| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "config.h" |
| 15 | |
| 16 | #if ((defined(HAVE_GTS) || defined(HAVE_TRIANGLE)) && defined(SFDP)) |
| 17 | |
| 18 | #include "SparseMatrix.h" |
| 19 | #include "overlap.h" |
| 20 | #include "call_tri.h" |
| 21 | #include "red_black_tree.h" |
| 22 | #include "types.h" |
| 23 | #include "memory.h" |
| 24 | #include "globals.h" |
| 25 | #include <time.h> |
| 26 | |
| 27 | static void ideal_distance_avoid_overlap(int dim, SparseMatrix A, real *x, real *width, real *ideal_distance, real *tmax, real *tmin){ |
| 28 | /* if (x1>x2 && y1 > y2) we want either x1 + t (x1-x2) - x2 > (width1+width2), or y1 + t (y1-y2) - y2 > (height1+height2), |
| 29 | hence t = MAX(expandmin, MIN(expandmax, (width1+width2)/(x1-x2) - 1, (height1+height2)/(y1-y2) - 1)), and |
| 30 | new ideal distance = (1+t) old_distance. t can be negative sometimes. |
| 31 | The result ideal distance is set to negative if the edge needs shrinking |
| 32 | */ |
| 33 | int i, j, jj; |
| 34 | int *ia = A->ia, *ja = A->ja; |
| 35 | real dist, dx, dy, wx, wy, t; |
| 36 | real expandmax = 1.5, expandmin = 1; |
| 37 | |
| 38 | *tmax = 0; |
| 39 | *tmin = 1.e10; |
| 40 | assert(SparseMatrix_is_symmetric(A, FALSE)); |
| 41 | for (i = 0; i < A->m; i++){ |
| 42 | for (j = ia[i]; j < ia[i+1]; j++){ |
| 43 | jj = ja[j]; |
| 44 | if (jj == i) continue; |
| 45 | dist = distance(x, dim, i, jj); |
| 46 | dx = ABS(x[i*dim] - x[jj*dim]); |
| 47 | dy = ABS(x[i*dim+1] - x[jj*dim+1]); |
| 48 | wx = width[i*dim]+width[jj*dim]; |
| 49 | wy = width[i*dim+1]+width[jj*dim+1]; |
| 50 | if (dx < MACHINEACC*wx && dy < MACHINEACC*wy){ |
| 51 | ideal_distance[j] = sqrt(wx*wx+wy*wy); |
| 52 | *tmax = 2; |
| 53 | } else { |
| 54 | if (dx < MACHINEACC*wx){ |
| 55 | t = wy/dy; |
| 56 | } else if (dy < MACHINEACC*wy){ |
| 57 | t = wx/dx; |
| 58 | } else { |
| 59 | t = MIN(wx/dx, wy/dy); |
| 60 | } |
| 61 | if (t > 1) t = MAX(t, 1.001);/* no point in things like t = 1.00000001 as this slow down convergence */ |
| 62 | *tmax = MAX(*tmax, t); |
| 63 | *tmin = MIN(*tmin, t); |
| 64 | t = MIN(expandmax, t); |
| 65 | t = MAX(expandmin, t); |
| 66 | if (t > 1) { |
| 67 | ideal_distance[j] = t*dist; |
| 68 | } else { |
| 69 | ideal_distance[j] = -t*dist; |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | } |
| 74 | } |
| 75 | return; |
| 76 | } |
| 77 | |
| 78 | #define collide(i,j) ((ABS(x[(i)*dim] - x[(j)*dim]) < width[(i)*dim]+width[(j)*dim]) || (ABS(x[(i)*dim+1] - x[(j)*dim+1]) < width[(i)*dim+1]+width[(j)*dim+1])) |
| 79 | |
| 80 | enum {INTV_OPEN, INTV_CLOSE}; |
| 81 | |
| 82 | struct scan_point_struct{ |
| 83 | int node; |
| 84 | real x; |
| 85 | int status; |
| 86 | }; |
| 87 | |
| 88 | typedef struct scan_point_struct scan_point; |
| 89 | |
| 90 | |
| 91 | static int comp_scan_points(const void *p, const void *q){ |
| 92 | scan_point *pp = (scan_point *) p; |
| 93 | scan_point *qq = (scan_point *) q; |
| 94 | if (pp->x > qq->x){ |
| 95 | return 1; |
| 96 | } else if (pp->x < qq->x){ |
| 97 | return -1; |
| 98 | } else { |
| 99 | if (pp->node > qq->node){ |
| 100 | return 1; |
| 101 | } else if (pp->node < qq->node){ |
| 102 | return -1; |
| 103 | } |
| 104 | return 0; |
| 105 | } |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | |
| 110 | void NodeDest(void* a) { |
| 111 | /* free((int*)a);*/ |
| 112 | } |
| 113 | |
| 114 | |
| 115 | |
| 116 | int NodeComp(const void* a,const void* b) { |
| 117 | return comp_scan_points(a,b); |
| 118 | |
| 119 | } |
| 120 | |
| 121 | void NodePrint(const void* a) { |
| 122 | scan_point *aa; |
| 123 | |
| 124 | aa = (scan_point *) a; |
| 125 | fprintf(stderr, "node {%d, %f, %d}\n" , aa->node, aa->x, aa->status); |
| 126 | |
| 127 | } |
| 128 | |
| 129 | void InfoPrint(void* a) { |
| 130 | ; |
| 131 | } |
| 132 | |
| 133 | void InfoDest(void *a){ |
| 134 | ; |
| 135 | } |
| 136 | |
| 137 | static SparseMatrix get_overlap_graph(int dim, int n, real *x, real *width, int check_overlap_only){ |
| 138 | /* if check_overlap_only = TRUE, we only check whether there is one overlap */ |
| 139 | scan_point *scanpointsx, *scanpointsy; |
| 140 | int i, k, neighbor; |
| 141 | SparseMatrix A = NULL, B = NULL; |
| 142 | rb_red_blk_node *newNode, *newNode0, *newNode2 = NULL; |
| 143 | rb_red_blk_tree* treey; |
| 144 | real one = 1; |
| 145 | |
| 146 | A = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD); |
| 147 | |
| 148 | scanpointsx = N_GNEW(2*n,scan_point); |
| 149 | for (i = 0; i < n; i++){ |
| 150 | scanpointsx[2*i].node = i; |
| 151 | scanpointsx[2*i].x = x[i*dim] - width[i*dim]; |
| 152 | scanpointsx[2*i].status = INTV_OPEN; |
| 153 | scanpointsx[2*i+1].node = i+n; |
| 154 | scanpointsx[2*i+1].x = x[i*dim] + width[i*dim]; |
| 155 | scanpointsx[2*i+1].status = INTV_CLOSE; |
| 156 | } |
| 157 | qsort(scanpointsx, 2*n, sizeof(scan_point), comp_scan_points); |
| 158 | |
| 159 | scanpointsy = N_GNEW(2*n,scan_point); |
| 160 | for (i = 0; i < n; i++){ |
| 161 | scanpointsy[i].node = i; |
| 162 | scanpointsy[i].x = x[i*dim+1] - width[i*dim+1]; |
| 163 | scanpointsy[i].status = INTV_OPEN; |
| 164 | scanpointsy[i+n].node = i; |
| 165 | scanpointsy[i+n].x = x[i*dim+1] + width[i*dim+1]; |
| 166 | scanpointsy[i+n].status = INTV_CLOSE; |
| 167 | } |
| 168 | |
| 169 | |
| 170 | treey = RBTreeCreate(NodeComp,NodeDest,InfoDest,NodePrint,InfoPrint); |
| 171 | |
| 172 | for (i = 0; i < 2*n; i++){ |
| 173 | #ifdef DEBUG_RBTREE |
| 174 | fprintf(stderr," k = %d node = %d x====%f\n" ,(scanpointsx[i].node)%n, (scanpointsx[i].node), (scanpointsx[i].x)); |
| 175 | #endif |
| 176 | |
| 177 | k = (scanpointsx[i].node)%n; |
| 178 | |
| 179 | |
| 180 | if (scanpointsx[i].status == INTV_OPEN){ |
| 181 | #ifdef DEBUG_RBTREE |
| 182 | fprintf(stderr, "inserting..." ); |
| 183 | treey->PrintKey(&(scanpointsy[k])); |
| 184 | #endif |
| 185 | |
| 186 | RBTreeInsert(treey, &(scanpointsy[k]), NULL); /* add both open and close int for y */ |
| 187 | |
| 188 | #ifdef DEBUG_RBTREE |
| 189 | fprintf(stderr, "inserting2..." ); |
| 190 | treey->PrintKey(&(scanpointsy[k+n])); |
| 191 | #endif |
| 192 | |
| 193 | RBTreeInsert(treey, &(scanpointsy[k+n]), NULL); |
| 194 | } else { |
| 195 | real bsta, bbsta, bsto, bbsto; int ii; |
| 196 | |
| 197 | assert(scanpointsx[i].node >= n); |
| 198 | |
| 199 | newNode = newNode0 = RBExactQuery(treey, &(scanpointsy[k + n])); |
| 200 | ii = ((scan_point *)newNode->key)->node; |
| 201 | assert(ii < n); |
| 202 | bsta = scanpointsy[ii].x; bsto = scanpointsy[ii+n].x; |
| 203 | |
| 204 | #ifdef DEBUG_RBTREE |
| 205 | fprintf(stderr, "poping..%d....yinterval={%f,%f}\n" , scanpointsy[k + n].node, bsta, bsto); |
| 206 | treey->PrintKey(newNode->key); |
| 207 | #endif |
| 208 | |
| 209 | assert(treey->nil != newNode); |
| 210 | while ((newNode) && ((newNode = TreePredecessor(treey, newNode)) != treey->nil)){ |
| 211 | neighbor = (((scan_point *)newNode->key)->node)%n; |
| 212 | bbsta = scanpointsy[neighbor].x; bbsto = scanpointsy[neighbor+n].x;/* the y-interval of the node that has one end of the interval lower than the top of the leaving interval (bsto) */ |
| 213 | #ifdef DEBUG_RBTREE |
| 214 | fprintf(stderr," predecessor is node %d y = %f\n" , ((scan_point *)newNode->key)->node, ((scan_point *)newNode->key)->x); |
| 215 | #endif |
| 216 | if (neighbor != k){ |
| 217 | if (ABS(0.5*(bsta+bsto) - 0.5*(bbsta+bbsto)) < 0.5*(bsto-bsta) + 0.5*(bbsto-bbsta)){/* if the distance of the centers of the interval is less than sum of width, we have overlap */ |
| 218 | A = SparseMatrix_coordinate_form_add_entries(A, 1, &neighbor, &k, &one); |
| 219 | #ifdef DEBUG_RBTREE |
| 220 | fprintf(stderr,"====================================== %d %d\n" ,k,neighbor); |
| 221 | #endif |
| 222 | if (check_overlap_only) goto check_overlap_RETURN; |
| 223 | } |
| 224 | } else { |
| 225 | newNode2 = newNode; |
| 226 | } |
| 227 | |
| 228 | } |
| 229 | |
| 230 | #ifdef DEBUG_RBTREE |
| 231 | fprintf(stderr, "deleteing..." ); |
| 232 | treey->PrintKey(newNode0->key); |
| 233 | #endif |
| 234 | |
| 235 | if (newNode0) RBDelete(treey,newNode0); |
| 236 | |
| 237 | |
| 238 | if (newNode2 && newNode2 != treey->nil && newNode2 != newNode0) { |
| 239 | |
| 240 | #ifdef DEBUG_RBTREE |
| 241 | fprintf(stderr, "deleteing2..." ); |
| 242 | treey->PrintKey(newNode2->key); |
| 243 | #endif |
| 244 | |
| 245 | if (newNode0) RBDelete(treey,newNode2); |
| 246 | } |
| 247 | |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | check_overlap_RETURN: |
| 252 | FREE(scanpointsx); |
| 253 | FREE(scanpointsy); |
| 254 | RBTreeDestroy(treey); |
| 255 | |
| 256 | B = SparseMatrix_from_coordinate_format(A); |
| 257 | SparseMatrix_delete(A); |
| 258 | A = SparseMatrix_symmetrize(B, FALSE); |
| 259 | SparseMatrix_delete(B); |
| 260 | if (Verbose) fprintf(stderr, "found %d clashes\n" , A->nz); |
| 261 | return A; |
| 262 | } |
| 263 | |
| 264 | |
| 265 | |
| 266 | /* ============================== label overlap smoother ==================*/ |
| 267 | |
| 268 | |
| 269 | static void relative_position_constraints_delete(void *d){ |
| 270 | relative_position_constraints data; |
| 271 | if (!d) return; |
| 272 | data = (relative_position_constraints) d; |
| 273 | if (data->irn) FREE(data->irn); |
| 274 | if (data->jcn) FREE(data->jcn); |
| 275 | if (data->val) FREE(data->val); |
| 276 | /* other stuff inside relative_position_constraints is assed back to the user hence no need to deallocator*/ |
| 277 | FREE(d); |
| 278 | } |
| 279 | |
| 280 | static relative_position_constraints relative_position_constraints_new(SparseMatrix A_constr, int edge_labeling_scheme, int n_constr_nodes, int *constr_nodes){ |
| 281 | relative_position_constraints data; |
| 282 | assert(A_constr); |
| 283 | data = MALLOC(sizeof(struct relative_position_constraints_struct)); |
| 284 | data->constr_penalty = 1; |
| 285 | data->edge_labeling_scheme = edge_labeling_scheme; |
| 286 | data->n_constr_nodes = n_constr_nodes; |
| 287 | data->constr_nodes = constr_nodes; |
| 288 | data->A_constr = A_constr; |
| 289 | data->irn = NULL; |
| 290 | data->jcn = NULL; |
| 291 | data->val = NULL; |
| 292 | |
| 293 | return data; |
| 294 | } |
| 295 | static void scale_coord(int dim, int m, real *x, real scale){ |
| 296 | int i; |
| 297 | for (i = 0; i < dim*m; i++) { |
| 298 | x[i] *= scale; |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | real overlap_scaling(int dim, int m, real *x, real *width, real scale_sta, real scale_sto, real epsilon, int maxiter){ |
| 303 | /* do a bisection between scale_sta and scale_sto, up to maxiter iterations or till interval <= epsilon, to find the best scaling to avoid overlap |
| 304 | m: number of points |
| 305 | x: the coordinates |
| 306 | width: label size |
| 307 | scale_sta: starting bracket. If <= 0, assumed 0. If > 0, we will test this first and if no overlap, return. |
| 308 | scale_sto: stopping bracket. This must be overlap free if positive. If <= 0, we will find automatically by doubling from scale_sta, or epsilon if scale_sta <= 0. |
| 309 | typically usage: |
| 310 | - for shrinking down a layout to reduce white space, we will assume scale_sta and scale_sto are both given and positive, and scale_sta is the current guess. |
| 311 | - for scaling up, we assume scale_sta, scale_sto <= 0 |
| 312 | */ |
| 313 | real scale = -1, scale_best = -1; |
| 314 | SparseMatrix C = NULL; |
| 315 | int check_overlap_only = 1; |
| 316 | int overlap = 0; |
| 317 | real two = 2; |
| 318 | int iter = 0; |
| 319 | |
| 320 | assert(epsilon > 0); |
| 321 | |
| 322 | if (scale_sta <= 0) { |
| 323 | scale_sta = 0; |
| 324 | } else { |
| 325 | scale_coord(dim, m, x, scale_sta); |
| 326 | C = get_overlap_graph(dim, m, x, width, check_overlap_only); |
| 327 | if (!C || C->nz == 0) { |
| 328 | if (Verbose) fprintf(stderr," shrinking with %f works\n" , scale_sta); |
| 329 | SparseMatrix_delete(C); |
| 330 | return scale_sta; |
| 331 | } |
| 332 | scale_coord(dim, m, x, 1./scale_sta); |
| 333 | SparseMatrix_delete(C); |
| 334 | } |
| 335 | |
| 336 | if (scale_sto < 0){ |
| 337 | if (scale_sta == 0) { |
| 338 | scale_sto = epsilon; |
| 339 | } else { |
| 340 | scale_sto = scale_sta; |
| 341 | } |
| 342 | scale_coord(dim, m, x, scale_sto); |
| 343 | do { |
| 344 | scale_sto *= two; |
| 345 | scale_coord(dim, m, x, two); |
| 346 | C = get_overlap_graph(dim, m, x, width, check_overlap_only); |
| 347 | overlap = (C && C->nz > 0); |
| 348 | SparseMatrix_delete(C); |
| 349 | } while (overlap); |
| 350 | scale_coord(dim, m, x, 1/scale_sto);/* unscale */ |
| 351 | } |
| 352 | |
| 353 | scale_best = scale_sto; |
| 354 | while (iter++ < maxiter && scale_sto - scale_sta > epsilon){ |
| 355 | |
| 356 | if (Verbose) fprintf(stderr,"in overlap_scaling iter=%d, maxiter=%d, scaling bracket: {%f,%f}\n" , iter, maxiter, scale_sta, scale_sto); |
| 357 | |
| 358 | scale = 0.5*(scale_sta + scale_sto); |
| 359 | scale_coord(dim, m, x, scale); |
| 360 | C = get_overlap_graph(dim, m, x, width, check_overlap_only); |
| 361 | scale_coord(dim, m, x, 1./scale);/* unscale */ |
| 362 | overlap = (C && C->nz > 0); |
| 363 | SparseMatrix_delete(C); |
| 364 | if (overlap){ |
| 365 | scale_sta = scale; |
| 366 | } else { |
| 367 | scale_best = scale_sto = scale; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | /* final scaling */ |
| 372 | scale_coord(dim, m, x, scale_best); |
| 373 | return scale_best; |
| 374 | } |
| 375 | |
| 376 | OverlapSmoother OverlapSmoother_new(SparseMatrix A, int m, |
| 377 | int dim, real lambda0, real *x, real *width, int include_original_graph, int neighborhood_only, |
| 378 | real *max_overlap, real *min_overlap, |
| 379 | int edge_labeling_scheme, int n_constr_nodes, int *constr_nodes, SparseMatrix A_constr, int shrink |
| 380 | ){ |
| 381 | OverlapSmoother sm; |
| 382 | int i, j, k, *iw, *jw, jdiag; |
| 383 | SparseMatrix B; |
| 384 | real *lambda, *d, *w, diag_d, diag_w, dist; |
| 385 | |
| 386 | assert((!A) || SparseMatrix_is_symmetric(A, FALSE)); |
| 387 | |
| 388 | sm = GNEW(struct OverlapSmoother_struct); |
| 389 | sm->scheme = SM_SCHEME_NORMAL; |
| 390 | if (constr_nodes && n_constr_nodes > 0 && edge_labeling_scheme != ELSCHEME_NONE){ |
| 391 | sm->scheme = SM_SCHEME_NORMAL_ELABEL; |
| 392 | sm->data = relative_position_constraints_new(A_constr, edge_labeling_scheme, n_constr_nodes, constr_nodes); |
| 393 | sm->data_deallocator = relative_position_constraints_delete; |
| 394 | } else { |
| 395 | sm->data = NULL; |
| 396 | } |
| 397 | |
| 398 | sm->tol_cg = 0.01; |
| 399 | sm->maxit_cg = sqrt((double) A->m); |
| 400 | |
| 401 | lambda = sm->lambda = N_GNEW(m,real); |
| 402 | for (i = 0; i < m; i++) sm->lambda[i] = lambda0; |
| 403 | |
| 404 | B= call_tri(m, dim, x); |
| 405 | |
| 406 | if (!neighborhood_only){ |
| 407 | SparseMatrix C, D; |
| 408 | C = get_overlap_graph(dim, m, x, width, 0); |
| 409 | D = SparseMatrix_add(B, C); |
| 410 | SparseMatrix_delete(B); |
| 411 | SparseMatrix_delete(C); |
| 412 | B = D; |
| 413 | } |
| 414 | if (include_original_graph){ |
| 415 | sm->Lw = SparseMatrix_add(A, B); |
| 416 | SparseMatrix_delete(B); |
| 417 | } else { |
| 418 | sm->Lw = B; |
| 419 | } |
| 420 | sm->Lwd = SparseMatrix_copy(sm->Lw); |
| 421 | |
| 422 | #ifdef DEBUG |
| 423 | { |
| 424 | FILE *fp; |
| 425 | fp = fopen("/tmp/111" ,"w" ); |
| 426 | export_embedding(fp, dim, sm->Lwd, x, NULL); |
| 427 | fclose(fp); |
| 428 | } |
| 429 | #endif |
| 430 | |
| 431 | if (!(sm->Lw) || !(sm->Lwd)) { |
| 432 | OverlapSmoother_delete(sm); |
| 433 | return NULL; |
| 434 | } |
| 435 | |
| 436 | assert((sm->Lwd)->type == MATRIX_TYPE_REAL); |
| 437 | |
| 438 | ideal_distance_avoid_overlap(dim, sm->Lwd, x, width, (real*) (sm->Lwd->a), max_overlap, min_overlap); |
| 439 | |
| 440 | /* no overlap at all! */ |
| 441 | if (*max_overlap < 1 && shrink){ |
| 442 | real scale_sta = MIN(1, *max_overlap*1.0001), scale_sto = 1; |
| 443 | |
| 444 | if (Verbose) fprintf(stderr," no overlap (overlap = %f), rescale to shrink\n" , *max_overlap - 1); |
| 445 | |
| 446 | scale_sta = overlap_scaling(dim, m, x, width, scale_sta, scale_sto, 0.0001, 15); |
| 447 | |
| 448 | *max_overlap = 1; |
| 449 | goto RETURN; |
| 450 | } |
| 451 | |
| 452 | iw = sm->Lw->ia; jw = sm->Lw->ja; |
| 453 | w = (real*) sm->Lw->a; d = (real*) sm->Lwd->a; |
| 454 | |
| 455 | for (i = 0; i < m; i++){ |
| 456 | diag_d = diag_w = 0; |
| 457 | jdiag = -1; |
| 458 | for (j = iw[i]; j < iw[i+1]; j++){ |
| 459 | k = jw[j]; |
| 460 | if (k == i){ |
| 461 | jdiag = j; |
| 462 | continue; |
| 463 | } |
| 464 | if (d[j] > 0){/* those edges that needs expansion */ |
| 465 | w[j] = -100/d[j]/d[j]; |
| 466 | /*w[j] = 100/d[j]/d[j];*/ |
| 467 | } else {/* those that needs shrinking is set to negative in ideal_distance_avoid_overlap */ |
| 468 | /*w[j] = 1/d[j]/d[j];*/ |
| 469 | w[j] = -1/d[j]/d[j]; |
| 470 | d[j] = -d[j]; |
| 471 | } |
| 472 | dist = d[j]; |
| 473 | diag_w += w[j]; |
| 474 | d[j] = w[j]*dist; |
| 475 | diag_d += d[j]; |
| 476 | |
| 477 | } |
| 478 | |
| 479 | lambda[i] *= (-diag_w);/* alternatively don't do that then we have a constant penalty term scaled by lambda0 */ |
| 480 | |
| 481 | assert(jdiag >= 0); |
| 482 | w[jdiag] = -diag_w + lambda[i]; |
| 483 | d[jdiag] = -diag_d; |
| 484 | } |
| 485 | RETURN: |
| 486 | return sm; |
| 487 | } |
| 488 | |
| 489 | void OverlapSmoother_delete(OverlapSmoother sm){ |
| 490 | |
| 491 | StressMajorizationSmoother_delete(sm); |
| 492 | |
| 493 | } |
| 494 | |
| 495 | real OverlapSmoother_smooth(OverlapSmoother sm, int dim, real *x){ |
| 496 | int maxit_sm = 1;/* only using 1 iteration of stress majorization |
| 497 | is found to give better results and save time! */ |
| 498 | real res = StressMajorizationSmoother_smooth(sm, dim, x, maxit_sm, 0.001); |
| 499 | #ifdef DEBUG |
| 500 | {FILE *fp; |
| 501 | fp = fopen("/tmp/222" ,"w" ); |
| 502 | export_embedding(fp, dim, sm->Lwd, x, NULL); |
| 503 | fclose(fp);} |
| 504 | #endif |
| 505 | return res; |
| 506 | } |
| 507 | |
| 508 | /*================================= end OverlapSmoother =============*/ |
| 509 | |
| 510 | static void scale_to_edge_length(int dim, SparseMatrix A, real *x, real avg_label_size){ |
| 511 | real dist; |
| 512 | int i; |
| 513 | |
| 514 | if (!A) return; |
| 515 | dist = average_edge_length(A, dim, x); |
| 516 | if (Verbose) fprintf(stderr,"avg edge len=%f avg_label-size= %f\n" , dist, avg_label_size); |
| 517 | |
| 518 | |
| 519 | dist = avg_label_size/MAX(dist, MACHINEACC); |
| 520 | |
| 521 | for (i = 0; i < dim*A->m; i++) x[i] *= dist; |
| 522 | } |
| 523 | |
| 524 | static void print_bounding_box(int n, int dim, real *x){ |
| 525 | real *xmin, *xmax; |
| 526 | int i, k; |
| 527 | |
| 528 | xmin = N_GNEW(dim,real); |
| 529 | xmax = N_GNEW(dim,real); |
| 530 | |
| 531 | for (i = 0; i < dim; i++) xmin[i]=xmax[i] = x[i]; |
| 532 | |
| 533 | for (i = 0; i < n; i++){ |
| 534 | for (k = 0; k < dim; k++){ |
| 535 | xmin[k] = MIN(xmin[k],x[i*dim+k]); |
| 536 | xmax[k] = MAX(xmax[k],x[i*dim+k]); |
| 537 | } |
| 538 | } |
| 539 | fprintf(stderr,"bounding box = \n" ); |
| 540 | for (i = 0; i < dim; i++) fprintf(stderr,"{%f,%f}, " ,xmin[i], xmax[i]); |
| 541 | fprintf(stderr,"\n" ); |
| 542 | |
| 543 | FREE(xmin); |
| 544 | FREE(xmax); |
| 545 | } |
| 546 | |
| 547 | static int check_convergence(real max_overlap, real res, int has_penalty_terms, real epsilon){ |
| 548 | if (!has_penalty_terms) return (max_overlap <= 1); |
| 549 | return res < epsilon; |
| 550 | } |
| 551 | |
| 552 | void remove_overlap(int dim, SparseMatrix A, real *x, real *label_sizes, int ntry, real initial_scaling, |
| 553 | int edge_labeling_scheme, int n_constr_nodes, int *constr_nodes, SparseMatrix A_constr, int do_shrinking, int *flag){ |
| 554 | /* |
| 555 | edge_labeling_scheme: if ELSCHEME_NONE, n_constr_nodes/constr_nodes/A_constr are not used |
| 556 | |
| 557 | n_constr_nodes: number of nodes that has constraints, these are nodes that is |
| 558 | . constrained to be close to the average of its neighbors. |
| 559 | constr_nodes: a list of nodes that need to be constrained. If NULL, unused. |
| 560 | A_constr: neighbors of node i are in the row i of this matrix. i needs to sit |
| 561 | . in between these neighbors as much as possible. this must not be NULL |
| 562 | . if constr_nodes != NULL. |
| 563 | |
| 564 | */ |
| 565 | |
| 566 | real lambda = 0.00; |
| 567 | OverlapSmoother sm; |
| 568 | int include_original_graph = 0, i; |
| 569 | real LARGE = 100000; |
| 570 | real avg_label_size, res = LARGE; |
| 571 | real max_overlap = 0, min_overlap = 999; |
| 572 | int neighborhood_only = TRUE; |
| 573 | int has_penalty_terms = FALSE; |
| 574 | real epsilon = 0.005; |
| 575 | int shrink = 0; |
| 576 | |
| 577 | #ifdef TIME |
| 578 | clock_t cpu; |
| 579 | #endif |
| 580 | |
| 581 | #ifdef TIME |
| 582 | cpu = clock(); |
| 583 | #endif |
| 584 | |
| 585 | if (!label_sizes) return; |
| 586 | |
| 587 | if (initial_scaling < 0) { |
| 588 | avg_label_size = 0; |
| 589 | for (i = 0; i < A->m; i++) avg_label_size += label_sizes[i*dim]+label_sizes[i*dim+1]; |
| 590 | /* for (i = 0; i < A->m; i++) avg_label_size += 2*MAX(label_sizes[i*dim],label_sizes[i*dim+1]);*/ |
| 591 | avg_label_size /= A->m; |
| 592 | scale_to_edge_length(dim, A, x, -initial_scaling*avg_label_size); |
| 593 | } else if (initial_scaling > 0){ |
| 594 | scale_to_edge_length(dim, A, x, initial_scaling); |
| 595 | } |
| 596 | |
| 597 | if (!ntry) return; |
| 598 | |
| 599 | *flag = 0; |
| 600 | |
| 601 | #ifdef DEBUG |
| 602 | _statistics[0] = _statistics[1] = 0.; |
| 603 | {FILE*fp; |
| 604 | fp = fopen("x1" ,"w" ); |
| 605 | for (i = 0; i < A->m; i++){ |
| 606 | fprintf(fp, "%f %f\n" ,x[i*2],x[i*2+1]); |
| 607 | } |
| 608 | fclose(fp); |
| 609 | } |
| 610 | #endif |
| 611 | |
| 612 | #ifdef ANIMATE |
| 613 | {FILE*fp; |
| 614 | fp = fopen("/tmp/m" ,"wa" ); |
| 615 | fprintf(fp,"{" ); |
| 616 | #endif |
| 617 | |
| 618 | has_penalty_terms = (edge_labeling_scheme != ELSCHEME_NONE && n_constr_nodes > 0); |
| 619 | for (i = 0; i < ntry; i++){ |
| 620 | if (Verbose) print_bounding_box(A->m, dim, x); |
| 621 | sm = OverlapSmoother_new(A, A->m, dim, lambda, x, label_sizes, include_original_graph, neighborhood_only, |
| 622 | &max_overlap, &min_overlap, edge_labeling_scheme, n_constr_nodes, constr_nodes, A_constr, shrink); |
| 623 | if (Verbose) fprintf(stderr, "overlap removal neighbors only?= %d iter -- %d, overlap factor = %g underlap factor = %g\n" , neighborhood_only, i, max_overlap - 1, min_overlap); |
| 624 | if (check_convergence(max_overlap, res, has_penalty_terms, epsilon)){ |
| 625 | |
| 626 | OverlapSmoother_delete(sm); |
| 627 | if (neighborhood_only == FALSE){ |
| 628 | break; |
| 629 | } else { |
| 630 | res = LARGE; |
| 631 | neighborhood_only = FALSE; if (do_shrinking) shrink = 1; |
| 632 | continue; |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | res = OverlapSmoother_smooth(sm, dim, x); |
| 637 | if (Verbose) fprintf(stderr,"res = %f\n" ,res); |
| 638 | #ifdef ANIMATE |
| 639 | if (i != 0) fprintf(fp,"," ); |
| 640 | export_embedding(fp, dim, A, x, label_sizes); |
| 641 | #endif |
| 642 | OverlapSmoother_delete(sm); |
| 643 | } |
| 644 | if (Verbose) fprintf(stderr, "overlap removal neighbors only?= %d iter -- %d, overlap factor = %g underlap factor = %g\n" , neighborhood_only, i, max_overlap - 1, min_overlap); |
| 645 | |
| 646 | #ifdef ANIMATE |
| 647 | fprintf(fp,"}" ); |
| 648 | fclose(fp); |
| 649 | } |
| 650 | #endif |
| 651 | |
| 652 | if (has_penalty_terms){ |
| 653 | /* now do without penalty */ |
| 654 | remove_overlap(dim, A, x, label_sizes, ntry, 0., |
| 655 | ELSCHEME_NONE, 0, NULL, NULL, do_shrinking, flag); |
| 656 | } |
| 657 | |
| 658 | #ifdef DEBUG |
| 659 | fprintf(stderr," number of cg iter = %f, number of stress majorization iter = %f number of overlap removal try = %d\n" , |
| 660 | _statistics[0], _statistics[1], i - 1); |
| 661 | |
| 662 | {FILE*fp; |
| 663 | fp = fopen("x2" ,"w" ); |
| 664 | for (i = 0; i < A->m; i++){ |
| 665 | fprintf(fp, "%f %f\n" ,x[i*2],x[i*2+1]); |
| 666 | } |
| 667 | fclose(fp); |
| 668 | } |
| 669 | #endif |
| 670 | |
| 671 | #ifdef DEBUG |
| 672 | {FILE*fp; |
| 673 | fp = fopen("/tmp/m" ,"w" ); |
| 674 | if (A) export_embedding(fp, dim, A, x, label_sizes); |
| 675 | fclose(fp); |
| 676 | } |
| 677 | #endif |
| 678 | #ifdef TIME |
| 679 | fprintf(stderr, "post processing %f\n" ,((real) (clock() - cpu)) / CLOCKS_PER_SEC); |
| 680 | #endif |
| 681 | } |
| 682 | |
| 683 | #else |
| 684 | #include "types.h" |
| 685 | #include "SparseMatrix.h" |
| 686 | void remove_overlap(int dim, SparseMatrix A, int m, real *x, real *label_sizes, int ntry, real initial_scaling, int do_shrinking, int *flag) |
| 687 | { |
| 688 | static int once; |
| 689 | |
| 690 | if (once == 0) { |
| 691 | once = 1; |
| 692 | agerr(AGERR, "remove_overlap: Graphviz not built with triangulation library\n" ); |
| 693 | } |
| 694 | } |
| 695 | #endif |
| 696 | |