| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "matrix_ops.h" |
| 16 | #include "pca.h" |
| 17 | #include "closest.h" |
| 18 | #include <stdio.h> |
| 19 | #include <stdlib.h> |
| 20 | #include <math.h> |
| 21 | |
| 22 | static int num_pairs = 4; |
| 23 | |
| 24 | void |
| 25 | PCA_alloc(DistType ** coords, int dim, int n, double **new_coords, |
| 26 | int new_dim) |
| 27 | { |
| 28 | double **DD = NULL; /* dim*dim matrix: coords*coords^T */ |
| 29 | double sum; |
| 30 | int i, j, k; |
| 31 | double **eigs = NULL; |
| 32 | double *evals = NULL; |
| 33 | double *storage_ptr; |
| 34 | |
| 35 | eigs = N_GNEW(new_dim, double *); |
| 36 | for (i = 0; i < new_dim; i++) |
| 37 | eigs[i] = N_GNEW(dim, double); |
| 38 | evals = N_GNEW(new_dim, double); |
| 39 | |
| 40 | DD = N_GNEW(dim, double *); |
| 41 | storage_ptr = N_GNEW(dim * dim, double); |
| 42 | for (i = 0; i < dim; i++) { |
| 43 | DD[i] = storage_ptr; |
| 44 | storage_ptr += dim; |
| 45 | } |
| 46 | |
| 47 | for (i = 0; i < dim; i++) { |
| 48 | for (j = 0; j <= i; j++) { |
| 49 | /* compute coords[i]*coords[j] */ |
| 50 | sum = 0; |
| 51 | for (k = 0; k < n; k++) { |
| 52 | sum += coords[i][k] * coords[j][k]; |
| 53 | } |
| 54 | DD[i][j] = DD[j][i] = sum; |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | power_iteration(DD, dim, new_dim, eigs, evals, TRUE); |
| 59 | |
| 60 | for (j = 0; j < new_dim; j++) { |
| 61 | for (i = 0; i < n; i++) { |
| 62 | sum = 0; |
| 63 | for (k = 0; k < dim; k++) { |
| 64 | sum += coords[k][i] * eigs[j][k]; |
| 65 | } |
| 66 | new_coords[j][i] = sum; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | for (i = 0; i < new_dim; i++) |
| 71 | free(eigs[i]); |
| 72 | free(eigs); |
| 73 | free(evals); |
| 74 | free(DD[0]); |
| 75 | free(DD); |
| 76 | } |
| 77 | |
| 78 | boolean |
| 79 | iterativePCA_1D(double **coords, int dim, int n, double *new_direction) |
| 80 | { |
| 81 | vtx_data *laplacian; |
| 82 | float **mat1 = NULL; |
| 83 | double **mat = NULL; |
| 84 | double eval; |
| 85 | |
| 86 | /* Given that first projection of 'coords' is 'coords[0]' |
| 87 | compute another projection direction 'new_direction' |
| 88 | that scatters points that are close in 'coords[0]' |
| 89 | */ |
| 90 | |
| 91 | /* find the nodes that were close in 'coords[0]' */ |
| 92 | /* and construct appropriate Laplacian */ |
| 93 | closest_pairs2graph(coords[0], n, num_pairs * n, &laplacian); |
| 94 | |
| 95 | /* Compute coords*Lap*coords^T */ |
| 96 | mult_sparse_dense_mat_transpose(laplacian, coords, n, dim, &mat1); |
| 97 | mult_dense_mat_d(coords, mat1, dim, n, dim, &mat); |
| 98 | free(mat1[0]); |
| 99 | free(mat1); |
| 100 | |
| 101 | /* Compute direction */ |
| 102 | return power_iteration(mat, dim, 1, &new_direction, &eval, TRUE); |
| 103 | /* ?? When is mat freed? */ |
| 104 | } |
| 105 | |
| 106 | #ifdef UNUSED |
| 107 | |
| 108 | double dist(double **coords, int dim, int p1, int p2) |
| 109 | { |
| 110 | int i; |
| 111 | double sum = 0; |
| 112 | |
| 113 | for (i = 0; i < dim; i++) { |
| 114 | sum += |
| 115 | (coords[i][p1] - coords[i][p2]) * (coords[i][p1] - |
| 116 | coords[i][p2]); |
| 117 | } |
| 118 | return sqrt(sum); |
| 119 | } |
| 120 | |
| 121 | |
| 122 | void weight_laplacian(double **X, int n, int dim, vtx_data * laplacian) |
| 123 | { |
| 124 | int i, j, neighbor; |
| 125 | |
| 126 | int *edges; |
| 127 | float *ewgts; |
| 128 | for (i = 0; i < n; i++) { |
| 129 | edges = laplacian[i].edges; |
| 130 | ewgts = laplacian[i].ewgts; |
| 131 | *ewgts = 0; |
| 132 | for (j = 1; j < laplacian[i].nedges; j++) { |
| 133 | neighbor = edges[j]; |
| 134 | *ewgts -= ewgts[j] = |
| 135 | float (-1.0 / (dist(X, dim, i, neighbor) + 1e-10)); |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | #endif |
| 141 | |