 785 | /* compute result= -L*vec */ |
| 786 | int i, j; |
| 787 | float sum; |
| 788 | int *edges; |
| 789 | float *ewgts; |
| 790 | |
| 791 | for (i = 0; i < n; i++) { |
| 792 | sum = 0; |
| 793 | edges = L[i].edges; |
| 794 | ewgts = L[i].ewgts; |
| 795 | for (j = 0; j < L[i].nedges; j++) { |
| 796 | sum -= ewgts[j] * vec[edges[j]]; |
| 797 | } |
| 798 | result[i] = sum; |
| 799 | } |
| 800 | } |
| 801 | #endif |
| 802 | |
| 803 | #endif |
| 804 | |