| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "config.h" |
| 16 | |
| 17 | #include "neato.h" |
| 18 | #include "adjust.h" |
| 19 | #include "pathplan.h" |
| 20 | #include "vispath.h" |
| 21 | #include "multispline.h" |
| 22 | #ifndef HAVE_DRAND48 |
| 23 | extern double drand48(void); |
| 24 | #endif |
| 25 | |
| 26 | #ifdef ORTHO |
| 27 | #include <ortho.h> |
| 28 | #endif |
| 29 | |
| 30 | extern void printvis(vconfig_t * cp); |
| 31 | extern int in_poly(Ppoly_t argpoly, Ppoint_t q); |
| 32 | |
| 33 | |
| 34 | static boolean spline_merge(node_t * n) |
| 35 | { |
| 36 | return FALSE; |
| 37 | } |
| 38 | |
| 39 | static boolean swap_ends_p(edge_t * e) |
| 40 | { |
| 41 | return FALSE; |
| 42 | } |
| 43 | |
| 44 | static splineInfo sinfo = { swap_ends_p, spline_merge }; |
| 45 | |
| 46 | static void |
| 47 | make_barriers(Ppoly_t ** poly, int npoly, int pp, int qp, |
| 48 | Pedge_t ** barriers, int *n_barriers) |
| 49 | { |
| 50 | int i, j, k, n, b; |
| 51 | Pedge_t *bar; |
| 52 | |
| 53 | n = 0; |
| 54 | for (i = 0; i < npoly; i++) { |
| 55 | if (i == pp) |
| 56 | continue; |
| 57 | if (i == qp) |
| 58 | continue; |
| 59 | n = n + poly[i]->pn; |
| 60 | } |
| 61 | bar = N_GNEW(n, Pedge_t); |
| 62 | b = 0; |
| 63 | for (i = 0; i < npoly; i++) { |
| 64 | if (i == pp) |
| 65 | continue; |
| 66 | if (i == qp) |
| 67 | continue; |
| 68 | for (j = 0; j < poly[i]->pn; j++) { |
| 69 | k = j + 1; |
| 70 | if (k >= poly[i]->pn) |
| 71 | k = 0; |
| 72 | bar[b].a = poly[i]->ps[j]; |
| 73 | bar[b].b = poly[i]->ps[k]; |
| 74 | b++; |
| 75 | } |
| 76 | } |
| 77 | assert(b == n); |
| 78 | *barriers = bar; |
| 79 | *n_barriers = n; |
| 80 | } |
| 81 | |
| 82 | /* genPt: |
| 83 | */ |
| 84 | static Ppoint_t genPt(double x, double y, pointf c) |
| 85 | { |
| 86 | Ppoint_t p; |
| 87 | |
| 88 | p.x = x + c.x; |
| 89 | p.y = y + c.y; |
| 90 | return p; |
| 91 | } |
| 92 | |
| 93 | |
| 94 | /* recPt: |
| 95 | */ |
| 96 | static Ppoint_t recPt(double x, double y, pointf c, expand_t* m) |
| 97 | { |
| 98 | Ppoint_t p; |
| 99 | |
| 100 | p.x = (x * m->x) + c.x; |
| 101 | p.y = (y * m->y) + c.y; |
| 102 | return p; |
| 103 | } |
| 104 | |
| 105 | typedef struct { |
| 106 | node_t *n1; |
| 107 | pointf p1; |
| 108 | node_t *n2; |
| 109 | pointf p2; |
| 110 | } edgeinfo; |
| 111 | typedef struct { |
| 112 | Dtlink_t link; |
| 113 | edgeinfo id; |
| 114 | edge_t *e; |
| 115 | } edgeitem; |
| 116 | |
| 117 | static void *newitem(Dt_t * d, edgeitem * obj, Dtdisc_t * disc) |
| 118 | { |
| 119 | edgeitem *newp; |
| 120 | |
| 121 | NOTUSED(disc); |
| 122 | newp = NEW(edgeitem); |
| 123 | newp->id = obj->id; |
| 124 | newp->e = obj->e; |
| 125 | ED_count(newp->e) = 1; |
| 126 | |
| 127 | return newp; |
| 128 | } |
| 129 | |
| 130 | static void freeitem(Dt_t * d, edgeitem * obj, Dtdisc_t * disc) |
| 131 | { |
| 132 | free(obj); |
| 133 | } |
| 134 | |
| 135 | static int |
| 136 | cmpitems(Dt_t * d, edgeinfo * key1, edgeinfo * key2, Dtdisc_t * disc) |
| 137 | { |
| 138 | int x; |
| 139 | |
| 140 | if (key1->n1 > key2->n1) |
| 141 | return 1; |
| 142 | if (key1->n1 < key2->n1) |
| 143 | return -1; |
| 144 | if (key1->n2 > key2->n2) |
| 145 | return 1; |
| 146 | if (key1->n2 < key2->n2) |
| 147 | return -1; |
| 148 | |
| 149 | if ((x = key1->p1.x - key2->p1.x)) |
| 150 | return x; |
| 151 | if ((x = key1->p1.y - key2->p1.y)) |
| 152 | return x; |
| 153 | if ((x = key1->p2.x - key2->p2.x)) |
| 154 | return x; |
| 155 | return (key1->p2.y - key2->p2.y); |
| 156 | } |
| 157 | |
| 158 | Dtdisc_t edgeItemDisc = { |
| 159 | offsetof(edgeitem, id), |
| 160 | sizeof(edgeinfo), |
| 161 | offsetof(edgeitem, link), |
| 162 | (Dtmake_f) newitem, |
| 163 | (Dtfree_f) freeitem, |
| 164 | (Dtcompar_f) cmpitems, |
| 165 | 0, |
| 166 | 0, |
| 167 | 0 |
| 168 | }; |
| 169 | |
| 170 | /* equivEdge: |
| 171 | * See if we have already encountered an edge between the same |
| 172 | * node:port pairs. If so, return the earlier edge. If not, |
| 173 | * this edge is added to map and returned. |
| 174 | * We first have to canonicalize the key fields using a lexicographic |
| 175 | * ordering. |
| 176 | */ |
| 177 | static edge_t *equivEdge(Dt_t * map, edge_t * e) |
| 178 | { |
| 179 | edgeinfo test; |
| 180 | edgeitem dummy; |
| 181 | edgeitem *ip; |
| 182 | |
| 183 | if (agtail(e) < aghead(e)) { |
| 184 | test.n1 = agtail(e); |
| 185 | test.p1 = ED_tail_port(e).p; |
| 186 | test.n2 = aghead(e); |
| 187 | test.p2 = ED_head_port(e).p; |
| 188 | } else if (agtail(e) > aghead(e)) { |
| 189 | test.n2 = agtail(e); |
| 190 | test.p2 = ED_tail_port(e).p; |
| 191 | test.n1 = aghead(e); |
| 192 | test.p1 = ED_head_port(e).p; |
| 193 | } else { |
| 194 | pointf hp = ED_head_port(e).p; |
| 195 | pointf tp = ED_tail_port(e).p; |
| 196 | if (tp.x < hp.x) { |
| 197 | test.p1 = tp; |
| 198 | test.p2 = hp; |
| 199 | } else if (tp.x > hp.x) { |
| 200 | test.p1 = hp; |
| 201 | test.p2 = tp; |
| 202 | } else if (tp.y < hp.y) { |
| 203 | test.p1 = tp; |
| 204 | test.p2 = hp; |
| 205 | } else if (tp.y > hp.y) { |
| 206 | test.p1 = hp; |
| 207 | test.p2 = tp; |
| 208 | } else { |
| 209 | test.p1 = test.p2 = tp; |
| 210 | } |
| 211 | test.n2 = test.n1 = agtail(e); |
| 212 | } |
| 213 | dummy.id = test; |
| 214 | dummy.e = e; |
| 215 | ip = dtinsert(map, &dummy); |
| 216 | return ip->e; |
| 217 | } |
| 218 | |
| 219 | |
| 220 | /* makeSelfArcs: |
| 221 | * Generate loops. We use the library routine makeSelfEdge |
| 222 | * which also places the labels. |
| 223 | * We have to handle port labels here. |
| 224 | * as well as update the bbox from edge labels. |
| 225 | */ |
| 226 | void makeSelfArcs(path * P, edge_t * e, int stepx) |
| 227 | { |
| 228 | int cnt = ED_count(e); |
| 229 | |
| 230 | if ((cnt == 1) || Concentrate) { |
| 231 | edge_t *edges1[1]; |
| 232 | edges1[0] = e; |
| 233 | makeSelfEdge(P, edges1, 0, 1, stepx, stepx, &sinfo); |
| 234 | if (ED_label(e)) |
| 235 | updateBB(agraphof(agtail(e)), ED_label(e)); |
| 236 | makePortLabels(e); |
| 237 | } else { |
| 238 | int i; |
| 239 | edge_t **edges = N_GNEW(cnt, edge_t *); |
| 240 | for (i = 0; i < cnt; i++) { |
| 241 | edges[i] = e; |
| 242 | e = ED_to_virt(e); |
| 243 | } |
| 244 | makeSelfEdge(P, edges, 0, cnt, stepx, stepx, &sinfo); |
| 245 | for (i = 0; i < cnt; i++) { |
| 246 | e = edges[i]; |
| 247 | if (ED_label(e)) |
| 248 | updateBB(agraphof(agtail(e)), ED_label(e)); |
| 249 | makePortLabels(e); |
| 250 | } |
| 251 | free(edges); |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | /* makeObstacle: |
| 256 | * Given a node, return an obstacle reflecting the |
| 257 | * node's geometry. pmargin specifies how much space to allow |
| 258 | * around the polygon. |
| 259 | * Returns the constructed polygon on success, NULL on failure. |
| 260 | * Failure means the node shape is not supported. |
| 261 | * |
| 262 | * If isOrtho is true, we have to use the bounding box of each node. |
| 263 | * |
| 264 | * The polygon has its vertices in CW order. |
| 265 | * |
| 266 | */ |
| 267 | Ppoly_t *makeObstacle(node_t * n, expand_t* pmargin, boolean isOrtho) |
| 268 | { |
| 269 | Ppoly_t *obs; |
| 270 | polygon_t *poly; |
| 271 | double adj = 0.0; |
| 272 | int j, sides; |
| 273 | pointf polyp; |
| 274 | boxf b; |
| 275 | pointf pt; |
| 276 | field_t *fld; |
| 277 | epsf_t *desc; |
| 278 | int isPoly; |
| 279 | pointf* verts = NULL; |
| 280 | pointf vs[4]; |
| 281 | pointf p; |
| 282 | pointf margin; |
| 283 | |
| 284 | switch (shapeOf(n)) { |
| 285 | case SH_POLY: |
| 286 | case SH_POINT: |
| 287 | obs = NEW(Ppoly_t); |
| 288 | poly = (polygon_t *) ND_shape_info(n); |
| 289 | if (isOrtho) { |
| 290 | isPoly = 1; |
| 291 | sides = 4; |
| 292 | verts = vs; |
| 293 | margin.x = margin.y = 0; |
| 294 | /* For fixedshape, we can't use the width and height, as this includes |
| 295 | * the label. We only want to use the actual node shape. |
| 296 | */ |
| 297 | if (poly->option & FIXEDSHAPE) { |
| 298 | b = polyBB (poly); |
| 299 | vs[0] = b.LL; |
| 300 | vs[1].x = b.UR.x; |
| 301 | vs[1].y = b.LL.y; |
| 302 | vs[2] = b.UR; |
| 303 | vs[3].x = b.LL.x; |
| 304 | vs[3].y = b.UR.y; |
| 305 | } else { |
| 306 | p.x = -ND_lw(n); |
| 307 | p.y = -ND_ht(n)/2.0; |
| 308 | vs[0] = p; |
| 309 | p.x = ND_lw(n); |
| 310 | vs[1] = p; |
| 311 | p.y = ND_ht(n)/2.0; |
| 312 | vs[2] = p; |
| 313 | p.x = -ND_lw(n); |
| 314 | vs[3] = p; |
| 315 | } |
| 316 | } |
| 317 | else if (poly->sides >= 3) { |
| 318 | isPoly = 1; |
| 319 | sides = poly->sides; |
| 320 | verts = poly->vertices; |
| 321 | margin.x = pmargin->x; |
| 322 | margin.y = pmargin->y; |
| 323 | } else { /* ellipse */ |
| 324 | isPoly = 0; |
| 325 | sides = 8; |
| 326 | adj = drand48() * .01; |
| 327 | } |
| 328 | obs->pn = sides; |
| 329 | obs->ps = N_NEW(sides, Ppoint_t); |
| 330 | /* assuming polys are in CCW order, and pathplan needs CW */ |
| 331 | for (j = 0; j < sides; j++) { |
| 332 | double xmargin = 0.0, ymargin = 0.0; |
| 333 | if (isPoly) { |
| 334 | if (pmargin->doAdd) { |
| 335 | if (sides == 4) { |
| 336 | switch (j) { |
| 337 | case 0 : |
| 338 | xmargin = margin.x; |
| 339 | ymargin = margin.y; |
| 340 | break; |
| 341 | case 1 : |
| 342 | xmargin = -margin.x; |
| 343 | ymargin = margin.y; |
| 344 | break; |
| 345 | case 2 : |
| 346 | xmargin = -margin.x; |
| 347 | ymargin = -margin.y; |
| 348 | break; |
| 349 | case 3 : |
| 350 | xmargin = margin.x; |
| 351 | ymargin = -margin.y; |
| 352 | break; |
| 353 | } |
| 354 | polyp.x = verts[j].x + xmargin; |
| 355 | polyp.y = verts[j].y + ymargin; |
| 356 | } |
| 357 | else { |
| 358 | double h = LEN(verts[j].x,verts[j].y); |
| 359 | polyp.x = verts[j].x * (1.0 + margin.x/h); |
| 360 | polyp.y = verts[j].y * (1.0 + margin.y/h); |
| 361 | } |
| 362 | } |
| 363 | else { |
| 364 | polyp.x = verts[j].x * margin.x; |
| 365 | polyp.y = verts[j].y * margin.y; |
| 366 | } |
| 367 | } else { |
| 368 | double c, s; |
| 369 | c = cos(2.0 * M_PI * j / sides + adj); |
| 370 | s = sin(2.0 * M_PI * j / sides + adj); |
| 371 | if (pmargin->doAdd) { |
| 372 | polyp.x = c*(ND_lw(n)+ND_rw(n)+pmargin->x) / 2.0; |
| 373 | polyp.y = s*(ND_ht(n)+pmargin->y) / 2.0; |
| 374 | } |
| 375 | else { |
| 376 | polyp.x = pmargin->x * c * (ND_lw(n) + ND_rw(n)) / 2.0; |
| 377 | polyp.y = pmargin->y * s * ND_ht(n) / 2.0; |
| 378 | } |
| 379 | } |
| 380 | obs->ps[sides - j - 1].x = polyp.x + ND_coord(n).x; |
| 381 | obs->ps[sides - j - 1].y = polyp.y + ND_coord(n).y; |
| 382 | } |
| 383 | break; |
| 384 | case SH_RECORD: |
| 385 | fld = (field_t *) ND_shape_info(n); |
| 386 | b = fld->b; |
| 387 | obs = NEW(Ppoly_t); |
| 388 | obs->pn = 4; |
| 389 | obs->ps = N_NEW(4, Ppoint_t); |
| 390 | /* CW order */ |
| 391 | pt = ND_coord(n); |
| 392 | if (pmargin->doAdd) { |
| 393 | obs->ps[0] = genPt(b.LL.x-pmargin->x, b.LL.y-pmargin->y, pt); |
| 394 | obs->ps[1] = genPt(b.LL.x-pmargin->x, b.UR.y+pmargin->y, pt); |
| 395 | obs->ps[2] = genPt(b.UR.x+pmargin->x, b.UR.y+pmargin->y, pt); |
| 396 | obs->ps[3] = genPt(b.UR.x+pmargin->x, b.LL.y-pmargin->y, pt); |
| 397 | } |
| 398 | else { |
| 399 | obs->ps[0] = recPt(b.LL.x, b.LL.y, pt, pmargin); |
| 400 | obs->ps[1] = recPt(b.LL.x, b.UR.y, pt, pmargin); |
| 401 | obs->ps[2] = recPt(b.UR.x, b.UR.y, pt, pmargin); |
| 402 | obs->ps[3] = recPt(b.UR.x, b.LL.y, pt, pmargin); |
| 403 | } |
| 404 | break; |
| 405 | case SH_EPSF: |
| 406 | desc = (epsf_t *) (ND_shape_info(n)); |
| 407 | obs = NEW(Ppoly_t); |
| 408 | obs->pn = 4; |
| 409 | obs->ps = N_NEW(4, Ppoint_t); |
| 410 | /* CW order */ |
| 411 | pt = ND_coord(n); |
| 412 | if (pmargin->doAdd) { |
| 413 | obs->ps[0] = genPt(-ND_lw(n)-pmargin->x, -ND_ht(n)-pmargin->y,pt); |
| 414 | obs->ps[1] = genPt(-ND_lw(n)-pmargin->x, ND_ht(n)+pmargin->y,pt); |
| 415 | obs->ps[2] = genPt(ND_rw(n)+pmargin->x, ND_ht(n)+pmargin->y,pt); |
| 416 | obs->ps[3] = genPt(ND_rw(n)+pmargin->x, -ND_ht(n)-pmargin->y,pt); |
| 417 | } |
| 418 | else { |
| 419 | obs->ps[0] = recPt(-ND_lw(n), -ND_ht(n), pt, pmargin); |
| 420 | obs->ps[1] = recPt(-ND_lw(n), ND_ht(n), pt, pmargin); |
| 421 | obs->ps[2] = recPt(ND_rw(n), ND_ht(n), pt, pmargin); |
| 422 | obs->ps[3] = recPt(ND_rw(n), -ND_ht(n), pt, pmargin); |
| 423 | } |
| 424 | break; |
| 425 | default: |
| 426 | obs = NULL; |
| 427 | break; |
| 428 | } |
| 429 | return obs; |
| 430 | } |
| 431 | |
| 432 | /* getPath |
| 433 | * Construct the shortest path from one endpoint of e to the other. |
| 434 | * The obstacles and their number are given by obs and npoly. |
| 435 | * vconfig is a precomputed data structure to help in the computation. |
| 436 | * If chkPts is true, the function finds the polygons, if any, containing |
| 437 | * the endpoints and tells the shortest path computation to ignore them. |
| 438 | * Assumes this info is set in ND_lim, usually from _spline_edges. |
| 439 | * Returns the shortest path. |
| 440 | */ |
| 441 | Ppolyline_t |
| 442 | getPath(edge_t * e, vconfig_t * vconfig, int chkPts, Ppoly_t ** obs, |
| 443 | int npoly) |
| 444 | { |
| 445 | Ppolyline_t line; |
| 446 | int pp, qp; |
| 447 | Ppoint_t p, q; |
| 448 | |
| 449 | p = add_pointf(ND_coord(agtail(e)), ED_tail_port(e).p); |
| 450 | q = add_pointf(ND_coord(aghead(e)), ED_head_port(e).p); |
| 451 | |
| 452 | /* determine the polygons (if any) that contain the endpoints */ |
| 453 | pp = qp = POLYID_NONE; |
| 454 | if (chkPts) { |
| 455 | pp = ND_lim(agtail(e)); |
| 456 | qp = ND_lim(aghead(e)); |
| 457 | /* |
| 458 | for (i = 0; i < npoly; i++) { |
| 459 | if ((pp == POLYID_NONE) && in_poly(*obs[i], p)) |
| 460 | pp = i; |
| 461 | if ((qp == POLYID_NONE) && in_poly(*obs[i], q)) |
| 462 | qp = i; |
| 463 | } |
| 464 | */ |
| 465 | } |
| 466 | Pobspath(vconfig, p, pp, q, qp, &line); |
| 467 | return line; |
| 468 | } |
| 469 | |
| 470 | /* makePolyline: |
| 471 | */ |
| 472 | static void |
| 473 | makePolyline(graph_t* g, edge_t * e) |
| 474 | { |
| 475 | Ppolyline_t spl, line = ED_path(e); |
| 476 | Ppoint_t p0, q0; |
| 477 | |
| 478 | p0 = line.ps[0]; |
| 479 | q0 = line.ps[line.pn - 1]; |
| 480 | make_polyline (line, &spl); |
| 481 | if (Verbose > 1) |
| 482 | fprintf(stderr, "polyline %s %s\n" , agnameof(agtail(e)), agnameof(aghead(e))); |
| 483 | clip_and_install(e, aghead(e), spl.ps, spl.pn, &sinfo); |
| 484 | addEdgeLabels(g, e, p0, q0); |
| 485 | } |
| 486 | |
| 487 | /* makeSpline: |
| 488 | * Construct a spline connecting the endpoints of e, avoiding the npoly |
| 489 | * obstacles obs. |
| 490 | * The resultant spline is attached to the edge, the positions of any |
| 491 | * edge labels are computed, and the graph's bounding box is recomputed. |
| 492 | * |
| 493 | * If chkPts is true, the function checks if one or both of the endpoints |
| 494 | * is on or inside one of the obstacles and, if so, tells the shortest path |
| 495 | * computation to ignore them. |
| 496 | */ |
| 497 | void makeSpline(graph_t* g, edge_t * e, Ppoly_t ** obs, int npoly, boolean chkPts) |
| 498 | { |
| 499 | Ppolyline_t line, spline; |
| 500 | Pvector_t slopes[2]; |
| 501 | int i, n_barriers; |
| 502 | int pp, qp; |
| 503 | Ppoint_t p, q; |
| 504 | Pedge_t *barriers; |
| 505 | |
| 506 | line = ED_path(e); |
| 507 | p = line.ps[0]; |
| 508 | q = line.ps[line.pn - 1]; |
| 509 | /* determine the polygons (if any) that contain the endpoints */ |
| 510 | pp = qp = POLYID_NONE; |
| 511 | if (chkPts) |
| 512 | for (i = 0; i < npoly; i++) { |
| 513 | if ((pp == POLYID_NONE) && in_poly(*obs[i], p)) |
| 514 | pp = i; |
| 515 | if ((qp == POLYID_NONE) && in_poly(*obs[i], q)) |
| 516 | qp = i; |
| 517 | } |
| 518 | |
| 519 | make_barriers(obs, npoly, pp, qp, &barriers, &n_barriers); |
| 520 | slopes[0].x = slopes[0].y = 0.0; |
| 521 | slopes[1].x = slopes[1].y = 0.0; |
| 522 | if (Proutespline(barriers, n_barriers, line, slopes, &spline) < 0) { |
| 523 | agerr (AGERR, "makeSpline: failed to make spline edge (%s,%s)\n" , agnameof(agtail(e)), agnameof(aghead(e))); |
| 524 | return; |
| 525 | } |
| 526 | |
| 527 | /* north why did you ever use int coords */ |
| 528 | if (Verbose > 1) |
| 529 | fprintf(stderr, "spline %s %s\n" , agnameof(agtail(e)), agnameof(aghead(e))); |
| 530 | clip_and_install(e, aghead(e), spline.ps, spline.pn, &sinfo); |
| 531 | free(barriers); |
| 532 | addEdgeLabels(g, e, p, q); |
| 533 | } |
| 534 | |
| 535 | /* True if either head or tail has a port on its boundary */ |
| 536 | #define BOUNDARY_PORT(e) ((ED_tail_port(e).side)||(ED_head_port(e).side)) |
| 537 | |
| 538 | /* _spline_edges: |
| 539 | * Basic default routine for creating edges. |
| 540 | * If splines are requested, we construct the obstacles. |
| 541 | * If not, or nodes overlap, the function reverts to line segments. |
| 542 | * NOTE: intra-cluster edges are not constrained to |
| 543 | * remain in the cluster's bounding box and, conversely, a cluster's box |
| 544 | * is not altered to reflect intra-cluster edges. |
| 545 | * If Nop > 1 and the spline exists, it is just copied. |
| 546 | * NOTE: if edgetype = ET_NONE, we shouldn't be here. |
| 547 | */ |
| 548 | static int _spline_edges(graph_t * g, expand_t* pmargin, int edgetype) |
| 549 | { |
| 550 | node_t *n; |
| 551 | edge_t *e; |
| 552 | edge_t *e0; |
| 553 | Ppoly_t **obs = 0; |
| 554 | Ppoly_t *obp; |
| 555 | int cnt, i = 0, npoly; |
| 556 | vconfig_t *vconfig = 0; |
| 557 | path *P = NULL; |
| 558 | int useEdges = (Nop > 1); |
| 559 | int legal = 0; |
| 560 | |
| 561 | #ifdef HAVE_GTS |
| 562 | router_t* rtr = 0; |
| 563 | #endif |
| 564 | |
| 565 | /* build configuration */ |
| 566 | if (edgetype >= ET_PLINE) { |
| 567 | obs = N_NEW(agnnodes(g), Ppoly_t *); |
| 568 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 569 | obp = makeObstacle(n, pmargin, edgetype == ET_ORTHO); |
| 570 | if (obp) { |
| 571 | ND_lim(n) = i; |
| 572 | obs[i++] = obp; |
| 573 | } |
| 574 | else |
| 575 | ND_lim(n) = POLYID_NONE; |
| 576 | } |
| 577 | } else { |
| 578 | obs = 0; |
| 579 | } |
| 580 | npoly = i; |
| 581 | if (obs) { |
| 582 | if ((legal = Plegal_arrangement(obs, npoly))) { |
| 583 | if (edgetype != ET_ORTHO) vconfig = Pobsopen(obs, npoly); |
| 584 | } |
| 585 | else { |
| 586 | if (edgetype == ET_ORTHO) |
| 587 | agerr(AGWARN, "the bounding boxes of some nodes touch - falling back to straight line edges\n" ); |
| 588 | else |
| 589 | agerr(AGWARN, "some nodes with margin (%.02f,%.02f) touch - falling back to straight line edges\n" , pmargin->x, pmargin->y); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | /* route edges */ |
| 594 | if (Verbose) |
| 595 | fprintf(stderr, "Creating edges using %s\n" , |
| 596 | (legal && (edgetype == ET_ORTHO)) ? "orthogonal lines" : |
| 597 | (vconfig ? (edgetype == ET_SPLINE ? "splines" : "polylines" ) : |
| 598 | "line segments" )); |
| 599 | if (vconfig) { |
| 600 | /* path-finding pass */ |
| 601 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 602 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 603 | ED_path(e) = getPath(e, vconfig, TRUE, obs, npoly); |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | #ifdef ORTHO |
| 608 | else if (legal && (edgetype == ET_ORTHO)) { |
| 609 | orthoEdges (g, 0); |
| 610 | useEdges = 1; |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | /* spline-drawing pass */ |
| 615 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 616 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 617 | /* fprintf (stderr, "%s -- %s %d\n", agnameof(agtail(e)), agnameof(aghead(e)), ED_count(e)); */ |
| 618 | node_t *head = aghead(e); |
| 619 | if (useEdges && ED_spl(e)) { |
| 620 | addEdgeLabels(g, e, |
| 621 | add_pointf(ND_coord(n), ED_tail_port(e).p), |
| 622 | add_pointf(ND_coord(head), ED_head_port(e).p)); |
| 623 | } |
| 624 | else if (ED_count(e) == 0) continue; /* only do representative */ |
| 625 | else if (n == head) { /* self arc */ |
| 626 | if (!P) { |
| 627 | P = NEW(path); |
| 628 | P->boxes = N_NEW(agnnodes(g) + 20 * 2 * 9, boxf); |
| 629 | } |
| 630 | makeSelfArcs(P, e, GD_nodesep(g->root)); |
| 631 | } else if (vconfig) { /* ET_SPLINE or ET_PLINE */ |
| 632 | #ifdef HAVE_GTS |
| 633 | if ((ED_count(e) > 1) || BOUNDARY_PORT(e)) { |
| 634 | int fail = 0; |
| 635 | if ((ED_path(e).pn == 2) && !BOUNDARY_PORT(e)) |
| 636 | /* if a straight line can connect the ends */ |
| 637 | makeStraightEdge(g, e, edgetype, &sinfo); |
| 638 | else { |
| 639 | if (!rtr) rtr = mkRouter (obs, npoly); |
| 640 | fail = makeMultiSpline(g, e, rtr, edgetype == ET_PLINE); |
| 641 | } |
| 642 | if (!fail) continue; |
| 643 | } |
| 644 | /* We can probably remove this branch and just use |
| 645 | * makeMultiSpline. It can also catch the makeStraightEdge |
| 646 | * case. We could then eliminate all of the vconfig stuff. |
| 647 | */ |
| 648 | #endif |
| 649 | cnt = ED_count(e); |
| 650 | if (Concentrate) cnt = 1; /* only do representative */ |
| 651 | e0 = e; |
| 652 | for (i = 0; i < cnt; i++) { |
| 653 | if (edgetype == ET_SPLINE) |
| 654 | makeSpline(g, e0, obs, npoly, TRUE); |
| 655 | else |
| 656 | makePolyline(g, e0); |
| 657 | e0 = ED_to_virt(e0); |
| 658 | } |
| 659 | } else { |
| 660 | makeStraightEdge(g, e, edgetype, &sinfo); |
| 661 | } |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | #ifdef HAVE_GTS |
| 666 | if (rtr) |
| 667 | freeRouter (rtr); |
| 668 | #endif |
| 669 | |
| 670 | if (vconfig) |
| 671 | Pobsclose (vconfig); |
| 672 | if (P) { |
| 673 | free(P->boxes); |
| 674 | free(P); |
| 675 | } |
| 676 | if (obs) { |
| 677 | for (i=0; i < npoly; i++) { |
| 678 | free (obs[i]->ps); |
| 679 | free (obs[i]); |
| 680 | } |
| 681 | free (obs); |
| 682 | } |
| 683 | return 0; |
| 684 | } |
| 685 | |
| 686 | /* splineEdges: |
| 687 | * Main wrapper code for generating edges. |
| 688 | * Sets desired separation. |
| 689 | * Coalesces equivalent edges (edges * with the same endpoints). |
| 690 | * It then calls the edge generating function, and marks the |
| 691 | * spline phase complete. |
| 692 | * Returns 0 on success. |
| 693 | * |
| 694 | * The edge function is given the graph, the separation to be added |
| 695 | * around obstacles, and the type of edge. It must guarantee |
| 696 | * that all bounding boxes are current; in particular, the bounding box of |
| 697 | * g must reflect the addition of the edges. |
| 698 | */ |
| 699 | int |
| 700 | splineEdges(graph_t * g, int (*edgefn) (graph_t *, expand_t*, int), |
| 701 | int edgetype) |
| 702 | { |
| 703 | node_t *n; |
| 704 | edge_t *e; |
| 705 | expand_t margin; |
| 706 | Dt_t *map; |
| 707 | |
| 708 | margin = esepFactor (g); |
| 709 | |
| 710 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 711 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 712 | resolvePorts (e); |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | /* find equivalent edges */ |
| 717 | map = dtopen(&edgeItemDisc, Dtoset); |
| 718 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 719 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) { |
| 720 | if ((Nop > 1 && ED_spl(e))) { |
| 721 | /* If Nop > 1 (use given edges) and e has a spline, it |
| 722 | * should have its own equivalence class. |
| 723 | */ |
| 724 | ED_count(e)++; |
| 725 | } else { |
| 726 | edge_t *leader = equivEdge(map, e); |
| 727 | if (leader != e) { |
| 728 | ED_count(leader)++; |
| 729 | ED_to_virt(e) = ED_to_virt(leader); |
| 730 | ED_to_virt(leader) = e; |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | } |
| 735 | dtclose(map); |
| 736 | |
| 737 | if (edgefn(g, &margin, edgetype)) |
| 738 | return 1; |
| 739 | |
| 740 | State = GVSPLINES; |
| 741 | return 0; |
| 742 | } |
| 743 | |
| 744 | /* spline_edges1: |
| 745 | * Construct edges using default algorithm and given splines value. |
| 746 | * Return 0 on success. |
| 747 | */ |
| 748 | int spline_edges1(graph_t * g, int edgetype) |
| 749 | { |
| 750 | return splineEdges(g, _spline_edges, edgetype); |
| 751 | } |
| 752 | |
| 753 | /* spline_edges0: |
| 754 | * Sets the graph's aspect ratio. |
| 755 | * Check splines attribute and construct edges using default algorithm. |
| 756 | * If the splines attribute is defined but equal to "", skip edge routing. |
| 757 | * |
| 758 | * Assumes u.bb for has been computed for g and all clusters |
| 759 | * (not just top-level clusters), and that GD_bb(g).LL is at the origin. |
| 760 | * |
| 761 | * This last criterion is, I believe, mainly to simplify the code |
| 762 | * in neato_set_aspect. It would be good to remove this constraint, |
| 763 | * as this would allow nodes pinned on input to have the same coordinates |
| 764 | * when output in dot or plain format. |
| 765 | * |
| 766 | */ |
| 767 | void spline_edges0(graph_t * g, boolean set_aspect) |
| 768 | { |
| 769 | int et = EDGE_TYPE (g); |
| 770 | if (set_aspect) neato_set_aspect(g); |
| 771 | if (et == ET_NONE) return; |
| 772 | #ifndef ORTHO |
| 773 | if (et == ET_ORTHO) { |
| 774 | agerr (AGWARN, "Orthogonal edges not yet supported\n" ); |
| 775 | et = ET_PLINE; |
| 776 | GD_flags(g->root) &= ~ET_ORTHO; |
| 777 | GD_flags(g->root) |= ET_PLINE; |
| 778 | } |
| 779 | #endif |
| 780 | spline_edges1(g, et); |
| 781 | } |
| 782 | |
| 783 | /* shiftClusters: |
| 784 | */ |
| 785 | static void |
| 786 | shiftClusters (graph_t * g, pointf offset) |
| 787 | { |
| 788 | int i; |
| 789 | |
| 790 | for (i = 1; i <= GD_n_cluster(g); i++) { |
| 791 | shiftClusters (GD_clust(g)[i], offset); |
| 792 | } |
| 793 | |
| 794 | GD_bb(g).UR.x -= offset.x; |
| 795 | GD_bb(g).UR.y -= offset.y; |
| 796 | GD_bb(g).LL.x -= offset.x; |
| 797 | GD_bb(g).LL.y -= offset.y; |
| 798 | } |
| 799 | |
| 800 | /* spline_edges: |
| 801 | * Compute bounding box, translate graph to origin, |
| 802 | * then construct all edges. |
| 803 | */ |
| 804 | void spline_edges(graph_t * g) |
| 805 | { |
| 806 | node_t *n; |
| 807 | pointf offset; |
| 808 | |
| 809 | compute_bb(g); |
| 810 | offset.x = PS2INCH(GD_bb(g).LL.x); |
| 811 | offset.y = PS2INCH(GD_bb(g).LL.y); |
| 812 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 813 | ND_pos(n)[0] -= offset.x; |
| 814 | ND_pos(n)[1] -= offset.y; |
| 815 | } |
| 816 | |
| 817 | shiftClusters (g, GD_bb(g).LL); |
| 818 | spline_edges0(g, TRUE); |
| 819 | } |
| 820 | |
| 821 | /* scaleEdge: |
| 822 | * Scale edge by given factor. |
| 823 | * Assume ED_spl != NULL. |
| 824 | */ |
| 825 | static void scaleEdge(edge_t * e, double xf, double yf) |
| 826 | { |
| 827 | int i, j; |
| 828 | pointf *pt; |
| 829 | bezier *bez; |
| 830 | pointf delh, delt; |
| 831 | |
| 832 | delh.x = POINTS_PER_INCH * (ND_pos(aghead(e))[0] * (xf - 1.0)); |
| 833 | delh.y = POINTS_PER_INCH * (ND_pos(aghead(e))[1] * (yf - 1.0)); |
| 834 | delt.x = POINTS_PER_INCH * (ND_pos(agtail(e))[0] * (xf - 1.0)); |
| 835 | delt.y = POINTS_PER_INCH * (ND_pos(agtail(e))[1] * (yf - 1.0)); |
| 836 | |
| 837 | bez = ED_spl(e)->list; |
| 838 | for (i = 0; i < ED_spl(e)->size; i++) { |
| 839 | pt = bez->list; |
| 840 | for (j = 0; j < bez->size; j++) { |
| 841 | if ((i == 0) && (j == 0)) { |
| 842 | pt->x += delt.x; |
| 843 | pt->y += delt.y; |
| 844 | } |
| 845 | else if ((i == ED_spl(e)->size-1) && (j == bez->size-1)) { |
| 846 | pt->x += delh.x; |
| 847 | pt->y += delh.y; |
| 848 | } |
| 849 | else { |
| 850 | pt->x *= xf; |
| 851 | pt->y *= yf; |
| 852 | } |
| 853 | pt++; |
| 854 | } |
| 855 | if (bez->sflag) { |
| 856 | bez->sp.x += delt.x; |
| 857 | bez->sp.y += delt.y; |
| 858 | } |
| 859 | if (bez->eflag) { |
| 860 | bez->ep.x += delh.x; |
| 861 | bez->ep.y += delh.y; |
| 862 | } |
| 863 | bez++; |
| 864 | } |
| 865 | |
| 866 | if (ED_label(e) && ED_label(e)->set) { |
| 867 | ED_label(e)->pos.x *= xf; |
| 868 | ED_label(e)->pos.y *= yf; |
| 869 | } |
| 870 | if (ED_head_label(e) && ED_head_label(e)->set) { |
| 871 | ED_head_label(e)->pos.x += delh.x; |
| 872 | ED_head_label(e)->pos.y += delh.y; |
| 873 | } |
| 874 | if (ED_tail_label(e) && ED_tail_label(e)->set) { |
| 875 | ED_tail_label(e)->pos.x += delt.x; |
| 876 | ED_tail_label(e)->pos.y += delt.y; |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | /* scaleBB: |
| 881 | * Scale bounding box of clusters of g by given factors. |
| 882 | */ |
| 883 | static void scaleBB(graph_t * g, double xf, double yf) |
| 884 | { |
| 885 | int i; |
| 886 | |
| 887 | GD_bb(g).UR.x *= xf; |
| 888 | GD_bb(g).UR.y *= yf; |
| 889 | GD_bb(g).LL.x *= xf; |
| 890 | GD_bb(g).LL.y *= yf; |
| 891 | |
| 892 | if (GD_label(g) && GD_label(g)->set) { |
| 893 | GD_label(g)->pos.x *= xf; |
| 894 | GD_label(g)->pos.y *= yf; |
| 895 | } |
| 896 | |
| 897 | for (i = 1; i <= GD_n_cluster(g); i++) |
| 898 | scaleBB(GD_clust(g)[i], xf, yf); |
| 899 | } |
| 900 | |
| 901 | /* translateE: |
| 902 | * Translate edge by offset. |
| 903 | * Assume ED_spl(e) != NULL |
| 904 | */ |
| 905 | static void translateE(edge_t * e, pointf offset) |
| 906 | { |
| 907 | int i, j; |
| 908 | pointf *pt; |
| 909 | bezier *bez; |
| 910 | |
| 911 | bez = ED_spl(e)->list; |
| 912 | for (i = 0; i < ED_spl(e)->size; i++) { |
| 913 | pt = bez->list; |
| 914 | for (j = 0; j < bez->size; j++) { |
| 915 | pt->x -= offset.x; |
| 916 | pt->y -= offset.y; |
| 917 | pt++; |
| 918 | } |
| 919 | if (bez->sflag) { |
| 920 | bez->sp.x -= offset.x; |
| 921 | bez->sp.y -= offset.y; |
| 922 | } |
| 923 | if (bez->eflag) { |
| 924 | bez->ep.x -= offset.x; |
| 925 | bez->ep.y -= offset.y; |
| 926 | } |
| 927 | bez++; |
| 928 | } |
| 929 | |
| 930 | if (ED_label(e) && ED_label(e)->set) { |
| 931 | ED_label(e)->pos.x -= offset.x; |
| 932 | ED_label(e)->pos.y -= offset.y; |
| 933 | } |
| 934 | if (ED_xlabel(e) && ED_xlabel(e)->set) { |
| 935 | ED_xlabel(e)->pos.x -= offset.x; |
| 936 | ED_xlabel(e)->pos.y -= offset.y; |
| 937 | } |
| 938 | if (ED_head_label(e) && ED_head_label(e)->set) { |
| 939 | ED_head_label(e)->pos.x -= offset.x; |
| 940 | ED_head_label(e)->pos.y -= offset.y; |
| 941 | } |
| 942 | if (ED_tail_label(e) && ED_tail_label(e)->set) { |
| 943 | ED_tail_label(e)->pos.x -= offset.x; |
| 944 | ED_tail_label(e)->pos.y -= offset.y; |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | /* translateG: |
| 949 | */ |
| 950 | static void translateG(Agraph_t * g, pointf offset) |
| 951 | { |
| 952 | int i; |
| 953 | |
| 954 | GD_bb(g).UR.x -= offset.x; |
| 955 | GD_bb(g).UR.y -= offset.y; |
| 956 | GD_bb(g).LL.x -= offset.x; |
| 957 | GD_bb(g).LL.y -= offset.y; |
| 958 | |
| 959 | if (GD_label(g) && GD_label(g)->set) { |
| 960 | GD_label(g)->pos.x -= offset.x; |
| 961 | GD_label(g)->pos.y -= offset.y; |
| 962 | } |
| 963 | |
| 964 | for (i = 1; i <= GD_n_cluster(g); i++) |
| 965 | translateG(GD_clust(g)[i], offset); |
| 966 | } |
| 967 | |
| 968 | /* neato_translate: |
| 969 | */ |
| 970 | void neato_translate(Agraph_t * g) |
| 971 | { |
| 972 | node_t *n; |
| 973 | edge_t *e; |
| 974 | pointf offset; |
| 975 | pointf ll; |
| 976 | |
| 977 | ll = GD_bb(g).LL; |
| 978 | |
| 979 | offset.x = PS2INCH(ll.x); |
| 980 | offset.y = PS2INCH(ll.y); |
| 981 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 982 | ND_pos(n)[0] -= offset.x; |
| 983 | ND_pos(n)[1] -= offset.y; |
| 984 | if (ND_xlabel(n) && ND_xlabel(n)->set) { |
| 985 | ND_xlabel(n)->pos.x -= ll.x; |
| 986 | ND_xlabel(n)->pos.y -= ll.y; |
| 987 | } |
| 988 | } |
| 989 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 990 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) |
| 991 | if (ED_spl(e)) |
| 992 | translateE(e, ll); |
| 993 | } |
| 994 | translateG(g, ll); |
| 995 | } |
| 996 | |
| 997 | /* _neato_set_aspect; |
| 998 | * Assume all bounding boxes are correct. |
| 999 | * Return false if no transform is performed. This includes |
| 1000 | * the possibility that a translation was done. |
| 1001 | */ |
| 1002 | static boolean _neato_set_aspect(graph_t * g) |
| 1003 | { |
| 1004 | double xf, yf, actual, desired; |
| 1005 | node_t *n; |
| 1006 | boolean translated = FALSE; |
| 1007 | |
| 1008 | if (g->root != g) |
| 1009 | return FALSE; |
| 1010 | |
| 1011 | /* compute_bb(g); */ |
| 1012 | if (GD_drawing(g)->ratio_kind) { |
| 1013 | if (GD_bb(g).LL.x || GD_bb(g).LL.y) { |
| 1014 | translated = TRUE; |
| 1015 | neato_translate (g); |
| 1016 | } |
| 1017 | /* normalize */ |
| 1018 | if (GD_flip(g)) { |
| 1019 | double t = GD_bb(g).UR.x; |
| 1020 | GD_bb(g).UR.x = GD_bb(g).UR.y; |
| 1021 | GD_bb(g).UR.y = t; |
| 1022 | } |
| 1023 | if (GD_drawing(g)->ratio_kind == R_FILL) { |
| 1024 | /* fill is weird because both X and Y can stretch */ |
| 1025 | if (GD_drawing(g)->size.x <= 0) |
| 1026 | return (translated || FALSE); |
| 1027 | xf = (double) GD_drawing(g)->size.x / GD_bb(g).UR.x; |
| 1028 | yf = (double) GD_drawing(g)->size.y / GD_bb(g).UR.y; |
| 1029 | /* handle case where one or more dimensions is too big */ |
| 1030 | if ((xf < 1.0) || (yf < 1.0)) { |
| 1031 | if (xf < yf) { |
| 1032 | yf = yf / xf; |
| 1033 | xf = 1.0; |
| 1034 | } else { |
| 1035 | xf = xf / yf; |
| 1036 | yf = 1.0; |
| 1037 | } |
| 1038 | } |
| 1039 | } else if (GD_drawing(g)->ratio_kind == R_EXPAND) { |
| 1040 | if (GD_drawing(g)->size.x <= 0) |
| 1041 | return (translated || FALSE); |
| 1042 | xf = (double) GD_drawing(g)->size.x / GD_bb(g).UR.x; |
| 1043 | yf = (double) GD_drawing(g)->size.y / GD_bb(g).UR.y; |
| 1044 | if ((xf > 1.0) && (yf > 1.0)) { |
| 1045 | double scale = MIN(xf, yf); |
| 1046 | xf = yf = scale; |
| 1047 | } else |
| 1048 | return (translated || FALSE); |
| 1049 | } else if (GD_drawing(g)->ratio_kind == R_VALUE) { |
| 1050 | desired = GD_drawing(g)->ratio; |
| 1051 | actual = (GD_bb(g).UR.y) / (GD_bb(g).UR.x); |
| 1052 | if (actual < desired) { |
| 1053 | yf = desired / actual; |
| 1054 | xf = 1.0; |
| 1055 | } else { |
| 1056 | xf = actual / desired; |
| 1057 | yf = 1.0; |
| 1058 | } |
| 1059 | } else |
| 1060 | return (translated || FALSE); |
| 1061 | if (GD_flip(g)) { |
| 1062 | double t = xf; |
| 1063 | xf = yf; |
| 1064 | yf = t; |
| 1065 | } |
| 1066 | |
| 1067 | if (Nop > 1) { |
| 1068 | edge_t *e; |
| 1069 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1070 | for (e = agfstout(g, n); e; e = agnxtout(g, e)) |
| 1071 | if (ED_spl(e)) |
| 1072 | scaleEdge(e, xf, yf); |
| 1073 | } |
| 1074 | } |
| 1075 | /* Not relying on neato_nlist here allows us not to have to |
| 1076 | * allocate it in the root graph and the connected components. |
| 1077 | */ |
| 1078 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1079 | ND_pos(n)[0] = ND_pos(n)[0] * xf; |
| 1080 | ND_pos(n)[1] = ND_pos(n)[1] * yf; |
| 1081 | } |
| 1082 | scaleBB(g, xf, yf); |
| 1083 | return TRUE; |
| 1084 | } |
| 1085 | else |
| 1086 | return FALSE; |
| 1087 | } |
| 1088 | |
| 1089 | /* neato_set_aspect: |
| 1090 | * Sets aspect ratio if necessary; real work done in _neato_set_aspect; |
| 1091 | * This also copies the internal layout coordinates (ND_pos) to the |
| 1092 | * external ones (ND_coord). |
| 1093 | * |
| 1094 | * Return true if some node moved. |
| 1095 | */ |
| 1096 | boolean neato_set_aspect(graph_t * g) |
| 1097 | { |
| 1098 | node_t *n; |
| 1099 | boolean moved = FALSE; |
| 1100 | |
| 1101 | /* setting aspect ratio only makes sense on root graph */ |
| 1102 | moved = _neato_set_aspect(g); |
| 1103 | for (n = agfstnode(g); n; n = agnxtnode(g, n)) { |
| 1104 | ND_coord(n).x = POINTS_PER_INCH * (ND_pos(n)[0]); |
| 1105 | ND_coord(n).y = POINTS_PER_INCH * (ND_pos(n)[1]); |
| 1106 | } |
| 1107 | return moved; |
| 1108 | } |
| 1109 | |
| 1110 | |