| 1 | /* $Id$ $Revision$ */ | 
|---|
| 2 | /* vim:set shiftwidth=4 ts=8: */ | 
|---|
| 3 |  | 
|---|
| 4 | /************************************************************************* | 
|---|
| 5 | * Copyright (c) 2011 AT&T Intellectual Property | 
|---|
| 6 | * All rights reserved. This program and the accompanying materials | 
|---|
| 7 | * are made available under the terms of the Eclipse Public License v1.0 | 
|---|
| 8 | * which accompanies this distribution, and is available at | 
|---|
| 9 | * http://www.eclipse.org/legal/epl-v10.html | 
|---|
| 10 | * | 
|---|
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ | 
|---|
| 12 | *************************************************************************/ | 
|---|
| 13 |  | 
|---|
| 14 |  | 
|---|
| 15 | #include "matrix_ops.h" | 
|---|
| 16 | #include "memory.h" | 
|---|
| 17 | #include <stdlib.h> | 
|---|
| 18 | #include <stdio.h> | 
|---|
| 19 | #include <math.h> | 
|---|
| 20 |  | 
|---|
| 21 | static double p_iteration_threshold = 1e-3; | 
|---|
| 22 |  | 
|---|
| 23 | int | 
|---|
| 24 | power_iteration(double **square_mat, int n, int neigs, double **eigs, | 
|---|
| 25 | double *evals, int initialize) | 
|---|
| 26 | { | 
|---|
| 27 | /* compute the 'neigs' top eigenvectors of 'square_mat' using power iteration */ | 
|---|
| 28 |  | 
|---|
| 29 | int i, j; | 
|---|
| 30 | double *tmp_vec = N_GNEW(n, double); | 
|---|
| 31 | double *last_vec = N_GNEW(n, double); | 
|---|
| 32 | double *curr_vector; | 
|---|
| 33 | double len; | 
|---|
| 34 | double angle; | 
|---|
| 35 | double alpha; | 
|---|
| 36 | int iteration = 0; | 
|---|
| 37 | int largest_index; | 
|---|
| 38 | double largest_eval; | 
|---|
| 39 | int Max_iterations = 30 * n; | 
|---|
| 40 |  | 
|---|
| 41 | double tol = 1 - p_iteration_threshold; | 
|---|
| 42 |  | 
|---|
| 43 | if (neigs >= n) { | 
|---|
| 44 | neigs = n; | 
|---|
| 45 | } | 
|---|
| 46 |  | 
|---|
| 47 | for (i = 0; i < neigs; i++) { | 
|---|
| 48 | curr_vector = eigs[i]; | 
|---|
| 49 | /* guess the i-th eigen vector */ | 
|---|
| 50 | choose: | 
|---|
| 51 | if (initialize) | 
|---|
| 52 | for (j = 0; j < n; j++) | 
|---|
| 53 | curr_vector[j] = rand() % 100; | 
|---|
| 54 | /* orthogonalize against higher eigenvectors */ | 
|---|
| 55 | for (j = 0; j < i; j++) { | 
|---|
| 56 | alpha = -dot(eigs[j], 0, n - 1, curr_vector); | 
|---|
| 57 | scadd(curr_vector, 0, n - 1, alpha, eigs[j]); | 
|---|
| 58 | } | 
|---|
| 59 | len = norm(curr_vector, 0, n - 1); | 
|---|
| 60 | if (len < 1e-10) { | 
|---|
| 61 | /* We have chosen a vector colinear with prvious ones */ | 
|---|
| 62 | goto choose; | 
|---|
| 63 | } | 
|---|
| 64 | vecscale(curr_vector, 0, n - 1, 1.0 / len, curr_vector); | 
|---|
| 65 | iteration = 0; | 
|---|
| 66 | do { | 
|---|
| 67 | iteration++; | 
|---|
| 68 | cpvec(last_vec, 0, n - 1, curr_vector); | 
|---|
| 69 |  | 
|---|
| 70 | right_mult_with_vector_d(square_mat, n, n, curr_vector, | 
|---|
| 71 | tmp_vec); | 
|---|
| 72 | cpvec(curr_vector, 0, n - 1, tmp_vec); | 
|---|
| 73 |  | 
|---|
| 74 | /* orthogonalize against higher eigenvectors */ | 
|---|
| 75 | for (j = 0; j < i; j++) { | 
|---|
| 76 | alpha = -dot(eigs[j], 0, n - 1, curr_vector); | 
|---|
| 77 | scadd(curr_vector, 0, n - 1, alpha, eigs[j]); | 
|---|
| 78 | } | 
|---|
| 79 | len = norm(curr_vector, 0, n - 1); | 
|---|
| 80 | if (len < 1e-10 || iteration > Max_iterations) { | 
|---|
| 81 | /* We have reached the null space (e.vec. associated with e.val. 0) */ | 
|---|
| 82 | goto exit; | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 | vecscale(curr_vector, 0, n - 1, 1.0 / len, curr_vector); | 
|---|
| 86 | angle = dot(curr_vector, 0, n - 1, last_vec); | 
|---|
| 87 | } while (fabs(angle) < tol); | 
|---|
| 88 | evals[i] = angle * len;	/* this is the Rayleigh quotient (up to errors due to orthogonalization): | 
|---|
| 89 | u*(A*u)/||A*u||)*||A*u||, where u=last_vec, and ||u||=1 | 
|---|
| 90 | */ | 
|---|
| 91 | } | 
|---|
| 92 | exit: | 
|---|
| 93 | for (; i < neigs; i++) { | 
|---|
| 94 | /* compute the smallest eigenvector, which are  */ | 
|---|
| 95 | /* probably associated with eigenvalue 0 and for */ | 
|---|
| 96 | /* which power-iteration is dangerous */ | 
|---|
| 97 | curr_vector = eigs[i]; | 
|---|
| 98 | /* guess the i-th eigen vector */ | 
|---|
| 99 | for (j = 0; j < n; j++) | 
|---|
| 100 | curr_vector[j] = rand() % 100; | 
|---|
| 101 | /* orthogonalize against higher eigenvectors */ | 
|---|
| 102 | for (j = 0; j < i; j++) { | 
|---|
| 103 | alpha = -dot(eigs[j], 0, n - 1, curr_vector); | 
|---|
| 104 | scadd(curr_vector, 0, n - 1, alpha, eigs[j]); | 
|---|
| 105 | } | 
|---|
| 106 | len = norm(curr_vector, 0, n - 1); | 
|---|
| 107 | vecscale(curr_vector, 0, n - 1, 1.0 / len, curr_vector); | 
|---|
| 108 | evals[i] = 0; | 
|---|
| 109 |  | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 |  | 
|---|
| 113 | /* sort vectors by their evals, for overcoming possible mis-convergence: */ | 
|---|
| 114 | for (i = 0; i < neigs - 1; i++) { | 
|---|
| 115 | largest_index = i; | 
|---|
| 116 | largest_eval = evals[largest_index]; | 
|---|
| 117 | for (j = i + 1; j < neigs; j++) { | 
|---|
| 118 | if (largest_eval < evals[j]) { | 
|---|
| 119 | largest_index = j; | 
|---|
| 120 | largest_eval = evals[largest_index]; | 
|---|
| 121 | } | 
|---|
| 122 | } | 
|---|
| 123 | if (largest_index != i) {	/* exchange eigenvectors: */ | 
|---|
| 124 | cpvec(tmp_vec, 0, n - 1, eigs[i]); | 
|---|
| 125 | cpvec(eigs[i], 0, n - 1, eigs[largest_index]); | 
|---|
| 126 | cpvec(eigs[largest_index], 0, n - 1, tmp_vec); | 
|---|
| 127 |  | 
|---|
| 128 | evals[largest_index] = evals[i]; | 
|---|
| 129 | evals[i] = largest_eval; | 
|---|
| 130 | } | 
|---|
| 131 | } | 
|---|
| 132 |  | 
|---|
| 133 | free(tmp_vec); | 
|---|
| 134 | free(last_vec); | 
|---|
| 135 |  | 
|---|
| 136 | return (iteration <= Max_iterations); | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 |  | 
|---|
| 140 |  | 
|---|
| 141 | void | 
|---|
| 142 | mult_dense_mat(double **A, float **B, int dim1, int dim2, int dim3, | 
|---|
| 143 | float ***CC) | 
|---|
| 144 | { | 
|---|
| 145 | /* | 
|---|
| 146 | A is dim1 x dim2, B is dim2 x dim3, C = A x B | 
|---|
| 147 | */ | 
|---|
| 148 |  | 
|---|
| 149 | double sum; | 
|---|
| 150 | int i, j, k; | 
|---|
| 151 | float *storage; | 
|---|
| 152 | float **C = *CC; | 
|---|
| 153 | if (C != NULL) { | 
|---|
| 154 | storage = (float *) realloc(C[0], dim1 * dim3 * sizeof(A[0])); | 
|---|
| 155 | *CC = C = (float **) realloc(C, dim1 * sizeof(A)); | 
|---|
| 156 | } else { | 
|---|
| 157 | storage = (float *) malloc(dim1 * dim3 * sizeof(A[0])); | 
|---|
| 158 | *CC = C = (float **) malloc(dim1 * sizeof(A)); | 
|---|
| 159 | } | 
|---|
| 160 |  | 
|---|
| 161 | for (i = 0; i < dim1; i++) { | 
|---|
| 162 | C[i] = storage; | 
|---|
| 163 | storage += dim3; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | for (i = 0; i < dim1; i++) { | 
|---|
| 167 | for (j = 0; j < dim3; j++) { | 
|---|
| 168 | sum = 0; | 
|---|
| 169 | for (k = 0; k < dim2; k++) { | 
|---|
| 170 | sum += A[i][k] * B[k][j]; | 
|---|
| 171 | } | 
|---|
| 172 | C[i][j] = (float) (sum); | 
|---|
| 173 | } | 
|---|
| 174 | } | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | void | 
|---|
| 178 | mult_dense_mat_d(double **A, float **B, int dim1, int dim2, int dim3, | 
|---|
| 179 | double ***CC) | 
|---|
| 180 | { | 
|---|
| 181 | /* | 
|---|
| 182 | A is dim1 x dim2, B is dim2 x dim3, C = A x B | 
|---|
| 183 | */ | 
|---|
| 184 | double **C = *CC; | 
|---|
| 185 | double *storage; | 
|---|
| 186 | int i, j, k; | 
|---|
| 187 | double sum; | 
|---|
| 188 |  | 
|---|
| 189 | if (C != NULL) { | 
|---|
| 190 | storage = (double *) realloc(C[0], dim1 * dim3 * sizeof(double)); | 
|---|
| 191 | *CC = C = (double **) realloc(C, dim1 * sizeof(double *)); | 
|---|
| 192 | } else { | 
|---|
| 193 | storage = (double *) malloc(dim1 * dim3 * sizeof(double)); | 
|---|
| 194 | *CC = C = (double **) malloc(dim1 * sizeof(double *)); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | for (i = 0; i < dim1; i++) { | 
|---|
| 198 | C[i] = storage; | 
|---|
| 199 | storage += dim3; | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | for (i = 0; i < dim1; i++) { | 
|---|
| 203 | for (j = 0; j < dim3; j++) { | 
|---|
| 204 | sum = 0; | 
|---|
| 205 | for (k = 0; k < dim2; k++) { | 
|---|
| 206 | sum += A[i][k] * B[k][j]; | 
|---|
| 207 | } | 
|---|
| 208 | C[i][j] = sum; | 
|---|
| 209 | } | 
|---|
| 210 | } | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | void | 
|---|
| 214 | mult_sparse_dense_mat_transpose(vtx_data * A, double **B, int dim1, | 
|---|
| 215 | int dim2, float ***CC) | 
|---|
| 216 | { | 
|---|
| 217 | /* | 
|---|
| 218 | A is dim1 x dim1 and sparse, B is dim2 x dim1, C = A x B | 
|---|
| 219 | */ | 
|---|
| 220 |  | 
|---|
| 221 | float *storage; | 
|---|
| 222 | int i, j, k; | 
|---|
| 223 | double sum; | 
|---|
| 224 | float *ewgts; | 
|---|
| 225 | int *edges; | 
|---|
| 226 | int nedges; | 
|---|
| 227 | float **C = *CC; | 
|---|
| 228 | if (C != NULL) { | 
|---|
| 229 | storage = (float *) realloc(C[0], dim1 * dim2 * sizeof(A[0])); | 
|---|
| 230 | *CC = C = (float **) realloc(C, dim1 * sizeof(A)); | 
|---|
| 231 | } else { | 
|---|
| 232 | storage = (float *) malloc(dim1 * dim2 * sizeof(A[0])); | 
|---|
| 233 | *CC = C = (float **) malloc(dim1 * sizeof(A)); | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | for (i = 0; i < dim1; i++) { | 
|---|
| 237 | C[i] = storage; | 
|---|
| 238 | storage += dim2; | 
|---|
| 239 | } | 
|---|
| 240 |  | 
|---|
| 241 | for (i = 0; i < dim1; i++) { | 
|---|
| 242 | edges = A[i].edges; | 
|---|
| 243 | ewgts = A[i].ewgts; | 
|---|
| 244 | nedges = A[i].nedges; | 
|---|
| 245 | for (j = 0; j < dim2; j++) { | 
|---|
| 246 | sum = 0; | 
|---|
| 247 | for (k = 0; k < nedges; k++) { | 
|---|
| 248 | sum += ewgts[k] * B[j][edges[k]]; | 
|---|
| 249 | } | 
|---|
| 250 | C[i][j] = (float) (sum); | 
|---|
| 251 | } | 
|---|
| 252 | } | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 |  | 
|---|
| 256 |  | 
|---|
| 257 | /* Copy a range of a double vector to a double vector */ | 
|---|
| 258 | void cpvec(double *copy, int beg, int end, double *vec) | 
|---|
| 259 | { | 
|---|
| 260 | int i; | 
|---|
| 261 |  | 
|---|
| 262 | copy = copy + beg; | 
|---|
| 263 | vec = vec + beg; | 
|---|
| 264 | for (i = end - beg + 1; i; i--) { | 
|---|
| 265 | *copy++ = *vec++; | 
|---|
| 266 | } | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | /* Returns scalar product of two double n-vectors. */ | 
|---|
| 270 | double dot(double *vec1, int beg, int end, double *vec2) | 
|---|
| 271 | { | 
|---|
| 272 | int i; | 
|---|
| 273 | double sum; | 
|---|
| 274 |  | 
|---|
| 275 | sum = 0.0; | 
|---|
| 276 | vec1 = vec1 + beg; | 
|---|
| 277 | vec2 = vec2 + beg; | 
|---|
| 278 | for (i = end - beg + 1; i; i--) { | 
|---|
| 279 | sum += (*vec1++) * (*vec2++); | 
|---|
| 280 | } | 
|---|
| 281 | return (sum); | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 |  | 
|---|
| 285 | /* Scaled add - fills double vec1 with vec1 + alpha*vec2 over range*/ | 
|---|
| 286 | void scadd(double *vec1, int beg, int end, double fac, double *vec2) | 
|---|
| 287 | { | 
|---|
| 288 | int i; | 
|---|
| 289 |  | 
|---|
| 290 | vec1 = vec1 + beg; | 
|---|
| 291 | vec2 = vec2 + beg; | 
|---|
| 292 | for (i = end - beg + 1; i; i--) { | 
|---|
| 293 | (*vec1++) += fac * (*vec2++); | 
|---|
| 294 | } | 
|---|
| 295 | } | 
|---|
| 296 |  | 
|---|
| 297 | /* Scale - fills vec1 with alpha*vec2 over range, double version */ | 
|---|
| 298 | void vecscale(double *vec1, int beg, int end, double alpha, double *vec2) | 
|---|
| 299 | { | 
|---|
| 300 | int i; | 
|---|
| 301 |  | 
|---|
| 302 | vec1 += beg; | 
|---|
| 303 | vec2 += beg; | 
|---|
| 304 | for (i = end - beg + 1; i; i--) { | 
|---|
| 305 | (*vec1++) = alpha * (*vec2++); | 
|---|
| 306 | } | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | /* Returns 2-norm of a double n-vector over range. */ | 
|---|
| 310 | double norm(double *vec, int beg, int end) | 
|---|
| 311 | { | 
|---|
| 312 | return (sqrt(dot(vec, beg, end, vec))); | 
|---|
| 313 | } | 
|---|
| 314 |  | 
|---|
| 315 |  | 
|---|
| 316 | #ifndef __cplusplus | 
|---|
| 317 |  | 
|---|
| 318 | /* inline */ | 
|---|
| 319 | void orthog1(int n, double *vec	/* vector to be orthogonalized against 1 */ | 
|---|
| 320 | ) | 
|---|
| 321 | { | 
|---|
| 322 | int i; | 
|---|
| 323 | double *pntr; | 
|---|
| 324 | double sum; | 
|---|
| 325 |  | 
|---|
| 326 | sum = 0.0; | 
|---|
| 327 | pntr = vec; | 
|---|
| 328 | for (i = n; i; i--) { | 
|---|
| 329 | sum += *pntr++; | 
|---|
| 330 | } | 
|---|
| 331 | sum /= n; | 
|---|
| 332 | pntr = vec; | 
|---|
| 333 | for (i = n; i; i--) { | 
|---|
| 334 | *pntr++ -= sum; | 
|---|
| 335 | } | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | #define RANGE 500 | 
|---|
| 339 |  | 
|---|
| 340 | /* inline */ | 
|---|
| 341 | void init_vec_orth1(int n, double *vec) | 
|---|
| 342 | { | 
|---|
| 343 | /* randomly generate a vector orthogonal to 1 (i.e., with mean 0) */ | 
|---|
| 344 | int i; | 
|---|
| 345 |  | 
|---|
| 346 | for (i = 0; i < n; i++) | 
|---|
| 347 | vec[i] = rand() % RANGE; | 
|---|
| 348 |  | 
|---|
| 349 | orthog1(n, vec); | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | /* inline */ | 
|---|
| 353 | void | 
|---|
| 354 | right_mult_with_vector(vtx_data * matrix, int n, double *vector, | 
|---|
| 355 | double *result) | 
|---|
| 356 | { | 
|---|
| 357 | int i, j; | 
|---|
| 358 |  | 
|---|
| 359 | double res; | 
|---|
| 360 | for (i = 0; i < n; i++) { | 
|---|
| 361 | res = 0; | 
|---|
| 362 | for (j = 0; j < matrix[i].nedges; j++) | 
|---|
| 363 | res += matrix[i].ewgts[j] * vector[matrix[i].edges[j]]; | 
|---|
| 364 | result[i] = res; | 
|---|
| 365 | } | 
|---|
| 366 | /* orthog1(n,vector); */ | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | /* inline */ | 
|---|
| 370 | void | 
|---|
| 371 | right_mult_with_vector_f(float **matrix, int n, double *vector, | 
|---|
| 372 | double *result) | 
|---|
| 373 | { | 
|---|
| 374 | int i, j; | 
|---|
| 375 |  | 
|---|
| 376 | double res; | 
|---|
| 377 | for (i = 0; i < n; i++) { | 
|---|
| 378 | res = 0; | 
|---|
| 379 | for (j = 0; j < n; j++) | 
|---|
| 380 | res += matrix[i][j] * vector[j]; | 
|---|
| 381 | result[i] = res; | 
|---|
| 382 | } | 
|---|
| 383 | /* orthog1(n,vector); */ | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | /* inline */ | 
|---|
| 387 | void | 
|---|
| 388 | vectors_subtraction(int n, double *vector1, double *vector2, | 
|---|
| 389 | double *result) | 
|---|
| 390 | { | 
|---|
| 391 | int i; | 
|---|
| 392 | for (i = 0; i < n; i++) { | 
|---|
| 393 | result[i] = vector1[i] - vector2[i]; | 
|---|
| 394 | } | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | /* inline */ | 
|---|
| 398 | void | 
|---|
| 399 | vectors_addition(int n, double *vector1, double *vector2, double *result) | 
|---|
| 400 | { | 
|---|
| 401 | int i; | 
|---|
| 402 | for (i = 0; i < n; i++) { | 
|---|
| 403 | result[i] = vector1[i] + vector2[i]; | 
|---|
| 404 | } | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | #ifdef UNUSED | 
|---|
| 408 | /* inline */ | 
|---|
| 409 | void | 
|---|
| 410 | vectors_mult_addition(int n, double *vector1, double alpha, | 
|---|
| 411 | double *vector2) | 
|---|
| 412 | { | 
|---|
| 413 | int i; | 
|---|
| 414 | for (i = 0; i < n; i++) { | 
|---|
| 415 | vector1[i] = vector1[i] + alpha * vector2[i]; | 
|---|
| 416 | } | 
|---|
| 417 | } | 
|---|
| 418 | #endif | 
|---|
| 419 |  | 
|---|
| 420 | /* inline */ | 
|---|
| 421 | void | 
|---|
| 422 | vectors_scalar_mult(int n, double *vector, double alpha, double *result) | 
|---|
| 423 | { | 
|---|
| 424 | int i; | 
|---|
| 425 | for (i = 0; i < n; i++) { | 
|---|
| 426 | result[i] = vector[i] * alpha; | 
|---|
| 427 | } | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | /* inline */ | 
|---|
| 431 | void copy_vector(int n, double *source, double *dest) | 
|---|
| 432 | { | 
|---|
| 433 | int i; | 
|---|
| 434 | for (i = 0; i < n; i++) | 
|---|
| 435 | dest[i] = source[i]; | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | /* inline */ | 
|---|
| 439 | double vectors_inner_product(int n, double *vector1, double *vector2) | 
|---|
| 440 | { | 
|---|
| 441 | int i; | 
|---|
| 442 | double result = 0; | 
|---|
| 443 | for (i = 0; i < n; i++) { | 
|---|
| 444 | result += vector1[i] * vector2[i]; | 
|---|
| 445 | } | 
|---|
| 446 |  | 
|---|
| 447 | return result; | 
|---|
| 448 | } | 
|---|
| 449 |  | 
|---|
| 450 | /* inline */ | 
|---|
| 451 | double max_abs(int n, double *vector) | 
|---|
| 452 | { | 
|---|
| 453 | double max_val = -1e50; | 
|---|
| 454 | int i; | 
|---|
| 455 | for (i = 0; i < n; i++) | 
|---|
| 456 | if (fabs(vector[i]) > max_val) | 
|---|
| 457 | max_val = fabs(vector[i]); | 
|---|
| 458 |  | 
|---|
| 459 | return max_val; | 
|---|
| 460 | } | 
|---|
| 461 |  | 
|---|
| 462 | #ifdef UNUSED | 
|---|
| 463 | /* inline */ | 
|---|
| 464 | void orthogvec(int n, double *vec1,	/* vector to be orthogonalized */ | 
|---|
| 465 | double *vec2	/* normalized vector to be orthogonalized against */ | 
|---|
| 466 | ) | 
|---|
| 467 | { | 
|---|
| 468 | double alpha; | 
|---|
| 469 | if (vec2 == NULL) { | 
|---|
| 470 | return; | 
|---|
| 471 | } | 
|---|
| 472 |  | 
|---|
| 473 | alpha = -vectors_inner_product(n, vec1, vec2); | 
|---|
| 474 |  | 
|---|
| 475 | vectors_mult_addition(n, vec1, alpha, vec2); | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | /* sparse matrix extensions: */ | 
|---|
| 479 |  | 
|---|
| 480 | /* inline */ | 
|---|
| 481 | void mat_mult_vec(vtx_data * L, int n, double *vec, double *result) | 
|---|
| 482 | { | 
|---|
| 483 | /* compute result= -L*vec */ | 
|---|
| 484 | int i, j; | 
|---|
| 485 | double sum; | 
|---|
| 486 | int *edges; | 
|---|
| 487 | float *ewgts; | 
|---|
| 488 |  | 
|---|
| 489 | for (i = 0; i < n; i++) { | 
|---|
| 490 | sum = 0; | 
|---|
| 491 | edges = L[i].edges; | 
|---|
| 492 | ewgts = L[i].ewgts; | 
|---|
| 493 | for (j = 0; j < L[i].nedges; j++) { | 
|---|
| 494 | sum -= ewgts[j] * vec[edges[j]]; | 
|---|
| 495 | } | 
|---|
| 496 | result[i] = sum; | 
|---|
| 497 | } | 
|---|
| 498 | } | 
|---|
| 499 | #endif | 
|---|
| 500 |  | 
|---|
| 501 | /* inline */ | 
|---|
| 502 | void | 
|---|
| 503 | right_mult_with_vector_transpose(double **matrix, | 
|---|
| 504 | int dim1, int dim2, | 
|---|
| 505 | double *vector, double *result) | 
|---|
| 506 | { | 
|---|
| 507 | /* matrix is dim2 x dim1, vector has dim2 components, result=matrix^T x vector */ | 
|---|
| 508 | int i, j; | 
|---|
| 509 |  | 
|---|
| 510 | double res; | 
|---|
| 511 | for (i = 0; i < dim1; i++) { | 
|---|
| 512 | res = 0; | 
|---|
| 513 | for (j = 0; j < dim2; j++) | 
|---|
| 514 | res += matrix[j][i] * vector[j]; | 
|---|
| 515 | result[i] = res; | 
|---|
| 516 | } | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 | /* inline */ | 
|---|
| 520 | void | 
|---|
| 521 | right_mult_with_vector_d(double **matrix, | 
|---|
| 522 | int dim1, int dim2, | 
|---|
| 523 | double *vector, double *result) | 
|---|
| 524 | { | 
|---|
| 525 | /* matrix is dim1 x dim2, vector has dim2 components, result=matrix x vector */ | 
|---|
| 526 | int i, j; | 
|---|
| 527 |  | 
|---|
| 528 | double res; | 
|---|
| 529 | for (i = 0; i < dim1; i++) { | 
|---|
| 530 | res = 0; | 
|---|
| 531 | for (j = 0; j < dim2; j++) | 
|---|
| 532 | res += matrix[i][j] * vector[j]; | 
|---|
| 533 | result[i] = res; | 
|---|
| 534 | } | 
|---|
| 535 | } | 
|---|
| 536 |  | 
|---|
| 537 |  | 
|---|
| 538 | /***************************** | 
|---|
| 539 | ** Single precision (float) ** | 
|---|
| 540 | ** version                  ** | 
|---|
| 541 | *****************************/ | 
|---|
| 542 |  | 
|---|
| 543 | /* inline */ | 
|---|
| 544 | void orthog1f(int n, float *vec) | 
|---|
| 545 | { | 
|---|
| 546 | int i; | 
|---|
| 547 | float *pntr; | 
|---|
| 548 | float sum; | 
|---|
| 549 |  | 
|---|
| 550 | sum = 0.0; | 
|---|
| 551 | pntr = vec; | 
|---|
| 552 | for (i = n; i; i--) { | 
|---|
| 553 | sum += *pntr++; | 
|---|
| 554 | } | 
|---|
| 555 | sum /= n; | 
|---|
| 556 | pntr = vec; | 
|---|
| 557 | for (i = n; i; i--) { | 
|---|
| 558 | *pntr++ -= sum; | 
|---|
| 559 | } | 
|---|
| 560 | } | 
|---|
| 561 |  | 
|---|
| 562 | #ifdef UNUSED | 
|---|
| 563 | /* inline */ | 
|---|
| 564 | void right_mult_with_vectorf | 
|---|
| 565 | (vtx_data * matrix, int n, float *vector, float *result) { | 
|---|
| 566 | int i, j; | 
|---|
| 567 |  | 
|---|
| 568 | float res; | 
|---|
| 569 | for (i = 0; i < n; i++) { | 
|---|
| 570 | res = 0; | 
|---|
| 571 | for (j = 0; j < matrix[i].nedges; j++) | 
|---|
| 572 | res += matrix[i].ewgts[j] * vector[matrix[i].edges[j]]; | 
|---|
| 573 | result[i] = res; | 
|---|
| 574 | } | 
|---|
| 575 | } | 
|---|
| 576 |  | 
|---|
| 577 | /* inline */ | 
|---|
| 578 | void right_mult_with_vector_fd | 
|---|
| 579 | (float **matrix, int n, float *vector, double *result) { | 
|---|
| 580 | int i, j; | 
|---|
| 581 |  | 
|---|
| 582 | float res; | 
|---|
| 583 | for (i = 0; i < n; i++) { | 
|---|
| 584 | res = 0; | 
|---|
| 585 | for (j = 0; j < n; j++) | 
|---|
| 586 | res += matrix[i][j] * vector[j]; | 
|---|
| 587 | result[i] = res; | 
|---|
| 588 | } | 
|---|
| 589 | } | 
|---|
| 590 | #endif | 
|---|
| 591 |  | 
|---|
| 592 | /* inline */ | 
|---|
| 593 | void right_mult_with_vector_ff | 
|---|
| 594 | (float *packed_matrix, int n, float *vector, float *result) { | 
|---|
| 595 | /* packed matrix is the upper-triangular part of a symmetric matrix arranged in a vector row-wise */ | 
|---|
| 596 | int i, j, index; | 
|---|
| 597 | float vector_i; | 
|---|
| 598 |  | 
|---|
| 599 | float res; | 
|---|
| 600 | for (i = 0; i < n; i++) { | 
|---|
| 601 | result[i] = 0; | 
|---|
| 602 | } | 
|---|
| 603 | for (index = 0, i = 0; i < n; i++) { | 
|---|
| 604 | res = 0; | 
|---|
| 605 | vector_i = vector[i]; | 
|---|
| 606 | /* deal with main diag */ | 
|---|
| 607 | res += packed_matrix[index++] * vector_i; | 
|---|
| 608 | /* deal with off diag */ | 
|---|
| 609 | for (j = i + 1; j < n; j++, index++) { | 
|---|
| 610 | res += packed_matrix[index] * vector[j]; | 
|---|
| 611 | result[j] += packed_matrix[index] * vector_i; | 
|---|
| 612 | } | 
|---|
| 613 | result[i] += res; | 
|---|
| 614 | } | 
|---|
| 615 | } | 
|---|
| 616 |  | 
|---|
| 617 | /* inline */ | 
|---|
| 618 | void | 
|---|
| 619 | vectors_substractionf(int n, float *vector1, float *vector2, float *result) | 
|---|
| 620 | { | 
|---|
| 621 | int i; | 
|---|
| 622 | for (i = 0; i < n; i++) { | 
|---|
| 623 | result[i] = vector1[i] - vector2[i]; | 
|---|
| 624 | } | 
|---|
| 625 | } | 
|---|
| 626 |  | 
|---|
| 627 | /* inline */ | 
|---|
| 628 | void | 
|---|
| 629 | vectors_additionf(int n, float *vector1, float *vector2, float *result) | 
|---|
| 630 | { | 
|---|
| 631 | int i; | 
|---|
| 632 | for (i = 0; i < n; i++) { | 
|---|
| 633 | result[i] = vector1[i] + vector2[i]; | 
|---|
| 634 | } | 
|---|
| 635 | } | 
|---|
| 636 |  | 
|---|
| 637 | /* inline */ | 
|---|
| 638 | void | 
|---|
| 639 | vectors_mult_additionf(int n, float *vector1, float alpha, float *vector2) | 
|---|
| 640 | { | 
|---|
| 641 | int i; | 
|---|
| 642 | for (i = 0; i < n; i++) { | 
|---|
| 643 | vector1[i] = vector1[i] + alpha * vector2[i]; | 
|---|
| 644 | } | 
|---|
| 645 | } | 
|---|
| 646 |  | 
|---|
| 647 | /* inline */ | 
|---|
| 648 | void vectors_scalar_multf(int n, float *vector, float alpha, float *result) | 
|---|
| 649 | { | 
|---|
| 650 | int i; | 
|---|
| 651 | for (i = 0; i < n; i++) { | 
|---|
| 652 | result[i] = (float) vector[i] * alpha; | 
|---|
| 653 | } | 
|---|
| 654 | } | 
|---|
| 655 |  | 
|---|
| 656 | /* inline */ | 
|---|
| 657 | void copy_vectorf(int n, float *source, float *dest) | 
|---|
| 658 | { | 
|---|
| 659 | int i; | 
|---|
| 660 | for (i = 0; i < n; i++) | 
|---|
| 661 | dest[i] = source[i]; | 
|---|
| 662 | } | 
|---|
| 663 |  | 
|---|
| 664 | /* inline */ | 
|---|
| 665 | double vectors_inner_productf(int n, float *vector1, float *vector2) | 
|---|
| 666 | { | 
|---|
| 667 | int i; | 
|---|
| 668 | double result = 0; | 
|---|
| 669 | for (i = 0; i < n; i++) { | 
|---|
| 670 | result += vector1[i] * vector2[i]; | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | return result; | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | /* inline */ | 
|---|
| 677 | void set_vector_val(int n, double val, double *result) | 
|---|
| 678 | { | 
|---|
| 679 | int i; | 
|---|
| 680 | for (i = 0; i < n; i++) | 
|---|
| 681 | result[i] = val; | 
|---|
| 682 | } | 
|---|
| 683 |  | 
|---|
| 684 | /* inline */ | 
|---|
| 685 | void set_vector_valf(int n, float val, float* result) | 
|---|
| 686 | { | 
|---|
| 687 | int i; | 
|---|
| 688 | for (i = 0; i < n; i++) | 
|---|
| 689 | result[i] = val; | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | /* inline */ | 
|---|
| 693 | double max_absf(int n, float *vector) | 
|---|
| 694 | { | 
|---|
| 695 | int i; | 
|---|
| 696 | float max_val = -1e30f; | 
|---|
| 697 | for (i = 0; i < n; i++) | 
|---|
| 698 | if (fabs(vector[i]) > max_val) | 
|---|
| 699 | max_val = (float) (fabs(vector[i])); | 
|---|
| 700 |  | 
|---|
| 701 | return max_val; | 
|---|
| 702 | } | 
|---|
| 703 |  | 
|---|
| 704 | /* inline */ | 
|---|
| 705 | void square_vec(int n, float *vec) | 
|---|
| 706 | { | 
|---|
| 707 | int i; | 
|---|
| 708 | for (i = 0; i < n; i++) { | 
|---|
| 709 | vec[i] *= vec[i]; | 
|---|
| 710 | } | 
|---|
| 711 | } | 
|---|
| 712 |  | 
|---|
| 713 | /* inline */ | 
|---|
| 714 | void invert_vec(int n, float *vec) | 
|---|
| 715 | { | 
|---|
| 716 | int i; | 
|---|
| 717 | float v; | 
|---|
| 718 | for (i = 0; i < n; i++) { | 
|---|
| 719 | if ((v = vec[i]) != 0.0) | 
|---|
| 720 | vec[i] = 1.0f / v; | 
|---|
| 721 | } | 
|---|
| 722 | } | 
|---|
| 723 |  | 
|---|
| 724 | /* inline */ | 
|---|
| 725 | void sqrt_vec(int n, float *vec) | 
|---|
| 726 | { | 
|---|
| 727 | int i; | 
|---|
| 728 | double d; | 
|---|
| 729 | for (i = 0; i < n; i++) { | 
|---|
| 730 | /* do this in two steps to avoid a bug in gcc-4.00 on AIX */ | 
|---|
| 731 | d = sqrt(vec[i]); | 
|---|
| 732 | vec[i] = (float) d; | 
|---|
| 733 | } | 
|---|
| 734 | } | 
|---|
| 735 |  | 
|---|
| 736 | /* inline */ | 
|---|
| 737 | void sqrt_vecf(int n, float *source, float *target) | 
|---|
| 738 | { | 
|---|
| 739 | int i; | 
|---|
| 740 | double d; | 
|---|
| 741 | float v; | 
|---|
| 742 | for (i = 0; i < n; i++) { | 
|---|
| 743 | if ((v = source[i]) >= 0.0) { | 
|---|
| 744 | /* do this in two steps to avoid a bug in gcc-4.00 on AIX */ | 
|---|
| 745 | d = sqrt(v); | 
|---|
| 746 | target[i] = (float) d; | 
|---|
| 747 | } | 
|---|
| 748 | } | 
|---|
| 749 | } | 
|---|
| 750 |  | 
|---|
| 751 | /* inline */ | 
|---|
| 752 | void invert_sqrt_vec(int n, float *vec) | 
|---|
| 753 | { | 
|---|
| 754 | int i; | 
|---|
| 755 | double d; | 
|---|
| 756 | float v; | 
|---|
| 757 | for (i = 0; i < n; i++) { | 
|---|
| 758 | if ((v = vec[i]) > 0.0) { | 
|---|
| 759 | /* do this in two steps to avoid a bug in gcc-4.00 on AIX */ | 
|---|
| 760 | d = 1. / sqrt(v); | 
|---|
| 761 | vec[i] = (float) d; | 
|---|
| 762 | } | 
|---|
| 763 | } | 
|---|
| 764 | } | 
|---|
| 765 |  | 
|---|
| 766 | #ifdef UNUSED | 
|---|
| 767 | /* inline */ | 
|---|
| 768 | void init_vec_orth1f(int n, float *vec) | 
|---|
| 769 | { | 
|---|
| 770 | /* randomly generate a vector orthogonal to 1 (i.e., with mean 0) */ | 
|---|
| 771 | int i; | 
|---|
| 772 |  | 
|---|
| 773 | for (i = 0; i < n; i++) | 
|---|
| 774 | vec[i] = (float) (rand() % RANGE); | 
|---|
| 775 |  | 
|---|
| 776 | orthog1f(n, vec); | 
|---|
| 777 | } | 
|---|
| 778 |  | 
|---|
| 779 |  | 
|---|
| 780 | /* sparse matrix extensions: */ | 
|---|
| 781 |  | 
|---|
| 782 | /* inline */ | 
|---|
| 783 | void mat_mult_vecf(vtx_data * L, int n, float *vec, float *result) | 
|---|
| 784 | { | 
|---|
| 785 | /* compute result= -L*vec */ | 
|---|
| 786 | int i, j; | 
|---|
| 787 | float sum; | 
|---|
| 788 | int *edges; | 
|---|
| 789 | float *ewgts; | 
|---|
| 790 |  | 
|---|
| 791 | for (i = 0; i < n; i++) { | 
|---|
| 792 | sum = 0; | 
|---|
| 793 | edges = L[i].edges; | 
|---|
| 794 | ewgts = L[i].ewgts; | 
|---|
| 795 | for (j = 0; j < L[i].nedges; j++) { | 
|---|
| 796 | sum -= ewgts[j] * vec[edges[j]]; | 
|---|
| 797 | } | 
|---|
| 798 | result[i] = sum; | 
|---|
| 799 | } | 
|---|
| 800 | } | 
|---|
| 801 | #endif | 
|---|
| 802 |  | 
|---|
| 803 | #endif | 
|---|
| 804 |  | 
|---|