| 1 | /* $Id$ $Revision$ */ | 
|---|
| 2 | /* vim:set shiftwidth=4 ts=8: */ | 
|---|
| 3 |  | 
|---|
| 4 | /************************************************************************* | 
|---|
| 5 | * Copyright (c) 2011 AT&T Intellectual Property | 
|---|
| 6 | * All rights reserved. This program and the accompanying materials | 
|---|
| 7 | * are made available under the terms of the Eclipse Public License v1.0 | 
|---|
| 8 | * which accompanies this distribution, and is available at | 
|---|
| 9 | * http://www.eclipse.org/legal/epl-v10.html | 
|---|
| 10 | * | 
|---|
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ | 
|---|
| 12 | *************************************************************************/ | 
|---|
| 13 |  | 
|---|
| 14 | #include "digcola.h" | 
|---|
| 15 | #ifdef DIGCOLA | 
|---|
| 16 | #include "kkutils.h" | 
|---|
| 17 | #include "matrix_ops.h" | 
|---|
| 18 | #include "conjgrad.h" | 
|---|
| 19 |  | 
|---|
| 20 | static void | 
|---|
| 21 | standardize(double* orthog, int nvtxs) | 
|---|
| 22 | { | 
|---|
| 23 | double len, avg = 0; | 
|---|
| 24 | int i; | 
|---|
| 25 | for (i=0; i<nvtxs; i++) | 
|---|
| 26 | avg+=orthog[i]; | 
|---|
| 27 | avg/=nvtxs; | 
|---|
| 28 |  | 
|---|
| 29 | /* centralize: */ | 
|---|
| 30 | for (i=0; i<nvtxs; i++) | 
|---|
| 31 | orthog[i]-=avg; | 
|---|
| 32 |  | 
|---|
| 33 | /* normalize: */ | 
|---|
| 34 | len = norm(orthog, 0, nvtxs-1); | 
|---|
| 35 | vecscale(orthog, 0, nvtxs-1, 1.0 / len, orthog); | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 | static void | 
|---|
| 39 | mat_mult_vec_orthog(float** mat, int dim1, int dim2, double* vec, | 
|---|
| 40 | double* result, double* orthog) | 
|---|
| 41 | { | 
|---|
| 42 | /* computes mat*vec, where mat is a dim1*dim2 matrix */ | 
|---|
| 43 | int i,j; | 
|---|
| 44 | double sum; | 
|---|
| 45 |  | 
|---|
| 46 | for (i=0; i<dim1; i++) { | 
|---|
| 47 | sum=0; | 
|---|
| 48 | for (j=0; j<dim2; j++) { | 
|---|
| 49 | sum += mat[i][j]*vec[j]; | 
|---|
| 50 | } | 
|---|
| 51 | result[i]=sum; | 
|---|
| 52 | } | 
|---|
| 53 | if (orthog!=NULL) { | 
|---|
| 54 | double alpha=-dot(result,0,dim1-1,orthog); | 
|---|
| 55 | scadd(result, 0, dim1-1, alpha, orthog); | 
|---|
| 56 | } | 
|---|
| 57 | } | 
|---|
| 58 |  | 
|---|
| 59 | static void | 
|---|
| 60 | power_iteration_orthog(float** square_mat, int n, int neigs, | 
|---|
| 61 | double** eigs, double* evals, double* orthog, double p_iteration_threshold) | 
|---|
| 62 | { | 
|---|
| 63 | /* | 
|---|
| 64 | * Power-Iteration with (I-orthog*orthog^T)*square_mat*(I-orthog*orthog^T) | 
|---|
| 65 | */ | 
|---|
| 66 |  | 
|---|
| 67 | int i,j; | 
|---|
| 68 | double *tmp_vec = N_GNEW(n, double); | 
|---|
| 69 | double *last_vec = N_GNEW(n, double); | 
|---|
| 70 | double *curr_vector; | 
|---|
| 71 | double len; | 
|---|
| 72 | double angle; | 
|---|
| 73 | double alpha; | 
|---|
| 74 | int iteration; | 
|---|
| 75 | int largest_index; | 
|---|
| 76 | double largest_eval; | 
|---|
| 77 |  | 
|---|
| 78 | double tol=1-p_iteration_threshold; | 
|---|
| 79 |  | 
|---|
| 80 | if (neigs>=n) { | 
|---|
| 81 | neigs=n; | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | for (i=0; i<neigs; i++) { | 
|---|
| 85 | curr_vector = eigs[i]; | 
|---|
| 86 | /* guess the i-th eigen vector */ | 
|---|
| 87 | choose: | 
|---|
| 88 | for (j=0; j<n; j++) { | 
|---|
| 89 | curr_vector[j] = rand()%100; | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | if (orthog!=NULL) { | 
|---|
| 93 | alpha=-dot(orthog,0,n-1,curr_vector); | 
|---|
| 94 | scadd(curr_vector, 0, n-1, alpha, orthog); | 
|---|
| 95 | } | 
|---|
| 96 | // orthogonalize against higher eigenvectors | 
|---|
| 97 | for (j=0; j<i; j++) { | 
|---|
| 98 | alpha = -dot(eigs[j], 0, n-1, curr_vector); | 
|---|
| 99 | scadd(curr_vector, 0, n-1, alpha, eigs[j]); | 
|---|
| 100 | } | 
|---|
| 101 | len = norm(curr_vector, 0, n-1); | 
|---|
| 102 | if (len<1e-10) { | 
|---|
| 103 | /* We have chosen a vector colinear with prvious ones */ | 
|---|
| 104 | goto choose; | 
|---|
| 105 | } | 
|---|
| 106 | vecscale(curr_vector, 0, n-1, 1.0 / len, curr_vector); | 
|---|
| 107 | iteration=0; | 
|---|
| 108 | do { | 
|---|
| 109 | iteration++; | 
|---|
| 110 | cpvec(last_vec,0,n-1,curr_vector); | 
|---|
| 111 |  | 
|---|
| 112 | mat_mult_vec_orthog(square_mat,n,n,curr_vector,tmp_vec,orthog); | 
|---|
| 113 | cpvec(curr_vector,0,n-1,tmp_vec); | 
|---|
| 114 |  | 
|---|
| 115 | /* orthogonalize against higher eigenvectors */ | 
|---|
| 116 | for (j=0; j<i; j++) { | 
|---|
| 117 | alpha = -dot(eigs[j], 0, n-1, curr_vector); | 
|---|
| 118 | scadd(curr_vector, 0, n-1, alpha, eigs[j]); | 
|---|
| 119 | } | 
|---|
| 120 | len = norm(curr_vector, 0, n-1); | 
|---|
| 121 | if (len<1e-10) { | 
|---|
| 122 | /* We have reached the null space (e.vec. associated | 
|---|
| 123 | * with e.val. 0) | 
|---|
| 124 | */ | 
|---|
| 125 | goto exit; | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | vecscale(curr_vector, 0, n-1, 1.0 / len, curr_vector); | 
|---|
| 129 | angle = dot(curr_vector, 0, n-1, last_vec); | 
|---|
| 130 | } while (fabs(angle)<tol); | 
|---|
| 131 | /* the Rayleigh quotient (up to errors due to orthogonalization): | 
|---|
| 132 | * u*(A*u)/||A*u||)*||A*u||, where u=last_vec, and ||u||=1 | 
|---|
| 133 | */ | 
|---|
| 134 | evals[i]=angle*len; | 
|---|
| 135 | } | 
|---|
| 136 | exit: | 
|---|
| 137 | for (; i<neigs; i++) { | 
|---|
| 138 | /* compute the smallest eigenvector, which are | 
|---|
| 139 | * probably associated with eigenvalue 0 and for | 
|---|
| 140 | * which power-iteration is dangerous | 
|---|
| 141 | */ | 
|---|
| 142 | curr_vector = eigs[i]; | 
|---|
| 143 | /* guess the i-th eigen vector */ | 
|---|
| 144 | for (j=0; j<n; j++) | 
|---|
| 145 | curr_vector[j] = rand()%100; | 
|---|
| 146 | /* orthogonalize against higher eigenvectors */ | 
|---|
| 147 | for (j=0; j<i; j++) { | 
|---|
| 148 | alpha = -dot(eigs[j], 0, n-1, curr_vector); | 
|---|
| 149 | scadd(curr_vector, 0, n-1, alpha, eigs[j]); | 
|---|
| 150 | } | 
|---|
| 151 | len = norm(curr_vector, 0, n-1); | 
|---|
| 152 | vecscale(curr_vector, 0, n-1, 1.0 / len, curr_vector); | 
|---|
| 153 | evals[i]=0; | 
|---|
| 154 |  | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|
| 157 | /* sort vectors by their evals, for overcoming possible mis-convergence: */ | 
|---|
| 158 | for (i=0; i<neigs-1; i++) { | 
|---|
| 159 | largest_index=i; | 
|---|
| 160 | largest_eval=evals[largest_index]; | 
|---|
| 161 | for (j=i+1; j<neigs; j++) { | 
|---|
| 162 | if (largest_eval<evals[j]) { | 
|---|
| 163 | largest_index=j; | 
|---|
| 164 | largest_eval=evals[largest_index]; | 
|---|
| 165 | } | 
|---|
| 166 | } | 
|---|
| 167 | if (largest_index!=i) { // exchange eigenvectors: | 
|---|
| 168 | cpvec(tmp_vec,0,n-1,eigs[i]); | 
|---|
| 169 | cpvec(eigs[i],0,n-1,eigs[largest_index]); | 
|---|
| 170 | cpvec(eigs[largest_index],0,n-1,tmp_vec); | 
|---|
| 171 |  | 
|---|
| 172 | evals[largest_index]=evals[i]; | 
|---|
| 173 | evals[i]=largest_eval; | 
|---|
| 174 | } | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | free (tmp_vec); free (last_vec); | 
|---|
| 178 |  | 
|---|
| 179 | } | 
|---|
| 180 |  | 
|---|
| 181 | static float* | 
|---|
| 182 | compute_avgs(DistType** Dij, int n, float* all_avg) | 
|---|
| 183 | { | 
|---|
| 184 | float* row_avg = N_GNEW(n, float); | 
|---|
| 185 | int i,j; | 
|---|
| 186 | double sum=0, sum_row; | 
|---|
| 187 |  | 
|---|
| 188 | for (i=0; i<n; i++) { | 
|---|
| 189 | sum_row=0; | 
|---|
| 190 | for (j=0; j<n; j++) { | 
|---|
| 191 | sum+=(double)Dij[i][j]*(double)Dij[i][j]; | 
|---|
| 192 | sum_row+=(double)Dij[i][j]*(double)Dij[i][j]; | 
|---|
| 193 | } | 
|---|
| 194 | row_avg[i]=(float)sum_row/n; | 
|---|
| 195 | } | 
|---|
| 196 | *all_avg=(float)sum/(n*n); | 
|---|
| 197 | return row_avg; | 
|---|
| 198 | } | 
|---|
| 199 |  | 
|---|
| 200 | static float** | 
|---|
| 201 | compute_Bij(DistType** Dij, int n) | 
|---|
| 202 | { | 
|---|
| 203 | int i,j; | 
|---|
| 204 | float* storage = N_GNEW(n*n,float); | 
|---|
| 205 | float** Bij = N_GNEW(n, float*); | 
|---|
| 206 | float* row_avg; | 
|---|
| 207 | float all_avg; | 
|---|
| 208 |  | 
|---|
| 209 | for (i=0; i<n; i++) | 
|---|
| 210 | Bij[i] = storage+i*n; | 
|---|
| 211 |  | 
|---|
| 212 | row_avg = compute_avgs(Dij, n, &all_avg); | 
|---|
| 213 | for (i=0; i<n; i++) { | 
|---|
| 214 | for (j=0; j<=i; j++) { | 
|---|
| 215 | Bij[i][j]=-(float)Dij[i][j]*Dij[i][j]+row_avg[i]+row_avg[j]-all_avg; | 
|---|
| 216 | Bij[j][i]=Bij[i][j]; | 
|---|
| 217 | } | 
|---|
| 218 | } | 
|---|
| 219 | free (row_avg); | 
|---|
| 220 | return Bij; | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | static void | 
|---|
| 224 | CMDS_orthog(vtx_data* graph, int n, int dim, double** eigs, double tol, | 
|---|
| 225 | double* orthog, DistType** Dij) | 
|---|
| 226 | { | 
|---|
| 227 | int i,j; | 
|---|
| 228 | float** Bij = compute_Bij(Dij, n); | 
|---|
| 229 | double* evals= N_GNEW(dim, double); | 
|---|
| 230 |  | 
|---|
| 231 | double * orthog_aux = NULL; | 
|---|
| 232 | if (orthog!=NULL) { | 
|---|
| 233 | orthog_aux = N_GNEW(n, double); | 
|---|
| 234 | for (i=0; i<n; i++) { | 
|---|
| 235 | orthog_aux[i]=orthog[i]; | 
|---|
| 236 | } | 
|---|
| 237 | standardize(orthog_aux,n); | 
|---|
| 238 | } | 
|---|
| 239 | power_iteration_orthog(Bij, n, dim, eigs, evals, orthog_aux, tol); | 
|---|
| 240 |  | 
|---|
| 241 | for (i=0; i<dim; i++) { | 
|---|
| 242 | for (j=0; j<n; j++) { | 
|---|
| 243 | eigs[i][j]*=sqrt(fabs(evals[i])); | 
|---|
| 244 | } | 
|---|
| 245 | } | 
|---|
| 246 | free (Bij[0]); free (Bij); | 
|---|
| 247 | free (evals); free (orthog_aux); | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 | #define SCALE_FACTOR 256 | 
|---|
| 251 |  | 
|---|
| 252 | int IMDS_given_dim(vtx_data* graph, int n, double* given_coords, | 
|---|
| 253 | double* new_coords, double conj_tol) | 
|---|
| 254 | { | 
|---|
| 255 | int iterations2; | 
|---|
| 256 | int i,j, rv = 0; | 
|---|
| 257 | DistType** Dij; | 
|---|
| 258 | float* f_storage = NULL; | 
|---|
| 259 | double* x = given_coords; | 
|---|
| 260 | double uniLength; | 
|---|
| 261 | double* orthog_aux = NULL; | 
|---|
| 262 | double* y = new_coords; | 
|---|
| 263 | float** lap = N_GNEW(n, float*); | 
|---|
| 264 | float degree; | 
|---|
| 265 | double pos_i; | 
|---|
| 266 | double* balance = N_GNEW(n, double); | 
|---|
| 267 | double b; | 
|---|
| 268 | boolean converged; | 
|---|
| 269 |  | 
|---|
| 270 | #if 0 | 
|---|
| 271 | iterations1=mat_mult_count1=0; /* We don't compute the x-axis at all. */ | 
|---|
| 272 | #endif | 
|---|
| 273 |  | 
|---|
| 274 | Dij = compute_apsp(graph, n); | 
|---|
| 275 |  | 
|---|
| 276 | /* scaling up the distances to enable an 'sqrt' operation later | 
|---|
| 277 | * (in case distances are integers) | 
|---|
| 278 | */ | 
|---|
| 279 | for (i=0; i<n; i++) | 
|---|
| 280 | for (j=0; j<n; j++) | 
|---|
| 281 | Dij[i][j]*=SCALE_FACTOR; | 
|---|
| 282 |  | 
|---|
| 283 | assert(x!=NULL); | 
|---|
| 284 | { | 
|---|
| 285 | double sum1, sum2; | 
|---|
| 286 | /* scale x (given axis) to minimize the stress */ | 
|---|
| 287 | orthog_aux = N_GNEW(n, double); | 
|---|
| 288 | for (i=0; i<n; i++) { | 
|---|
| 289 | orthog_aux[i]=x[i]; | 
|---|
| 290 | } | 
|---|
| 291 | standardize(orthog_aux,n); | 
|---|
| 292 |  | 
|---|
| 293 | for (sum1=sum2=0,i=1; i<n; i++) { | 
|---|
| 294 | for (j=0; j<i; j++) { | 
|---|
| 295 | sum1+=1.0/(Dij[i][j])*fabs(x[i]-x[j]); | 
|---|
| 296 | sum2+=1.0/(Dij[i][j]*Dij[i][j])*fabs(x[i]-x[j])*fabs(x[i]-x[j]); | 
|---|
| 297 | } | 
|---|
| 298 | } | 
|---|
| 299 | uniLength=sum1/sum2; | 
|---|
| 300 | for (i=0; i<n; i++) | 
|---|
| 301 | x[i]*=uniLength; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | /* smart ini: */ | 
|---|
| 305 | CMDS_orthog(graph, n, 1, &y, conj_tol, x, Dij); | 
|---|
| 306 |  | 
|---|
| 307 | /* Compute Laplacian: */ | 
|---|
| 308 | f_storage = N_GNEW(n*n, float); | 
|---|
| 309 |  | 
|---|
| 310 | for (i=0; i<n; i++) { | 
|---|
| 311 | lap[i]=f_storage+i*n; | 
|---|
| 312 | degree=0; | 
|---|
| 313 | for (j=0; j<n; j++) { | 
|---|
| 314 | if (j==i) | 
|---|
| 315 | continue; | 
|---|
| 316 | degree-=lap[i][j]=-1.0f/((float)Dij[i][j]*(float)Dij[i][j]); // w_{ij} | 
|---|
| 317 |  | 
|---|
| 318 | } | 
|---|
| 319 | lap[i][i]=degree; | 
|---|
| 320 | } | 
|---|
| 321 |  | 
|---|
| 322 |  | 
|---|
| 323 | /* compute residual distances */ | 
|---|
| 324 | /* if (x!=NULL)  */ | 
|---|
| 325 | { | 
|---|
| 326 | double diff; | 
|---|
| 327 | for (i=1; i<n; i++) { | 
|---|
| 328 | pos_i=x[i]; | 
|---|
| 329 | for (j=0; j<i; j++) { | 
|---|
| 330 | diff=(double)Dij[i][j]*(double)Dij[i][j]-(pos_i-x[j])*(pos_i-x[j]); | 
|---|
| 331 | Dij[i][j]=Dij[j][i]=diff>0 ? (DistType)sqrt(diff) : 0; | 
|---|
| 332 | } | 
|---|
| 333 | } | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | /* Compute the balance vector: */ | 
|---|
| 337 | for (i=0; i<n; i++) { | 
|---|
| 338 | pos_i=y[i]; | 
|---|
| 339 | balance[i]=0; | 
|---|
| 340 | for (j=0; j<n; j++) { | 
|---|
| 341 | if (j==i) | 
|---|
| 342 | continue; | 
|---|
| 343 | if (pos_i>=y[j]) { | 
|---|
| 344 | balance[i]+=Dij[i][j]*(-lap[i][j]); // w_{ij}*delta_{ij} | 
|---|
| 345 | } | 
|---|
| 346 | else { | 
|---|
| 347 | balance[i]-=Dij[i][j]*(-lap[i][j]); // w_{ij}*delta_{ij} | 
|---|
| 348 | } | 
|---|
| 349 | } | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | for (converged=FALSE,iterations2=0; iterations2<200 && !converged; iterations2++) { | 
|---|
| 353 | if (conjugate_gradient_f(lap, y, balance, n, conj_tol, n, TRUE) < 0) { | 
|---|
| 354 | rv = 1; | 
|---|
| 355 | goto cleanup; | 
|---|
| 356 | } | 
|---|
| 357 | converged=TRUE; | 
|---|
| 358 | for (i=0; i<n; i++) { | 
|---|
| 359 | pos_i=y[i]; | 
|---|
| 360 | b=0; | 
|---|
| 361 | for (j=0; j<n; j++) { | 
|---|
| 362 | if (j==i) | 
|---|
| 363 | continue; | 
|---|
| 364 | if (pos_i>=y[j]) { | 
|---|
| 365 | b+=Dij[i][j]*(-lap[i][j]); | 
|---|
| 366 |  | 
|---|
| 367 | } | 
|---|
| 368 | else { | 
|---|
| 369 | b-=Dij[i][j]*(-lap[i][j]); | 
|---|
| 370 |  | 
|---|
| 371 | } | 
|---|
| 372 | } | 
|---|
| 373 | if ((b != balance[i]) && (fabs(1-b/balance[i])>1e-5)) { | 
|---|
| 374 | converged=FALSE; | 
|---|
| 375 | balance[i]=b; | 
|---|
| 376 | } | 
|---|
| 377 | } | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | for (i=0; i<n; i++) { | 
|---|
| 381 | x[i] /= uniLength; | 
|---|
| 382 | y[i] /= uniLength; | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | cleanup: | 
|---|
| 386 |  | 
|---|
| 387 | free (Dij[0]); free (Dij); | 
|---|
| 388 | free (lap[0]); free (lap); | 
|---|
| 389 | free (orthog_aux); free (balance); | 
|---|
| 390 | return rv; | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 | #endif /* DIGCOLA */ | 
|---|
| 394 |  | 
|---|
| 395 |  | 
|---|